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Abstract. Current approaches for analyzing structural patterns of the
human brain often implicitly assume that brains are variants of a sin-
gle type, and use nonlinear registration to reduce the inter-individual
variability. This assumption is challenged here. Regional anatomical and
connection patterns cluster into statistically distinct types. An advanced
analysis proposed here leads to a deeper understanding of the governing
principles of cortical variability.
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1 Introduction

Cortical structures of the human brain show a puzzling complexity and inter-
individual variability. Numerous analytic approaches implicitly assume that struc-
tural properties of brains, represented in any high-dimensional space, form a
single cluster and use nonlinear registration to reduce the inter-individual vari-
ability. We challenge this assumption. Depending on the features and similarity
criteria involved in the registration process, the total variance is reduced by only
20-40%. Consider a simplifying analogy: Suppose we want to study structural
properties of cars. We hardly doubt that a registration procedure can be de-
signed that successfully matches gross car parts (e.g., the passenger and engine
compartment, the trunk and wheels). However, when zooming into details, ob-
jects under study become distinct (e.g. a trunk of a truck vs. a sports car, a
combustion engine vs. an electric motor). Here, we demonstrate here that struc-
tural variants of brain regions with distinctive properties exist in a population.
Avoiding an arguable registration and embracing the actual variability leads to
analytic procedures that actually explain sources of variability at a considerably
larger proportion.

2 Methods

Data source: We used anatomical and diffusion-weighted MRI data acquired
in nc = 1061 subjects of the publicly available Human Connectome Project
[2]. Anatomical processing: We started out from triangulated meshes represent-
ing the white-gray matter interface of a hemisphere with a topological genus
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of zero. Using local curvature and geodesic depth, the surface was segmented
into patches called basins that were centered around a locally deepest point, the
sulcal root. A most isometric mapping was used to transfer and re-parameterize
vertex-wise properties (e.g., basin label, depth, curvature) onto a common sphere
with nv = 163842 vertices. Thus, we represented structural information as an
image of nc×nv×np properties. Refer to [4] for details. Tractography: Diffusion-
weighted data were corrected for subject motion and susceptibility distortions.
Voxel-wise estimates of the orientation distribution function of water mobility
were computed using the constrained spherical deconvolution method [3]. Proba-
bilistic tracking [5] from basin-labeled surface seeds was performed to determine
connectivity between basins. Results were kept in hemisphere-wise connectivity
matrices C, where each element C(i, j) corresponded to the probability of con-
necting basin i to j. Thus, C can be regarded as a discrete, empirical PDF of
basin connectivity. Distance metrics: We computed a co-occurence matrix M of
the basin labeling in hemispheres a, b and expressed the their structural distance
by DM = 1 − NMI(Ma,b). For connectivity, we selected the Hellinger distance
metric by experimentation:
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Statistical assessment: We computed the distance metrics for all hemisphere
pairs a, b and compiled them in matrices for structure DM and connectivity DC

of dimensions nc×nc. Both matrices were mapped into a low-dimensional space
using the ISOMAP algorithm [6], with a target dimension of nd = 4 estimated
by the Grassberger-Procaccia method [1]. Thus, structural and connectivity of
a hemisphere were represented by a point in an 8-dimensional space. We used
a Gaussian mixture model to cluster into groups, where the number of classes
was determined from the maximal Bayesian information criterion and silhouette
coefficient. Note that this analysis can be restricted to any sub-region of the
whole hemisphere.

3 Results

Due to space limitations, we provided results for the central sulcus (CS) only. For
each dimension of the structural and connectivity matrices, we analyzed their
dependence on several variables using linear regression (Tab. 1). Dimensions and
their amount of represented variance were compiled in the second column. The
first dimension represented more than 50% of the variance, and corresponded to
the ”regularity” of the sulcus structure. Regular sulci were straight, deep, and
consisted of relatively few basins, in contrast to tortuous, shallow sulci with a
larger number of basins (Fig. 1). Considering the number of basins as a proxy for
structural regularity, we found that between 25% and 41% of the variance (R2)
were addressed to regularity. About 10% of the overall variance were explained
by subject sex, handedness, and brain volume.
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Table 1. Analysis of dimensions obtained from domain decomposition of distance
matrices for the central sulcus on the left and right side. The relevance of dimensions
1-4 was assessed in relation to the number of basins in this sulcus, demographic variables
sex, handedness, and heritability.

Model Dimension # of Basins Brain Volume Sex Handedness Heritability
exp.var. p-value code R2 p-value code p-value code p-value code p-value code

Structure 1 0.559 < 2e-16 *** 0.337 n.s. – n.s. – n.s. – n.s. –
left 2 0.123 8.13e-4 *** 0.026 1.95e-5 *** n.s. – n.s. – 1.05e-4 ***

3 0.084 4.29e-6 *** 0.037 5.51e-3 ** 1.54e-3 ** 0.0149 * n.s. –
4 0.045 < 2e-16 *** 0.127 n.s. – n.s. – n.s. – n.s. –

Structure 1 0.588 < 2e-16 *** 0.255 n.s. – n.s. – 0.0413 * n.s. –
right 2 0.098 0.0170 * 0.038 2.48e-8 *** 1.13e-4 ** n.s. – 0.0349 *

3 0.058 1.49e-13 *** 0.054 0.016 * n.s. – n.s. – n.s. –
4 0.046 < 2e-16 *** 0.194 n.s. – n.s. – n.s. – n.s. –

Connectivity 1 0.562 < 2e-16 *** 0.406 n.s. – 7.40e-3 ** n.s. – n.s. –
left 2 0.230 < 2e-16 *** 0.139 n.s. – n.s. – n.s. – 4.44e-3 **

3 0.106 0.0378 * 0.020 2-69e-3 ** 8.35e-3 ** 6.29e-3 ** n.s. –
4 0.030 n.s. – 0.024 5.45e-5 *** n.s. – n.s. – 0.0451 *

Connectivity 1 0.528 < 2e-16 *** 0.380 n.s. – n.s. – n.s. – n.s. –
right 2 0.253 < 2e-16 *** 0.111 n.s. – n.s. – n.s. – n.s. –

3 0.119 1.52e-5 *** 0.025 n.s. – 0.0122 * n.s. – n.s. –

Depth

Connectivity

1 2 3 4
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Fig. 1. Clustering of the central sulcus (CS) into four distinct, mirror-symmetric con-
figurations on the left (top) and right (below) side. Rows 1, 3 show geodesic depth
(increasing from red to magenta). Rows 2, 4 show the connection strength (increasing
from magenta to red).
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Significant influences of subject sex, handedness, and brain volume were typi-
cally found for the second structural dimension and the third connectivity dimen-
sion. We assessed the absolute difference of scores within subject pairs grouped
by genetic similarity. This heritability was typically reflected in the second di-
mension, representing between 2% and 6% of the total variance.

Clustering yielded four distinct structural and connectivity patterns (Fig. 1),
with mirror-symmetric patterns on the left (top panel) and right side (below).
Patterns were sorted by increasing regularity from left to right, as determined
from scores of the first dimension above. The first pattern (column 1) showed
a low regularity, consisting of two shallow centers of low variability. Patterns 2
and 3 revealed two stronger centers, in pattern 2 more prominent in the upper
CS, in pattern 3 more prominent in the lower CS. Finally, pattern 4 showed a
straight and deep sulcus with high regularity. Interestingly, more regular sulcal
patterns were related to a stronger, more distinctive connectivity (rows 2 and
4). Note that connection strength closely followed a lower basin variability not
only in the central sulcus, but also adjacent regions in the pre- and post-central
sulcus, and the mid-posterior insula on both sides.

4 Conclusion

By this short demonstration, we wanted to illustrate two points: (1) Structural
and connectivity patterns of the human brain do not originate from a continuum,
but show distinct properties, at least at the regional level. This finding renders
the application of registration processes as arguable, at least at the hemispheric
level. (2) Instead of attempting to reduce the inter-individual variability by reg-
istration, we suggest to embrace this variability and to analyze and identify their
sources. As demonstrated here, up to 80% of the total variance can be explained
by identifiable factors.
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