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The rapid evolution of image acquisition and data analytic methods has established in vivo whole-brain tractography as a routine
technology over the last 20 years. Imaging-based methods provide an additional approach to classic neuroanatomical studies focusing
on biomechanical principles of anatomical organization and can in turn overcome the complexity of inter-individual variability
associated with histological and tractography studies. In this work we propose a novel, reliable framework for determining brain
tracts resolving the anatomical variance of brain regions. We distinguished 4 region types based on anatomical considerations: (i) gyral
regions at borders between cortical communities; (ii) gyral regions within communities; (iii) sulcal regions at invariant locations across
subjects; and (iv) other sulcal regions. Region types showed strikingly different anatomical and connection properties. Results allowed
complementing the current understanding of the brain’s communication structure with a model of its anatomical underpinnings.
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Introduction
The remarkable trajectory on the sophistication of basic neu-
roanatomical studies has provided a comprehensive assessment
of cortico-cortical connectivity over the last 150 years (e.g. Dejer-
ine and Dejerine-Klumpke 1895; Schmahmann and Pandya 2009)
and allowed understanding connectivity at different levels of
scale in nonhuman primates, most notably, macaques (e.g. Rock-
land and Pandya 1979; Barbas 1986; Schmahmann et al. 2007; de
Schotten et al. 2012; Harriger et al. 2012; Morecraft et al. 2012;
Goulas et al. 2014; Morecraft et al. 2015; Girard et al. 2020) and
humans (e.g. Catani et al. 2003; Budde and Annese 2013; Vergani
et al. 2014; Galinsky et al. 2016; Jitsuishi et al. 2017; Bullock
et al. 2019). Coverging evidence from antero- and retrograde trac-
ing along viral tracing experiments in macaques led to the for-
mation of the so-called structural model of connectivity (Barbas
and Rempel-Clower 1997), which is comprised of 3 components: (i)
the description of feedforward and feedback projections between
cortical areas (e.g. Jones and Powell 1970; Barbas 1986; Cavada and
Goldman-Rakic 1989a, 1989b; Markov et al. 2014), (ii) a hierarchical
processing from primary over uni- and multi-modal to limbic cor-
tices (Mesulam 1998; Felleman and van Essen 1991; Chanes and
Barrett 2016; Garcia-Cabezas et al. 2019); (iii) a communication
model based on predictive coding (Rao and Ballard 1999; Friston
2010) embedded in an adaptive Bayesian context (Tucker and Luu
2021).

However, for a long-time, besides the description of tracts by
Dejerine and Dejerine-Klumpke (1895), a comprehensive descrip-
tion of global, whole-brain tract architecture in humans has been
lagging behind. The development of diffusion-based magnetic
resonance imaging (dMRI), however, has added an unprecedented
view on brain’s tract architecture during the last 20 years (e.g.
Hagmann et al. 2007; Gong et al. 2009; Cheng et al. 2012; Wedeen et
al. 2012; Sotiropoulos and Zalesky 2017). In this context, the data

on tract topology obtained from previous studies in macaques
have been essential as dMRI still cannot demonstrate formally
connectivity. This limitation not withstanding, the rapid evolu-
tion of image acquisition and data-analytic methods (review:
Yeh et al. 2021; Andersson et. al. 2003; Robinson et al. 2010; Jeuris-
sen et al. 2014; Smith et al. 2016; Guevara et al. 2017; Buchanan
et al. 2020; Khalilian et al. 2021) now readily allow studying the
topology of tracts throughout life and under the condition of
brain diseases (Bassett and Bullmore 2009), albeit at a much lower
spatial resolution than histological assessment.

Because of the inherent limitations of imaging studies, several
have tried to validate them by comparing fiber-tracking results
between tracer-studies and with observations derived from
diffusion-based methods acquired in macaques and humans.
Schmahmann et al. (2007) identified the long association tracts
using diffusion spectrum imaging in macaques. Quantitative
properties of tracer-based network connections were analyzed by
Harringer et al. (2012). Quantitative comparisons between tracer-
and diffusion-based tractography in macaques (Donahue et al.
2016; Girard et al. 2020) demonstrated a considerable agreement
between methods (i.e. area under the curve of the receiver
operating characteristic up to 0.78). Cross-species imaging studies
of humans and macaques pointed out differences between fiber
tracts (de Schotten et al. 2012), network properties (Goulas et al.
2014), and gyral and sulcal connectivity (Zhang et al. 2020).

Due to the limited spatial resolution, most imaging-based stud-
ies have focused on assessing the large, relatively invariant long-
range fiber bundles (>60 mm length) containing several tracts
(Hagmann et al. 2007; Gong et al. 2009; Zhu et al. 2012; Bullock
et al. 2019; Zhang et al. 2020; Yeh et al. 2021), which, however,
comprise only 10% of all fibers (Braitenberg 1974; Braitenberg and
Schüz 1998). Association fibers (u-fibers, 20–60 mm length) that
connect neighboring gyri and 30% of all fibers (Vergani et al. 2014;
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Galinsky et al. 2016; Bullock et al. 2019) are now amenable for
in vivo detection (review: Guevara et al. 2020; Zhang et al. 2014;
Guevara et al. 2017). The majority of cortical connections are short
(<20 mm length), reside mostly within cortical layers I, IV, and V
(Vogt and Vogt 1919), and can only be studied with high-field MRI
systems at this time (Leuze et al. 2014; Rowley et al. 2015).

To analyze the organization of the complex cortical networks,
most typically, authors used graphs as an abstraction (e.g. Itur-
ria-Medina et al. 2008; He and Evans 2010). In this approach,
cortical regions correspond to nodes and edges to the tracts
between nodes that carry a measure of connectivity between
regions, which can be binary (connected or not) or weighted (e.g.
reflect connection strength). An extensive number of metrics
derived from graph theory were suggested to describe and analyze
various properties of the network, either at the level of the whole-
brain or within single nodes (review: Rubinov and Sporns 2010).
There is converging evidence that connectivity is not uniform
across regions in terms of connection strength and range (van den
Heuvel and Sporns 2011b; Zhang et al. 2020). Local hubs have rather
few, local connections, while global hubs have more, including dis-
tant connections, for which they have been called the “rich club”
of the network (van den Heuvel and Sporns 2011a). Importantly,
using a database of tract-tracing studies in macaques, Harriger
et al. (2012) established a similar connectivity pattern as found
in humans, which was confirmed by Goulas et al. (2014) in a
comparative study.

The analytic approach sketched above albeit very informative
lacks anatomical precision in terms of the location and structural
properties of the cortical regions. Typically, cortical regions are
defined by adopting any of the common atlases (e.g. (Tzourio–
Mazoyer et al. 2002; Desikan et al. 2006) based on anatomical
and/or functional constraints. After the quantitative analysis of
the graph network properties, results are interpreted in terms
of their nodal region labels as a whole. Interestingly, there are
only 2 studies that aimed at differentiating connectivity between
gyral and sulcal areas, which were conducted by a similar group
of authors. Nie et al. (2012) pointed out that gyral regions are
more strongly connected than sulci. Zhang et al. (2020) found that
regions where 2 or more gyri meet (so called “3-hinge” regions)
were more strongly connected than nearby gyral regions and
pointed out their potential role in cortical patterning from sim-
ulations (Zhang et al. 2018).

However, the well-known considerable individual variability
of cortical patterning is met with further variability of cortical
connectivity (e.g. Cheng et al. 2012; Zhu et al. 2012; Chavoshnejad
et al. 2021), rendering a limited understanding of the governing
principles behind cortical connectivity. In our previous work, we
presented a data-driven approach to determine anatomical corti-
cal patterns with high resolution based on developmental corti-
cal pattern formation (Kruggel 2018; Kruggel and Solodkin 2019;
Kruggel and Solodkin 2020). Indeed, neuroanatomical studies of
fetal development established locations and time points at which
sulci appear on the cortical surface (Cunningham 1892; Chi et al.
1977; Nishikuni and Ribas 2012). Recent imaging-based studies
provided converging evidence that these sulcal roots (Regis et al.
1995) are relatively invariant landmarks across subjects (Im et
al. 2010) and are genetically determined (le Guen et al. 2018;
Kruggel and Solodkin 2020). The earlier a sulcal root appears
during development, the deeper and larger the sulcal basin around
it (Kruggel 2018; Kruggel and Solodkin 2019). We found that basins
cluster into 7 communities, which are further divided into 13 in
some subjects (Kruggel 2018). The individual variability of the
cortical patterning is governed by typically 2 sulcal roots per

community that are found at relatively invariant locations across
subjects (Kruggel and Solodkin 2019), called centers of low variabil-
ity (CLV). We note that structurally defined communities (Kruggel
2018) at least partially correspond with results from clustering
cortical modules based on connectivity (Hagmann et al. 2008).
One important advantage of our topological classification is that
it allows for a symbolic matching of regions between all subjects
without the need for registration.

In this study, we aimed at elucidating how cortical connectivity
complements the current understanding of cortical pattern
formation. Instead of employing a common atlas, we used local
macro-structural properties (surface curvature and geodesic
depth) to define individual sulcal and gyral regions-of-interest.
Due to their defining properties as landmarks, we further
distinguished central sulcal regions at invariant (CLV) locations
from peripheral ones. During this study, we found a considerable
similarity between the structurally defined communities and the
connectivity defined modules, although they are not identical.
Because community borders coincide with gyral crowns, we
decided to distinguish border from inner gyral regions. Thus, we
analyzed properties of cortico-cortical connections in these 4
region types based on individual segmentations. We were sur-
prised to find clearly distinguishing features between regions that
were highly similar across subjects, which allowed addressing
distinctly defined roles to region types in the cortical network.
In addition, features helped in identifying differences in network
properties between hemispheres and sexes.

Material and methods
Subjects and imaging data
From the 1113 subjects in the “1200 Subjects Release” of the
Human Connectome Project (Human Connectome Project 2017)
we selected 1061 subjects, for which anatomical and diffusion-
weighted data sets were available. Unprocessed T1-, T2-, and
diffusion-weighted (DW) magnetic resonance (MR) images were
used in this study. For detailed acquisition information, refer to
the release document (Human Connectome Project 2017).

Segmentation of cortical features
Procedures for the generation of white matter/grey matter
(WM/GM) brain surfaces and basin segmentations were identical
to those described previously (Kruggel and Solodkin 2019). As a
result, we obtained triangulated meshes of the WM/GM interface,
for each subject and both hemispheres, that contained vertex-
wise basin labels. Individual hemispheric meshes can be mapped
to a unit sphere (Kruggel 2008) and linearly registered across the
cohort (Kruggel 2018). Basin labels were re-sampled on a common
icosahedral mesh (ico7, 163842 vertices, corresponding to a spatial
resolution of about 0.56 mm2) that matched to resolution of
the original data. Thus, from each vertex in this space, the best
matching surface location in a specific subject and hemisphere
can be referenced. We collected an image of (i) the basin label, (ii)
the geodesic depth, (iii) the local curvature expressed as the shape
index, and (iv) the cortical myelin ratio across the nv = 163842
vertices and both hemispheres of the 1061 subjects in this cohort.

Processing of DW imaging data
The 3 B-shell series of paired L/R blip DW MR scans were corrected
for subject motion and susceptibility distortions (Andersson et al.
2003). Next, voxel-wise estimates of the orientation distribution
function of water motion were computed using the constrained
spherical deconvolution (CSD) method (Jeurissen et al. 2014).
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Finally, tracking of fiber connections was performed via a
probabilistic method (Smith et al. 2016).

Seeds for the tracking process were generated by the following
procedure: The voxel-wise fractional anisotropy was estimated
from the CSD data above, masked by the averaged B0-images
of the preprocessed DWI data. The high-resolution T2-weighted
anatomical scan was registered with the B0-images in DWI space.
Both scans were combined and segmented using a Gaussian
mixture model into 4 classes (roughly corresponding to compart-
ments cerebrospinal fluid (CSF), WM, GM, and other). The WM
compartment was extracted as a binary object in voxel space.
The hemispheric surface mesh with vertex-wise basin labels was
adapted to this WM object using linear registration followed by
nonlinear deformation. Finally, basin labels were transferred from
the surface mesh to the closest voxel on the surface of the WM
object. A careful assessment of the matching quality is important,
in order not to bias the generation of seed voxels for tracking in
sulcal vs. gyral areas. Thus, we obtained a set of basin-labeled
voxels on the WM/GM interface in DWI space per hemisphere. We
used on average 85 000 seeds per hemisphere and 100 repetitions
per seed for tracking. Tracks that did not end at a labeled surface
voxel were discarded. This process yielded 2–5 million tracks per
hemisphere. We filtered out some spurious fibers based on a
length/distance criterion, i.e. long fibers that connected 2 cortical
areas nearby.

As a result, we obtained a set of fiber tracks, for each sub-
ject and hemisphere, connecting WM/GM surface locations with
known basin labels.

Clustering of fiber connections into communities
Using fiber tracks and basin labeling, we computed hemisphere-
wise fiber connectivity matrices. Consider subject a with na distinct
basin labels and allocate a matrix C(na, na). Increment element
C(i, j) if a fiber starts at basin label i and ends at basin label j.
Normalize C by the number of connections. Thus, entries in this
matrix represent the connection probability between regions.

Subject-wise matrices were clustered into using a heuristic
algorithm (Campigotto et al. 2014), leading to 6–10 communities
per subject and hemisphere. To integrate all individual commu-
nity maps, we followed the same approach as used for defining
cortical communities (Kruggel 2018). Given a reference r with nr

distinct community labels and a subject s with ns community
labels, we computed an ns × nr matrix of label correspondences.
Element i, j of this matrix contained the number of vertices labeled
as i on sphere s and j on sphere r. Thus, the community i on s that
best matches reference basin j can simply be found as the row-
wise maximum. This map of homologue communities was used
to relabel s in terms of the reference r. Given the same reference
r, this process was repeated for all subjects s, accumulating nr

possible labels at each vertex i of the reference in a matrix L
of dimensions nv × nr. For each row of this matrix, we ranked
elements L(i, j) by decreasing values, denoting the highest rank k
as zero. We defined a variability metric Vi from the rank-weighted
sum of region overlaps:

Vi =
nr∑
j

k(L(i, j)) L(i, j). (1)

Note that the best match does not contribute to this sum (k =
0), such as nonoverlapping basins (L(i, j) = 0). An optimal “one-
on-one” overlap yields a variability of zero. A larger number of
overlapping regions penalizes the measure by multiplication with

Fig. 1. Left: Vertex-wise variability of fiber connectivity. Regions in
magenta show low inter-subject variability, separated by rims of higher
variability (green–red). Middle: Segmentation into 6 fiber communities.
Right: Mapping of fiber communities onto an “inflated” left hemisphere.

an increasing rank k. The result of this process is a vertex-wise
map of community variability (Fig. 1, left). In order to achieve inde-
pendence of an arbitrarily chosen reference, this process can be
repeated for a different reference in a round-robin scheme. Thus,
regions of low variability were occupied by the same community
in all subjects, bordered by rims of high variability where neigh-
boring communities “compete” for space. A watershed region
growing procedure was used to segment this variability map into 6
communities (Fig. 1, middle) for each hemisphere (Kruggel 2018).

Segmentation of gyral and sulcal regions
During this study, we found distinctive differences in the cortical
connectivity between gyral and sulcal regions. So we decided to
introduce a finer grained segmentation of an hemispheric surface
than the basin segmentation described above.

An individual hemispheric surface was segmented into sulcal
and gyral areas using the scale-invariant shape index, which is
positive in concave and negative in convex regions. Peaks of gyral
crowns were determined as local maxima of the shape index.
Sulcal roots were determined as local minima of the shape index
with a minimum geodesic depth of 5 mm (Fig. 2, top left). Results
were filtered such that peaks had a distance of at least 8 arc
degrees. Starting from these peaks and roots, a curvature-guided
watershed region growing procedure was used to segment the
hemispheric surface into the gyral and sulcal patches.

By construction, borders between fiber communities coincide
with gyral ridges. Borders were extracted and dilated on the
spherical mesh to bands of 8 vertices width. Gyral patches that
coincide with borders were denoted as border gyral regions, the
others as inner gyral regions. In our previous work (Kruggel and
Solodkin 2019), we found that the deepest sulcal roots show much
less variability in space across subjects, called CLV (Fig. 2, top
right). Thus, we distinguished sulcal patches that coincide with
CLVs as core sulcal regions, the others as peripheral sulcal regions
(Fig. 2, below left).

Consider the frontal community (Fig. 1, right, in red). An exam-
ple mapping of segmented regions on an individual hemisphere
(Fig. 2, below right) shows community borders (in red) along the
superior rim of the hemisphere and the precentral gyrus, inner
gyral regions (in yellow), peripheral sulcal regions in green, and
core sulcal regions (in blue) in the inferior section of the precentral
sulcus and the posterior part of the superior frontal sulcus. Region
statistics were compiled in Table 1.

Measures of network connectivity
Subject-wise connectivity matrices were recomputed according to
the regions obtained above. Connectivity matrices are equivalent
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Table 1. Number and size of gyral and sulcal regions in both hemispheres.

Left Right

Region type Number Size [cm2] Number Size [cm2]

Border Gyral 206.7 ± 10.4 1.150 ± 0.049 202.8 ± 9.2 1.150 ± 0.048
Inner Gyral 209.1 ± 9.8 1.086 ± 0.041 216.1 ± 10.2 1.097 ± 0.044
Core Sulcal 96.8 ± 6.3 1.110 ± 0.061 97.8 ± 6.0 1.119 ± 0.060
Peri. Sulcal 405.0 ± 24.3 0.909 ± 0.042 401.9 ± 24.0 0.904 ± 0.042

Fig. 2. Region segmentation in an example subject. Top left: Borders of
fiber communities (black) overlaid onto geodesic depth (magenta: gyral
crowns; green: sulci). Top right: Borders of fiber communities (black)
overlaid onto CLV (colored). Below left: Region segmentation into (i) border
gyral regions (shades of red); ii) inner gyral regions (shades of yellow);
(iii) core sulcal regions (shades of blue); (iv) peripheral sulcal regions
(shades of green). Below right: Segmented regions mapped onto the
corresponding WM/GM surface.

to a weighted bidirectional network graph, in which nodes cor-
responds to cortical regions, and edge weights to the connection
probability between regions. Regions were characterized by 13
nodal network metrics. The first 10 were weighted nodal metrics
as compiled by Rubinov and Sporns (2010):

• Degree corresponds to the number of regions connected to
region i:

di =
n∑
j

C(i, j) > 0. (2)

• Strength measures the cumulative probability of connections
to region i:

si =
n∑
j

C(i, j). (3)

• Betweenness centrality corresponds to the fraction of all short-
est paths that connect through region i:

bi = 1
(n − 1)(n − 2)

n∑
j

#pi(j, k)

#p(j, k)
, (4)

where #p(j, k) is the number of shortest paths between regions
j, k and #pi(j, k) those that pass through region i. Regions

with higher betweenness centrality have more control of the
network.

• The efficiency of a region’s connectivity is computed as:

ei = 1
di(di − 1)

n∑
j

(
C(i, j) C(i, k)

l(pi(j, k))

)1/3

, (5)

where di corresponds to the degree of region i and l(pi(j, k))

to the length of the shortest path between regions j, k that
contains only neighbors of region i. Efficiency represents the
resilience at region i: how well connectivity is provided by its
neighbors when it is removed.

• Clustering coefficient represents the embeddedness of a region
in the network:

ci = 2
di(di − 1) Cmax

∑
j,k

(
C(i, j) C(j, k) C(k, i)

)1/3 , (6)

where di corresponds to the degree of region i, Cmax to
the maximum connection probability in the network, and
C(i, j), C(j, k), C(k, i) to the connectivity of regions with triangle
connections in the one ring at region i.

• Small-worldness measures the locality of a region’s connectiv-
ity:

wi = ci lr
li cr

with li =
∑

l(pi(j, k))

#pi(j, k)
, (7)

where ci corresponds to the clustering coefficient of region
i and li to the average length of shortest path connecting
through region i, in relation to measures of a random graph r.
A smallworld topology has a high clustering and a short path
length.

• Strength z-score corresponds to the normalized strength of a
region within its community:

zi = (si − sj)

σ (sj)
with sj =

∑
k∈Mi

C(j, k), (8)

where si corresponds to the connection strength of region
i in community Mi, sj and σ(sj) to the mean and standard
deviation of the within community strength.

• Participation coefficient measures the relative connection
strength of region i between communities:

yi = 1 −
∑

m s2
m

s2
i

with sm =
∑

k∈Mm

C(i, k), (9)

where sm corresponds to the connection strength of region i
to those in community m and si to the strength of region i.

• S-level decomposition: In the graph that represents a connectiv-
ity matrix, the smallest connectivity smin between any 2 nodes
was determined. All edges in the graph with a connectivity
less or equal than smin were removed. A level counter for all
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remaining nodes was increased. This process was repeated
until the graph was empty. Thus, the s-level of a region
represents its ranked strength in the network.

• S-core decomposition: The graph was pruned as described
above, but the highest value of smin was kept for each node.
Thus, the s-core of a region corresponds to its weakest
connectivity in the network.

We added the following metrics:

• Density represents the quotient of the connection strength
and surface area of a region.

• Reach measures a region’s connectivity, weighted by the
length of shortest paths:

ri =
∑n

j C(i, j)l(p(i, j))∑n
j C(i, j)

. (10)

• Myelin ratio is the quotient of the T1- by T2-weighted intensity,
averaged across the cortical segment of a region. It is under-
stood that this ratio is proportional to the fraction of cortical
myelin (Glasser and van Essen 2011; Norbom et al. 2020).

• The cortical thickness is the distance between the CSF/GM and
GM/WM interfaces, averaged across the cortical segment of a
region.

Note that the last 2 metrics measure were not derived from DW
images and do not represent connectivity per se.

We acknowledge some redundancy in this list of connectivity
measures. Several metrics assess similar properties, as indicated
by high correlation coefficients between them. However, we found
that each measure provided a valuable contribution to the overall
characterization of a region’s connectivity. We decided to (i) prefer
probabilistic over deterministic tracking; (ii) use continuous over
binary network metrics; (iii) avoid using arbitrary thresholds on
network metrics. These decisions match recommendations of a
recent publication by an expert panel (Yeh et al. 2021).

Because ranges of measures differed across metrics, and most
metrics did not follow a Gaussian distribution, we resorted to a
nonparametric normalization. Region-wise results of a specific
metric obtained in a hemisphere of a specific subject were ranked
and z-transformed. Region-wise z-scores can be (i) averaged per
region type, leading to 4 z-scores per metric and hemisphere; (ii)
mapped to the reference surface, and averaged across all subjects
in this cohort, leading to a spatial map of a metric. We considered
this approach as viable because it was based on sufficiently large
sample of ≈920 regions. Transformed metrics were now Gaussian
distributed with similar ranges across metrics, which makes using
operations such as principal component analysis viable.

Results
In this section, we described (i) general properties of connectivity
for the cortical region types; (ii) provided a deeper analysis of the
cortical network and its local properties; and (iii) analyzed inter-
hemispheric and sex-related differences in brain connectivity.

Connectivity of regions
The connectivity between region types was expressed as the
fraction of total streamlines between them (Table 2). Border gyral
regions mostly connected to core sulcal and other border regions.
An example of border-to-border gyral connectivity is the aslant
tract that bypasses under the frontal community from the medial
community to the insula. Similarly, inner gyral regions connected

to core sulcal and other inner regions. Inner-to-inner gyral con-
nections likely correspond to local within community subcorti-
cal u-fibers. Besides the reciprocal connections to gyral regions,
core sulcal regions predominately connected to other core sulcal
regions. Because core regions were sparse (12% of all, with 2–3 per
community), this finding spurred the hypothesis that they form
nonlocal (between-community) connections. Finally, peripheral
sulcal regions connected almost equally to all other regions,
indicating a role as local communication integrators. Results
were highly similar for both hemispheres. Functional segregation,
facilitated by high structural clustering coefficient (Rubinov and
Sporns 2010), is widely acknowledged to be a fundamental char-
acteristic of the cortex.

Next, we assessed the distribution of connectivity vs. fiber
path length, as given by the shortest path between 2 regions
in the anatomical network. Each path segment corresponds to
roughly 10 mm length. In a first approximation, the distribution
over all region types followed the “power law” described before
(Ercsey-Ravasz et al. 2013), which was actually composed of a
mixture of log-normal distributions. However, when separating
for specific region types, distributions showed considerable differ-
ences. For a finer analysis, we compared the amount of connec-
tions between specific region types at different path lengths using
t-tests. Results were compiled in Fig. 3 as t-values vs. path length.
Values are positive if the first sample had stronger connections at
a specific path length.

From the comparison of gyral vs. sulcal regions (left panel),
we found more gyral connections at a mid-range distance (path
length 5–10), but more sulcal connections at shorter and longer
distances. This peak of the gyral distribution likely corresponded
to the local and regional u-fibers that originated and ended in
gyral regions, whereas most long (between-community) fibers
originated in sulcal regions. Further differentiation between bor-
der and inner gyral regions (right panel) showed that connectivity
of border regions was stronger for path lengths greater than 6.
The connectivity was always stronger in core than peripheral
sulcal regions (not shown). In summary, inner gyral and periph-
eral sulcal regions had predominately short, local connectivity,
border gyral regions mostly mid-range (within- and between-
community) connectivity, whereas core sulcal regions dominated
in nonlocal connectivity.

Network metrics in regions
Network metrics of the individual fiber connectivity were
computed in the 4 region types, as described in Section 2.6.
Region-wise measures were ranked, z-transformed, and averaged
by region type and hemisphere (Table 3). Surprisingly, metrics
were strikingly different between region types. We ranked regions
by their metrics (t-tests, < indicates p < 1e − 4 after Bonferroni
correction).

Core sulcal regions had the highest scores in 10 of 12
metrics. They showed a high fiber density with a strong local
connectivity (degree, strength, efficiency, clustering, z-score, and
small-worldness). However, they also had considerable remote
connectivity (s-core, s-level, reach). Together, they form the “rich
club” of local hubs. In contrast, peripheral sulcal regions scored
lowest in 10 of 12 metrics, with higher scores in the partic-
ipation coefficient, characterizing them as local information
integrators.

Border gyral regions scored highest in terms of betweenness
centrality and participation coefficient, but second lowest in most
other network metrics, which characterized these regions as
between-community connectors, in line with their anatomical
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Table 2. Fraction of total connections (%) between region types in both hemispheres.

Left Right

Region type Border Inner Core Peri. Border Inner Core Peri.

Border gyral 7.70 4.80 7.12 4.95 8.08 4.60 7.45 4.89
Inner gyral 4.81 7.68 6.61 5.42 4.59 7.40 6.77 4.94
Core sulcal 7.17 6.64 12.00 5.13 7.53 6.81 12.20 5.39
Peri. sulcal 5.00 5.45 5.11 4.44 4.92 4.97 5.37 4.14

Fig. 3. Strengths of fiber connections vs. path length in the left (black) and right (red) hemisphere. Left: t-value of comparison between (i) gyral and
(ii) sulcal fibers. Right: t-value of comparison between (i) border vs. (ii) inner gyral fibers. t-values are positive if compartment (i) and negative if
compartment (ii) had stronger connections. Values above and below the dotted lines were statistically significant (p < 0.05).

location. Finally, inner gyral regions scored second highest in 8
of 12 metrics, consistently below core sulcal regions. Their low
participation coefficient, but high small-worldness and efficiency
characterized them as local processing units.

In addition to these 12 metrics based on DW data, we used
the cortical myelin ratio and cortical thickness as complimentary
metrics that were based on the available T1- and T2-weighted
images. We found strong differences between region categories:
The myelin ratio and thickness decreased from border and inner
gyral to core and peripheral sulcal regions.

As discussed in Section 2.6, some metrics are highly correlated.
To better understand the relevance of region properties, we used
a principal component analysis to project results into a 3D space,
retaining 86.3% of the variance on the left, and 82.1% on the
right side. Component plots (Fig. 4) showed distinct clusters for
the 4 region types. Note that the clusters spread decreased with
the proportion of regions per type. The most compact cluster
(peripheral sulcal regions, in blue) was based on 44% of all regions,
whereas the most extensive cluster (core sulcal regions, in green)
was based on only 10% of all regions. This may indicate that
rather measures are “noisy” than region properties differ between
individuals.

Loadings on principal components (Table 4) demonstrated a
predominant influence of strength- and density-related metrics
on component 1 (density, degree, strength, betweenness centrality,
z-score, s-level, and s-core decomposition); of locality-related
metrics on component 2 (efficiency, clustering coefficient,
small-worldness, participation, fiber reach); and anatomical
metrics (myelin ratio, cortical thickness) on component 3. Thus,
component 1 distinguished between border gyral and core
sulcal vs. inner gyral and peripheral sulcal regions in terms of

connection strength. Component 2 distinguished between inner
gyral and core sulcal vs. border gyral and peripheral sulcal regions
in terms of connection locality. Gyral regions were distinguished
from sulcal regions in terms of thickness and myelin content by
component 3.
Finally, we clustered PCA-transformed metrics using a Gaussian

mixture model (Scrucca et al. 2017). The best model had 4 classes
on both sides (as indicated by the Bayesian information criterion).
Comparing the clusters against the region type in a confusion
matrix demonstrated an excellent match (normalized mutual
information left: 0.957; right: 0.959). Note that the same level of
discrimination can be achieved with only 5 metrics (strength,
clustering coefficient, reach, myelin ratio, and cortical thickness),
indicating the redundancy of the metrics. In conclusion, regional
metrics can be used to predict the anatomically defined region
type.

Hemispheric asymmetries in region connectivity
Strongly significant inter-hemispheric asymmetries in region con-
nectivity were found for most metrics (Table 5).

Interestingly, most asymmetries were leftward for inner gyral
and peripheral sulcal regions, and rightward for border gyral
and core sulcal regions. In the component analysis (Fig. 4), core
sulcal (green) and border gyral regions (black) were more dis-
tinct from inner gyral regions (red) on the right side. On the
left side, core sulci had a weaker connectivity (PC 1: L-R = -
0.3687), but a much higher locality (PC 2: L-R = +0.5097), whereas
peripheral sulci showed little differences. Border gyri were more
strongly connected (PC 1: L-R = +0.209), whereas inner gyri had a
weaker locality (PC 2: L-R = -0.3036). Results of network metrics
(Table 3) demonstrated that core sulci were strongly connected
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Table 3. Network and anatomical metrics for border gyral, inner gyral, core sulcal, and peripheral sulcal regions. Numeric values
correspond to z-scores, averaged across all hemispheres for the left and right side. In the last column, regions were ranked by assessing
their individual z-scores (t-test, Bonferroni-corrected). The relation “<” indicates p < 1e − 4, else “=”. Core sulcal regions ranked highest
in 10 of 12 network metrics except betweenness centrality and participation, where border gyral regions were stronger. For further
discussion, please, refer to the text.

Parameter Side Gyri Sulci Rank

Border (B) Inner (I) Core (C) Peri. (P)

Degree L 0.1035 0.0054 0.1884 -0.0763 S < I < B < C
Degree R 0.0848 0.0202 0.1850 -0.0985 S < I < B < C
Strength L 0.0542 0.0952 0.2035 -0.1253 S < B < I < C
Strength R 0.0684 0.0732 0.2846 -0.1434 S < B = I < C
Betweenness Cent. L 0.0982 0.0240 0.0513 -0.0743 S < I < C < B
Betweenness Cent. R 0.1038 0.0428 0.0553 -0.0763 S < I = C < B
Efficiency L -0.0979 0.1823 0.2628 -0.1084 S < B < I < C
Efficiency R -0.0297 0.1269 0.2436 -0.1144 S < B < I < C
Clustering Coef. L -0.0933 0.1954 0.2228 -0.1231 S < B < I < C
Clustering Coef. R -0.0680 0.1487 0.1887 -0.0942 S < B < I < C
Small-worldness L -0.1154 0.1925 0.2400 -0.0998 B < S < I < C
Small-worldness R -0.0542 0.1413 0.2212 -0.1052 S < B < I < C
Strength z-score L 0.0546 0.1508 0.1924 -0.1513 S < I < B < C
Strength z-score R 0.0713 0.0909 0.2700 -0.1505 S < I < B < C
Participation L 0.1484 -0.2318 -0.0487 0.0557 I < C < S < B
Participation R 0.1786 -0.2220 -0.0478 0.0410 I < C < S < B
S-Level Decomp. L 0.0199 0.0754 0.2228 -0.1027 S < B < I < C
S-Level Decomp. R 0.0443 0.0597 0.2963 -0.1276 S < B = I < C
S-Core Decomp. L 0.0214 0.0762 0.2243 -0.1041 S < B < I < C
S-Core Decomp. R 0.0460 0.0608 0.2984 -0.1292 S < B < I < C
Density L 0.0591 0.0955 0.2122 -0.1299 S < B < I < C
Density R 0.0570 0.0687 0.2891 -0.1362 S < B = I < C
Reach L -0.0649 0.1429 0.1777 -0.0868 S < B < I < C
Reach R -0.0483 0.0911 0.1689 -0.0690 S < B < I < C
Myelin ratio L 0.3087 0.1500 0.1033 -0.2568 S < C < I < B
Myelin ratio R 0.3031 0.1698 0.1152 -0.2696 S < C < I < B
Cortical thickness L 0.3766 0.2855 -0.0265 -0.3279 S < C < I < B
Cortical thickness R 0.4501 0.2022 0.0327 -0.3385 S < C < I < B

Table 4. Loadings of network and anatomical metrics on principal components 1–3 for the left and right hemispheres.

Left Right

Parameter PC 1 PC 2 PC3 PC 1 PC 2 PC 3

Degree 0.898 -0.144 0.299 0.912 – 0.264
Strength 0.847 0.428 0.259 0.912 0.199 0.250
Betweenness Cent. 0.604 – 0.344 0.613 0.113 0.247
Efficiency 0.401 0.897 – 0.649 0.599 0.111
Clustering Coef. 0.253 0.958 – 0.470 0.744 –
Small-worldness 0.327 0.935 – 0.568 0.679 –
Strength z-score 0.703 0.508 0.363 0.851 0.279 0.306
Participation – -0.788 – – -0.971 –
S-Level Decomp. 0.857 0.475 0.113 0.930 0.214 0.162
S-Core Decomp. 0.856 0.476 0.108 0.931 0.215 0.157
Density 0.847 0.409 0.261 0.916 0.193 0.208
Reach 0.220 0.626 0.113 0.350 0.357 –
Myelin ratio 0.366 – 0.905 0.338 – 0.923
Cortical thickness 0.169 – 0.969 0.184 – 0.973

and had much higher scores in the s-level and s-core decom-
position on the right side, indicating stronger remote than local
connectivity.

Sex-related differences in region connectivity
Sex-related differences in network and anatomical metrics were
compiled in Table 6.

Interestingly, differences in network metrics for border gyral
and core sulcal regions were generally not significant. In all
significant differences for inner gyral regions, females scored
lower than males, whereas for peripheral sulcal regions, females
scored higher than males. Thus, in the context of the ranking of
network metrics (Table 3) differences between inner gyral and
peripheral sulcal regions were smaller for females than males.
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Fig. 4. Principal component analysis of the 14 metrics in the left (top) and right hemisphere (below). Colors denote region types: border gyral (black),
inner gyral (red), core sulcal (green), peripheral sulcal regions (blue).

Table 5. Hemispheric asymmetries in network and anatomical metrics for border gyral, inner gyral, core sulcal, and peripheral sulcal
regions. For each region type and metric, the direction of significant asymmetries and their p-values were compiled (paired t-tests,
Bonferroni-corrected). For further discussion, please, refer to the text.

Border gyri Inner gyri Core sulci Peripheral sulci

Parameter Rank P-value Rank P-value Rank P-value Rank P-value

Degree L > R <1e-04 L < R 1.33e-02 L < R <1e-04 L > R <1e-04
Strength L = R n.s. L > R <1e-04 L < R <1e-04 L > R <1e-04
Betweenness Cent. L > R <1e-04 L < R <1e-04 L < R <1e-04 L = R n.s.
Efficiency L < R <1e-04 L > R <1e-04 L = R n.s. L = R n.s.
Clustering Coef. L < R <1e-04 L > R <1e-04 L > R <1e-04 L = R n.s.
Small-worldness L < R <1e-04 L > R <1e-04 L = R n.s. L = R n.s.
Strength z-score L < R 8.12e-03 L > R <1e-04 L < R <1e-04 L = R n.s.
Participation L < R <1e-04 L = R n.s. L = R n.s. L > R <1e-04
S-Level Decomp. L < R <1e-04 L > R 3.397e-03 L < R <1e-04 L > R <1e-04
S-Core Decomp. L < R <1e-04 L > R 2.76e-03 L < R <1e-04 L > R <1e-04
Density L = R n.s. L > R <1e-04 L < R <1e-04 L = R n.s.
Reach L = R n.s. L > R <1e-04 L = R n.s. L < R <1e-04
Myelin ratio L = R n.s. L < R <1e-04 L = R n.s. L > R <1e-04
Cortical thickness L < R <1e-04 L > R <1e-04 L < R <1e-04 L > R <1e-04
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Table 6. Sex-related differences in network and anatomical metrics for border gyral, inner gyral, core sulcal, and peripheral sulcal
regions. For each region type and metric, the direction of sex-related differences and their p-values were compiled (t-tests,
Bonferroni-corrected). For further discussion, please, refer to the text.

Side Border gyri Inner gyri Core sulci Peripheral sulci

Parameter Rank P-value Rank P-value Rank P-value Rank P-value

Degree L F < M 3.432e-04 F = M n.s. F = M n.s. F > M 2.404e-02
Degree R F = M n.s. F < M <1e-04 F = M n.s. F > M 4.336e-03
Strength L F = M n.s. F < M <1e-04 F = M n.s. F > M <1e-04
Strength R F = M n.s. F < M <1e-04 F = M n.s. F > M <1e-04
Betweenness Cent. L F = M n.s. F = M n.s. F = M n.s. F = M n.s.
Betweenness Cent. R F = M n.s. F = M n.s. F = M n.s. F = M n.s.
Efficiency L F = M n.s. F < M 6.333e-04 F = M n.s. F = M n.s.
Efficiency R F = M n.s. F < M <1e-04 F = M n.s. F = M n.s.
Clustering Coef. L F = M n.s. F = M n.s. F = M n.s. F = M n.s.
Clustering Coef. R F = M n.s. F < M <1e-04 F = M n.s. F = M n.s.
Small-worldness L F = M n.s. F < M 1.023e-02 F = M n.s. F = M n.s.
Small-worldness R F = M n.s. F < M <1e-04 F = M n.s. F = M n.s.
Strength z-score L F = M n.s. F < M <1e-04 F = M n.s. F > M <1e-04
Strength z-score R F = M n.s. F < M <1e-04 F = M n.s. F > M 1.471e-03
Participation L F = M n.s. F = M n.s. F = M n.s. F = M n.s.
Participation R F = M n.s. F = M n.s. F = M n.s. F = M n.s.
S-Level Decomp. L F = M n.s. F < M <1e-04 F = M n.s. F = M n.s.
S-Level Decomp. R F = M n.s. F < M <1e-04 F = M n.s. F > M 8.553e-03
S-Core Decomp. L F = M n.s. F < M <1e-04 F = M n.s. F = M n.s.
S-Core Decomp. R F = M n.s. F < M <1e-04 F = M n.s. F > M 6.32e-03
Density L F = M n.s. F < M <1e-04 F = M n.s. F > M <1e-04
Density R F = M n.s. F < M <1e-04 F = M n.s. F > M 1.896e-04
Reach L F = M n.s. F = M n.s. F = M n.s. F = M n.s.
Reach R F = M n.s. F = M n.s. F = M n.s. F = M n.s.
Myelin ratio L F < M <1e-04 F < M <1e-04 F = M n.s. F > M <1e-04
Myelin ratio R F < M <1e-04 F < M <1e-04 F = M n.s. F > M <1e-04
Cortical thickness L F < M 1.459e-04 F < M <1e-04 F = M n.s. F > M <1e-04
Cortical thickness R F < M <1e-04 F < M <1e-04 F = M n.s. F > M <1e-04

The component analysis (Table 4) pointed rather towards sex-
related differences in local connection strength (PC 1) than in the
network architecture (PC 2).

Discussion
This study found 4 cortical region types with highly distinct
anatomical and network features. Statistical properties strongly
differed between region types, but were highly similar across sub-
jects (Fig. 4). Note that region types were defined on hemisphere-
wide averages, e.g. each hemisphere contributed only data
point per region type to this figure. It is conceivable that these
region types provide a meaningful abstraction of the individual
neuroanatomy, as will be discussed in the following. First, we
provide a more comprehensive understanding of the cortico-
cortical connectivity in terms of their anatomical basis and
developmental aspects, leading to an anatomically driven model
of cortical connectivity.

Role of region types in the brain network
In summary, we interpreted the role of the 4 region types as:

• With a high betweenness and participation coefficient but
low small-worldness, gyral regions at community borders
were characterized as connector nodes between fiber
communities, in agreement with their anatomical definition.
These regions were strongly connected to core sulcal regions
(and other border regions) and had the highest proportion of
mid-range fibers. In particular, border gyral regions had the
highest myelin ratio and cortical thickness.

• Core sulcal regions scored highest in 10 of 12 network metrics,
featuring a strong local connectivity to inner and border gyri
of the same community. These regions had the highest frac-
tion of connections to other core regions, the highest fraction
of nonlocal fibers, and high s-core and s-level coefficients,
which all indicated a strong remote connectivity to core sulci
in other communities. With 2 or 3 such regions per fiber
community, they assume a central role as communication
hubs within a community and beyond. These regions are
located at the deepest sulcal roots, which develop first during
gestation, are genetically determined, and show a low inter-
subject variability. Together, they form the “rich club” and
backbone of the communication network.

• In contrast, sulcal regions in the periphery scored lowest
in 10 of 12 network metrics, but with higher ranks for the
participation coefficient. They had mostly short fibers that
were equally connected to the other region types, character-
izing them as local information integrators. Peripheral sulcal
regions had the lowest myelin ratio and cortical thickness.

• Gyral regions inside a fiber community ranked second high-
est in 8 of 12 metrics, but consistently below core sulcal
regions. They had a high fraction of predominately short
connections to border gyral and core sulcal regions, and
the lowest participation coefficient, characterizing them as
regions with predominantly local connectivity.

The communication roles of the 4 region types were compiled
in a scheme of a cortical sub-module (Fig. 5). Note that this
scheme was simplified in its anatomical composition, because
the number and spatial configuration of regions depended on
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Fig. 5. Simplified schema of 2 (remote) communities, consisting of border
gyral (B, red), core sulcal (C, blue), inner gyral (I, yellow), and peripheral
sulcal regions (P, green). Line widths approximately denote the connection
strength between regions.

the location of the submodule and differed between subjects
(compared with Fig. 2, bottom row).

The bi-directional arrows in the model should not be under-
stood as reciprocal connections as documented in tracer exper-
iments (e.g. Jones and Powell 1970; Barbas 1986; Cavada and
Goldman-Rakic 1989a, 1989b; Markov et al. 2014). Diffusion-based
methods cannot distinguish between source and target of fiber
connections. We differentiated results in Table 2 between source
and target in order to demonstrate that tracking from either
direction yielded similar results. This equivalence rendered poten-
tial bias due to seed voxel selection and tracking procedure as
unlikely.

Roles of sulci and gyri in anatomical connectivity
There is mounting evidence that sulci and gyri serve different
roles in brain functioning (review: Jiang et al. 2021; Amiez et al.
2019; Ge et al. 2017; Liu et al. 2019). Surprisingly, the distinction
of gyri and sulci in terms of their connectivity has received
little attention so far, both in tracer- and diffusion-based stud-
ies, although differences in anatomical properties (e.g. cortical
thickness, myelin content) are well documented. We only found 2
(not independent) diffusion-based studies (Nie et al. 2012; Zhang
et al. 2020) that explicitly differentiated between sulci and gyri in
terms of connectivity. Both reported remarkably lower connection
strength and density in sulci compared with that in gyri. In a
first approximation, we confirmed this qualitative difference, but
not to the extent as reported by Nie et al. (2012), likely due to
differences in their analytic approach. Convergent evidence in
the neuroanatomical literature documented a significant but not
substantial lower fiber density in sulci vs. gyri (e.g. Smart and
McSherry 1986; Braitenberg and Schüz 1998; Ercsey-Ravasz et al.
2013; Galinsky et al. 2016; Jitsuishi et al. 2017; Mortazavi et al.
2017).

Previous studies did not distinguish between sulcal region
types. We found that core sulcal areas take a central role in the
brain communication network. Because core regions comprised
only 20% of sulcal areas, their distinguishing role was likely
missed. Their special role is neurobiologically plausible. Sulcal
roots appear early in development (Nishikuni and Ribas 2012;
Kruggel and Solodkin 2019), are genetically determined (le Guen
et al. 2018; Kruggel and Solodkin 2020), and are the most invariant
across subjects (Im et al. 2010; Kruggel and Solodkin 2019). In
order to achieve regularity and consistency during development
(White et al. 2010), it is useful to draw the formation of long-
range connections—that are “expensive” to form (Bullock and
Sporns 2012; Ercsey-Ravasz et al. 2013)—to early defined land-
mark locations. This pre-allocation of long fibers does not impede
the formation of other (e.g. inter-gyral) connections, due to the

layered organization of fiber bundles. The shortest fibers are the
most superficial, whereas longer fibers travel at deeper levels of
the white matter. Indeed, the early formation of long inter-sulcal
connections may facilitate and guide the routing of other fibers
between (gyral) structures that develop later.

We also distinguished between gyral regions on borders and
inside communities. The finding that border gyral regions have
markedly different network properties was, at a second glance,
less surprising. Due to their distinguished location, these regions,
we suggest, serve a role as “staging areas” where information is
relayed between neighboring communities. Often, border regions
directly connect to core sulcal areas, e.g. portions of the uncinate
fasciculus connect a core sulcal area in the fronto-orbital cortices
with border regions between the 2 temporal communities close
to the temporal pole. We also found the highest myelin ratio
and thickest cortices in border areas, which we suggest is as an
independent corroboration of their proposed distinctive role.

As an alternative to our border regions, we assessed “3-hinge”
regions (Deng et al. 2014; Zhang et al. 2018; Zhang et al. 2020).
Their locations were readily available to our workflow, because
3 basins meet at such locations. We could qualitatively confirm
their conclusion that these regions were more strongly connected
than other gyral regions nearby. However, the distinction between
our border and inner gyral regions was statistically much stronger
than theirs. We point out that “3-hinge” locations are often located
at the “end units” of large sulci that coincide with community bor-
ders. Thus, we assumed that the statistically weaker differences
between “3-hinge” and other gyral regions was a consequence of
diluting statistical power of the distinct properties of our border
and inner gyral regions.

Inter-hemispheric and sex-related differences
It is much expected that inter-hemispheric and sex-related dif-
ferences of region-wise properties were statistically weaker than
those between region types. In the context of the point clouds
in Fig. 4, differences between points within the same cloud were
assessed here. In particular, we found that core sulcal and border
gyral regions were more distinct from inner gyral regions on the
right side, which may lead to the conclusion that regions on the
right hemisphere show a higher degree of anatomical specializa-
tion. Because we compared averaged properties per hemisphere,
it must be emphasized that a localized assessment may reveal
stronger differences in specific brain areas. In this context, Itur-
ria-Medina et al. (2011) found that the right hemisphere had a
higher efficiency and stronger connectivity, which was in line with
our results.

Sex-related differences were more minute. Interestingly, net-
work metrics for border gyral and core sulcal regions were similar.
Whereas inner gyral and peripheral sulcal regions were more
distinct in males, females tended to have a weaker overall con-
nectivity, but a stronger nonlocal connectivity, as indicated by
a lower small-worldness, confirming results of a previous study
(Tunc et al. 2016).

An anatomically driven model of cortical
connectivity
Recent studies about the allocation of cortical sectors (Puelles et
al. 2019) and mechanisms that predate gyrification (Rash et al.
2019) have added significant insight into the neurobiology of early
cortical development. Our results demonstrated differences in the
properties of gyri and sulci and the spatial heterogeneity of cor-
tical connectivity that presumably develop after gestation week
20 until the first years of life. At this time, early models do not
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explain or predict the neuroanatomically well-documented tem-
poral sequence of gyrification events during the second trimester
(Nishikuni and Ribas 2012; Kruggel and Solodkin 2019) and its
influence on the formation of cortical connections.

Our results are compatible with the structural model of con-
nectivity (Barbas and Rempel-Clower 1997; Garcia-Cabezas et al.
2019) because this model does not explicitly differentiate between
gyri and sulci or subtypes thereof. It is possible that their micro-
scopically defined “cortical type” is related to our macroscopi-
cally defined “region type”. If whole cortical maps of the cortical
type become available (Garcia-Cabezas et al. 2020), a quantitative
comparison between both models appears feasible. In addition,
our model scheme (Fig. fig-scheme) does not conflict with the
hierarchical aspect of directed information flow of the structural
model, because it concerns the organization of local connectivity
and does not cover directional aspects of information flow.

At the highest level of structural organization we found regions
cluster into spatially compact communities (or modules) based on
an abundance of predominantly local connections, in line with
several previous reports (e.g. Rubinov and Sporns 2010; Bullock
and Sporns 2011b; van den Heuvel et al. 2012). Connectivity-
based communities largely aligned with anatomically defined
communities that we described earlier (Kruggel 2018), especially
along anatomical constraints (e.g. the rims of a hemisphere).

Within a community, a hierarchical organization was proposed
into (i) locally connected “small-world” regions; (ii) “feeder”
regions, and (iii) “rich-club” regions that access the backbone
communication network of the brain (Bullock and Sporns 2012;
van den Heuvel and Sporns 2012). This hierarchically modular
organization was found to facilitate limited sustained network
activity (Kaiser and Hilgetag 2010) and may support the critical
range of human physiology (Kitzbichler et al. 2009). The modular
architecture devised from our results (Fig. 5) fits nicely due to their
high s-level and s-core decomposition scores and their low small-
worldness. The fact that these regions are most invariant across
subjects and appear early in development allows them to provide
a consistent base or scaffolding to the cortex’s modular structure.
In addition, their distributed and densely interconnected network
may play a central role in facilitating efficient global functional
integration and information flow in the cortex (Bullock and
Sporns 2012; Samu et al. 2014). We addressed border gyral
regions with a role as communicators with adjacent communities,
although some of their connections can be long (e.g. the aslant
tract or sections of the arcuate fasciculus). Peripheral sulcal and
inner gyral regions take roles as feeders and local connectors.

We included about 20 core sulcal locations (i.e. 2–4 per commu-
nity) that comprised the most invariant across subjects. Each core
and its adjacent regions corresponded to 30–70 cm2 of cortical
area. The path length between peripheral/inner regions and the
closest core sulcal was never greater than 2 (i.e. <50 mm). As
indicated in Fig. 5, together they form a sub-modular “small-
world” of regional communication.

Note that the 4 region types with distinct structural and
connection properties may serve as a meaningful abstraction of
the individual cortical variability. Our initial studies of pattern
types (“motifs”) around a specific region indicated that there
were only a few and that their frequency matched with the
scheme of Fig. 5. When framing the individual cortical surface
into sub-modules, it appears that the inter-individual variability is
considerably reduced. This is facilitated by construction, because
each sub-module was centered around a core sulcal area at
strongly consistent locations across subjects. It is conceivable
that much of the inter-individual variability is confined within a

sub-module and is related to individual differences in the
number and spatial configuration of the 4 region types defined
in this work. Thus, the problem of finding corresponding cortical
locations between subjects may be reduced to finding a region-
to-region mapping between homologue sub-modules, which can
be solved by computationally efficient methods.

Finally, we note that our work opens up a straightforward
approach for a meaningful assessment and classification of fiber
tracts, in terms of the connected region types and their locality
(i.e. within a sub-module, module, or across modules).
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