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Abstract. This paper considers the use of the EM-algorithm, combined
with mean field theory, for parameter estimation in Markov random field
models from unlabelled data. Special attention is given to the theoretical
justification for this procedure, based on recent results from the machine
learning literature. With these results established, an example is given
of the application of this technique for analysis of single trial functional
magnetic resonance (fMR) imaging data of the human brain. The re-
sulting model segments fMR images into regions with different ‘brain
response’ characteristics.

1 Introduction

The purpose of this paper is two-fold: first, it reviews the theoretical underpin-
nings for the use of the EM-algorithm in conjunction with mean field theory for
parameter estimation in Markov random field (MRF) models from unlabelled
data. Second, it demonstrates the usefulness of this approach by a MRF model
for single trial functional magnetic resonance imaging (fMRI) data.

Techniques for learning from unlabelled data are important in the analysis of
fMRI data of the human brain, since the data generating mechanism is still far
from completely understood. Obvious ethical reasons put limitations on what
sort of alternative methods we can use to verify results obtained from fMRI.
Other functional brain imaging techniques, which may appear as the obvious
answer, suffer exactly the same problem. At the same time, the quantity and
quality of fMRI data make automated analysis procedures necessary.

2 Markov Random Fields, Mean Field Theory and the
EM-algorithm

In this section, we briefly review Markov random field models, the mean field
theory and its connection to the EM-algorithm. Mean field theory is a since long
established tool in statistical mechanics and statistical physics. It has also been
extensively used in the fields of computer vision and, more recently, machine
learning.
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2.1 Markov Random Field Models

A MRF [24] is a set of N random variables indexed over the vertices, or sites,
in an ordered lattice. The typical example is a 2-D image, where the random
variables are the labels (e.g. colour) associated with the pixels. The MRF vari-
ables are not independent, but are mutually coupled; the key property of MRFs
is that the distribution of the random variable associated with a site, n, given
the values associated with the sites in a (typically small) neighbourhood of n, is
independent of the rest of the sites in the MRF. This can be formalised as

p(xn|xm, n �= m) = p(xn|xm ∈ Nn) ,

where xn denotes the random variable of site n and Nn is the set of random
variables associated with the sites that are in the neighbourhood of site n.

The distribution over the MRF variables, which is assumed to be strictly
positive, can be written as a Gibbs distribution,

p(x) =
1
Z

exp(−E(x)) (1)

where x is a NK-dimensional vector formed by concatenating the vectors xn

(n = 1, . . . , N), E is an energy function and Z is a normalisation constant,

Z =
∑
x

exp(−E(x)) , (2)

where the sum runs over all possible values of x. Note that, computing Z, which
is known as the partition function, is generally tractable only for very small
MRFs, since the number of terms in the sum in (2) increase exponentially with
the size of the MRF. This is due to the mutual coupling between the MRF
variables. Same problem emerges if we want to compute the marginal posterior
distribution over any of the individual MRF variables – e.g. for the purpose of
parameter fitting – since this requires summing over all remaining variables.

The energy function E defines the properties of the MRF model and can
generally be written

E(x, y, Θ, β) = Eext(x, y, Θ) + Eint(x, β) .

Eext denotes the energy (or potential) arising from external influence; in the
context of probabilistic image modelling, this typically comes from observed data
y via a model determined by parameters Θ, and corresponds to a log-likelihood
term. Eint denotes the internal energy which, as suggested by the notation, only
depends on the MRF variables x and parameter β, and corresponds to a prior
distribution over x.

2.2 The Mean Field Theory

To address the computational difficulties associated with MRF models, a number
of approximate methods have been proposed [24]. One popular such method is
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the so called mean field approximation, from statistical mechanics [7]. This con-
sists of replacing p(x|y, Θ, β) with an approximating, computationally tractable,
parameterised distribution, q(x|m). As has been shown by several authors
[3,7,31,38], the mean field approximation can be given a formal justification
as providing a computationally tractable bound on quantities of interest (e.g.
the partition function). Moreover, we can optimise the variational parameter
m by minimising the Kullback-Leibler (KL) divergence between q(x|m) and
p(x|Θ, β, y),

D(p‖q) =
∑

x

q(x|m) ln
q(x|m)

p(x|Θ, β, y)
, (3)

which is non-negative for all probability distributions q and p and equals zero
only when they are identical. The literature on statistical mechanics [7], MRFs
[3,38] and probabilistic graphical models [19,31] provides examples of applying
this methodology to different models. Section 3.3 in this paper provides an ex-
ample for a multi-level logistic MRF model.

2.3 A ‘Variational’ View of the EM-algorithm

Traditionally, the EM-algorithm [8] is viewed as a two-step algorithm for max-
imum-likelihood parameter estimation from incomplete data. The first step (the
E-step) consists of computing the expectation over the random variables which
are missing in the data (e.g. the labels in unlabelled data), x, given the observed
variables, y, and the current set of parameters, Θ. The second step (the M-step)
maximises the resulting expected complete log-likelihood function with respect
to its adjustable parameters, Θ. However, it can also be seen as a algorithm for
minimising the variational free energy from statistical mechanics and statistical
physics [35,26], linking it to the mean field theory. From this point of view,
it is natural to also consider situations where the exact distribution over the
missing variables cannot be computed, but has to be replaced by an approximate
distribution. This yields an algorithm which maximises a lower bound of the log-
likelihood. The difference between this bound and the true log-likelihood is the
KL-divergence between the exact and approximating distributions.

Following Jordan et al. [19], our objective is to maximise the log-likelihood
function of the observed data ln p(y|Θ), with respect to the parameters Θ. We
now write

ln p(y|Θ) = ln
∑

x

p(y, x|Θ, β)

= ln
∑

x

q(x|m)
p(x|Θ, β, y)p(y|Θ)

q(x|m)

≥
∑

x

q(x|m) ln
p(x|Θ, β, y)p(y|Θ)

q(x|m)

=
∑

x

q(x|m) ln p(y|Θ) − q(x|m) ln
q(x|m)

p(x|Θ, β, y)
, (4)
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where we have used Jensen’s inequality. q(x|m) is an arbitrary, non-singular
probability distribution, parameterised by the variational parameter m. From
(4), which apart from a change of sign corresponds to the variational free energy
from statistical physics, we see directly that the difference between the two sides
is the KL divergence (3) between q(x|m) and p(x|Θ, β, y). As shown by Neal
and Hinton [26], maximisation of (4) with respect to m corresponds to the E-
step of the EM-algorithm, whenever q(x|m) is rich enough to model p(x|Θ, β, y)
exactly. When, on the other hand, computational considerations force us to resort
to simpler distribution models, we can still be certain that resulting algorithm
will increase the lower bound of the log-likelihood function, unless already at (a
local) maximum.

3 An Application to fMRI Data

Functional magnetic resonance imaging (fMRI) attempts to detect brain activity
by localised, non-invasive measurements of the change in blood oxygenation, the
so called BOLD contrast [27]. This is sensitive to the relative local concentra-
tions of oxygenated hemoglobin (HbO2) vs. deoxy-hemoglobin and provides an
indirect measure of the brain’s neuronal activity.

Measurements, in the form of a time-series of images, are collected under
controlled conditions, where subjects are performing specific tasks, prompted
by some stimulus (e.g. deciding whether a read out sentence is grammatically
correct or not, perform arithmetic calculations, looking at changing scenes, etc.).
We only consider fMRI experiments with a single trial (or ‘event-related’) design,
which consist of a series of individual trials. Each trial consist one repetition of
the task, followed by a period of rest during which the subject is assumed to be
inactive.

When we want to model the fMRI data generating process, there are neu-
rophysiological factors we must take into consideration. The local change in
blood oxygenation as an effect of increased neuronal activity, which is called the
hemodynamic response (HR), is delayed by 2–6 seconds from stimulus onset and
dispersed by 2–3.5 seconds. This delay and dispersion vary between subjects,
experimental conditions, etc. By contrast, the stimuli subjects are exposed to
during data collection, which is assumed to trigger the task related activity, is
normally treated as being discrete. Often it is modelled as a binary (‘box-car’)
function, i.e. the stimuli is either present or not present.

Traditional analysis of fMRI data essentially amounts to locating so-called
activated pixels, where the observed measurements shows significant correlation
with a function representing the the task. There are different strategies for alter-
ing this function to account for the HR, ranging from simply just shifting it in
time [2] to convolving it with a HR model function [13,23,29]. The correlation is
computed for each pixel individually and the correlation scores are transformed
into Z-scores [1]. The resulting image of Z-scores, called a Z-map, is then thresh-
olded at a level chosen so that the probability of wrongly classifying a pixel as
being activated is suitably low (see e.g. [13]).
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We propose to model an fMR image, by which we mean a set of pixels on a
regular lattice with associated time-series of measurements, as a MRF. Each pixel
is assumed to belong to one out of K classes, with each class corresponding to a
parametric model function for the HR. The time series associated with each pixel
contains measurements collected at the corresponding location during a single
trial at times t1, . . . , tD. By choosing a MRF model, we implicitly assume that the
spatial distribution of the classes will be locally smooth, so that neighbouring
pixels typically belong to the same class. Thus, images will consist of one or
more spatially homogeneous regions, each region associated with a parametric
HR model function. The model can also be seen as a K-component mixture
model [17] in the D-dimensional observable pixel space (i.e. in the temporal
domain of the HR), combined with a smoothing MRF prior distribution over
pixel classes (in the pixels lattice).

3.1 The Multi-level Logistic MRF Model

To specify the prior pixel class distribution, we use the commonly applied multi-
level logistic (MLL) model [12,14], where we specify neighbourhoods such that
each pixel only depends on its nearest neighbours (distance equal to one in the
lattice of pixels). We represent the MRF variable associated with pixel n as a
K-dimensional binary vector, xn. Pixel n belongs to class k if and only if the
kth element of xn, denoted xnk, equals 1 and all other elements equals 0. This
model contains the binary MRF as a special case (K = 2).

We then define the energy function,

Eint(x, β) =
β

2

N∑
n

∑
xm∈Nn

xT
mUxn , (5)

where U is a K × K matrix with elements along its diagonal equal to −1 and
all other element equal to 1. The scalar β plays the role of a scale parameter for
the prior. As β increases, so does the cost for neighbouring pixels from different
classes, which in effect forces a smoother image.

3.2 Modelling the Hemodynamic Response

Several model functions for the HR have been proposed [5,13,23,29]; we choose
to model the HR using a Gaussian function [22], such that

h(t) = η exp
(
− (t − µ)2

σ

)
+ o, (6)

where,

µ denotes the lag, i.e the time from the onset of the stimuli to the peak of the
HR,

σ denotes the dispersion, which reflects the rise and decay time,
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η denotes the gain, or amplitude, of the response, and finally
o denotes an offset that defines the minimum level for the HR model function,

relative to some baseline level.

For numerical convenience, σ and η are expressed using auxiliary variables, zσ

and zη, so that
σ = exp(zσ) and η = exp(zη). (7)

This will ensure that σ and η are always positive. In case of η, this is actu-
ally a simplification, since there is evidence for localised deactivation in re-
sponse to stimuli. We denote the parameters Θ = [θ1, . . . , θK ], where θk =
[µk, zσk, zηk, ok].

We combine the K HR model functions with an isotropic Gaussian noise
process with variance α−1, common to all HR model functions. For a pixel n,
which belongs to class k, the probability distribution for the D-dimensional
observable trial vector yn can then be written as

p(yn|θk, α) =
( α

2π

)D/2

exp
(
−α

2
‖yn − hk‖2

)
(8)

where hk is a D-dimensional vector corresponding to the HR model function,
computed from (6) and (7) at times t1, . . . , tD, using the parameter vector θk.
Note that, this model implicitly assumes that any two random vectors yn and
ym, n �= m, are independent given the classes of the corresponding pixels.

From the negative logarithm of (8), we can derive the external energy for the
MRF model

Eext(x, y, Θ, α) =
N,K∑
n,k

α

2
‖yn − hk‖2xnk , (9)

where
∑N,K

n,k =
∑N

n

∑K
k ; this abbreviated notation will be used throughout the

rest of this paper. Recall that xnk is 1 if and only if pixel n belongs to class k
and 0 otherwise. The term arising from the normalisation factor, (α/2π)D/2, has
been dropped as it does depend on x.

A Prior for the HR Parameters. Given our knowledge about neurology
and fMRI in general and the experimental design in particular, we have certain
a-priori beliefs about what can be considered reasonable values of the HR pa-
rameters. We can express beliefs by specifying a prior distribution over the HR
parameters. Here, we choose a simple independent Gaussian distribution,

p(Θ) =

(
4K∏
i

2πVΘ(i, i)

)−1/2

exp
(
−1

2
(
Θ − Θ

)T
V −1

Θ

(
Θ − Θ

))
, (10)

where Θ is a 4K-element vector containing the expected values for µk, zσk,
zηk and ok, k = 1, . . . , K, and V Θ is a diagonal covariance matrix with the
corresponding variances along its diagonal.
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3.3 Mean Field Equations for the Multi-level Logistic Model

Combining (9) with (5), we get the energy function

E =
N,K∑
n,k

Enkxnk , (11)

where

Enk =
α

2
‖yn − hk‖2 +

β

2

∑
xm∈Nn

xT
mUk , (12)

where in turn Uk denotes the kth column of U . From (1), we can write the
corresponding distribution over the MRF as

p(x|y, Θ, α, β) =
1
Z

exp


−

N,K∑
n,k

Enkxnk


 . (13)

For the mean field approximation, we choose q to be a simple independent
multinomial distribution, where each lattice variable, xn, has its own variational
parameter, mn,

q(x|m) =
N,K∏
n,k

mxnk

nk . (14)

mn is a K-dimensional vector whose elements are all positive and sum to 1; the
kth element of mn, mnk, represents the probability that pixel n belongs to class
k. m denotes the concatenation of mn, n = 1, . . . , N .

Substituting (13) and (14) into the quotient in (3), performing some elemen-
tary algebra and then averaging with respect to q(x|m), we get

N,K∑
n,k

[mnk lnmnk + mnkE
′
nk] + lnZ ,

where E
′
nk is identical to Enk in (12), except that xm has been replaced by mm.

Taking the derivative of this with respect to mnk, using Lagrange multipliers,
ζn, to ensure that

∑
k mnk = 1 for all n (see e.g. [10]), we get

ln mnk + 1 + E
′′
nk + ζn ,

where E
′′
nk is identical to E

′
nk, except that the factor β/2 has been replaced by

β as a consequence of neighbourhood symmetry. Setting these to zero, we can
solve for ζn, using that

∑
k mnk = 1, and subsequently for mnk, yielding

mnk =
exp(−E

′′
nk)∑

k′ exp(−E
′′
nk′)

. (15)
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which are the mean field equations for the MLL model which can be solved iter-
atively for a fixed point solution. An alternative derivation, drawing on analogies
to statistical mechanics, can be found by Zhang [36].

At the moment, it is not established under which conditions these equations
converge; Zhang [37] analysed the convergence for an Ising model equivalent
with a binary MRF, which was found to converge under certain conditions. In
practice, convergence does not appear to be a problem – the parameter m settles
rapidly, and failure to reach absolute convergence simply means that our bound
on the log-likelihood will be less tight.

3.4 Parameter Estimation

Until now, we have implicitly assumed that the all the parameters are known.
This is typically not the case, but given the theory in Sect. 2, we can use the
EM-algorithm to estimate parameters of interest. In the E-step, we compute
the mean field approximation (15) to the posterior distribution over the MRF
variables. In the following M-step, we maximise the resulting expected complete
log-likelihood with respect to the parameters.

Here we restrict ourselves to maximisation with respect to Θ and α. The
hyperparameters for the prior distribution over HR parameters are set using
knowledge about the experimental design and general HR characteristics. β is
set by experimenting; experience so far suggest that the final result is not very
sensitive to the exact choice of β, which was also reported in [36].

We derive our objective function from a hypothetical log-likelihood function,
where the class labels, xn, are known. As we assume that the observations at
different pixels are independent given the corresponding class labels, we get the
penalised log-likelihood function from (8) and (10) as

ln p(Θ) +
ND

2
lnα − α

2

N,K∑
n,k

xnk‖yn − hk‖2 ,

where we have omitted terms which do not depend on Θ or α. We obtain the
corresponding expected complete penalised log-likelihood function simply by re-
placing the xnk by their correponding mean-field expectations, mnk, computed
from (15).

Maximisation of the resulting objective function with respect to Θ is done
by numerical optimisation1. For α, we get an update formula in closed form

α =
ND∑N,K

n,k mnk‖yn − h̃k‖2
,

where h̃k are computed using the updated parameters θk.

1 We use the function fsolve from the software package Octave [11] for this purpose.
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Mean Field Annealing. The parameter estimation problem is fairly difficult
optimisation problem, and empirical evidence suggest that there are many poor
local optima where the optimisation procedure can get stuck. To reduce the risk
of this, we employ a simulated annealing scheme [6,20], multiplying (11) by an
inverse temperature factor (1/T ), T ≥ 1. Setting T > 1 will smooth the (ap-
proximate) posterior distribution, which in effect will smooth out shallow local
optima. Thus, optimisation in the high-T regime (say T = 10 for data normalised
to zero mean and unit variance) will hopefully find a global optimum which then
can be tracked by re-estimating the parameters, Θ, as T is being decreased to
1. Note that, as long as T > 1, α is kept fixed to 1; this annealing phase is
then followed by further optimisation where both Θ and α are adapted. Anneal-
ing approaches have been used successfully with MRF models for restoration
of e.g. fMRI images [9] and, in combination with mean field theory, anatomical
(‘non-functional’) magnetic resonance images [33].

3.5 Example

In this example we use data from an fMRI experiment designed for investigating
the neuronal correlates of sentence comprehension in the brain [25]. Subjects
had to decide whether an aurally presented sentence contained a syntactical
violation or not. The experiment employed a single trial design where each trial
had a length of 24 seconds. Each trial started with a sentence being read out,
which lasted 2.3–4.5 seconds. fMR images with a spatial resolution of 64 × 128
pixels were collected every 2 seconds, so the trial vector for each pixel consists
of 12 measurements. In total, there were 76 trials, although the first 4 were not
used. The data were pre-processed to correct for subject movements, remove
baseline trends and filter out physiological and system noise [21].

For this example, data from the 72 selected trials were averaged, to improve
the signal to noise ratio. The resulting averaged data were used to train a model
with 2 HR functions and a constant ‘background’ function, intended to explain
regions where no task related activity occur. This constant function has a single
parameter, namely its value, whose maximum likelihood update is the time-
averaged response at individual pixels, averaged over the posterior distribution
over pixel classes. The HR functions shared a common prior given in table 1 and
β was set to 1. The fitting procedure started with 20 iterations during which
T was decreased linearly from 10 to 1 and α was held fixed at 1.0, followed by
another 20 iterations where T = 1 and α was allowed to adapt.

Table 1. Hyperparameters for the prior distribution over HR parameters used
in the example described in Sect. 3.5. µ and zσ are measured in (log) time steps,
while zη and o are measured (log) relative to a normalised BOLD response

µ Vµ zσ Vzσ zη Vzη o Vo

6 3 ln 2 2/22 ln 4 3/42 0 1
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The left image in Fig. 1 shows the resulting segmentation of the functional
mask obtained from our model; pixels have been assigned to the class with high-
est posterior class probability, computed using the mean field approximation,
after the parameters had converged. Figure 2 shows the corresponding HR func-
tions. Different types of filtering in the pre-processing [21] will cause marginal
variations in these results, but the overall picture will remain the same. The
right image of Fig. 1 shows a Z-map for the same data set, based on correlation
with a shifted ‘box-car’ function, overlaid on the functional mask (see e.g. [13]);
note that, only pixels with positive activation are shown, as we do not consider
deactivated regions.

As can be seen the two HR functions take on different roles, one explaining
regions with a relatively strong and slightly earlier response, and corresponds
roughly to pixels with strong activation (high Z-scores); the other explains a
weaker and slightly later response, and includes pixels with lower activation.

4 Discussion

In this paper, we have reviewed the use of the EM-algorithm combined with mean
field theory for parameter estimation from unlabelled data in MRF models, and
the theoretical justification for this, based on results from the machine learning
literature. Furthermore, we have shown an application of this procedure for
analysis of fMRI data – a learning problem of inherent unsupervised nature.

It should be clear that the overall framework is independent of the choice of
HR model function, and thus other variants could be considered. Similarly, we
could consider the use of a more elaborate noise model; Kruggel and von Cramon
[22] discuss the use of an autoregressive (AR(1)) noise model in the spatial
domain.

A limitation of the work we have presented in this paper is the remain-
ing number of free parameters. β is currently set by experimenting. Deriving a
method for updating β in the light of observed data is difficult, since the par-
tition function for the MRF prior depends on β. Zhang [36] suggested using
a mean field approximation also for the partition function, but as pointed out
by Jordan et al. [19], this result in an update equation based on two different
bounds, which theoretically may decrease the log-likelihood of the data given
β. An alternative approach would be to use Monte Carlo sampling methods for
the parameter fitting. Such an approach would be computationally demanding;
a potential remedy could be to estimate Θ and α using mean field theory, and
use Monte Carlo methods only for the updates of β, which need not be up-
dated every iteration of the EM-algorithm. The number of HR components, K,
is currently set by the user, based on empirical evidence, prior knowledge and
interpretability. It would clearly be desirable to be able to estimate K from the
data, but such estimation would face the same difficulties as the estimation of
β, since comparing models with different values for K requires computing the
corresponding partition functions. Nevertheless, methods based on minimum de-
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Fig. 1. A segmentation obtained using proposed method (left) and a correspond-
ing correlation based Z-map (right), for the data described in Sect. 3.5. In the
left image, pixels in the functional mask have been classified according to their
maximum posterior class probabilities; the corresponding HR model functions
plotted in Fig. 2; the dominating white class corresponds to the background
function. In the Z-map, which is overlaid on the functional mask, pixels have
been shaded according to their Z-score, where brighter pixels indicate higher
activation

-4
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0

2
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0 2 4 6 8 10 12

Fig. 2. The HR functions corresponding to the segmentation shown in Fig. 1.
The solid line corresponds to the light grey pixels while the dashed line corre-
sponds to dark grey pixels. The error bars corresponds to 1 standard deviation
of the data from the mean given by the curve
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scription length theory [30] or maximum entropy principles [34], combined with
approximate methods for computing the partition function, could be considered.

The idea of deriving mean field equations by minimising the KL-divergence
given a choice of approximating distribution raises the question whether other
approximating distributions can be found that gives a tighter bound and re-
mains computationally tractable. Jordan et al. [19] gives several such examples
examples in the context of learning in graphical models, some of which could
potentially be applied to MRF models.

An obvious limitation of the mean field approximation discussed in Sect.
3.3 is that it is unimodal, i.e. the spatial distribution of pixel class labels is
centred around a single configuration. This might be a a reasonable approxima-
tion when modelling averaged data from a single experiment, as in Sect. 3.5,
but if we want to investigate between-trial variance within one experiment or
even the (dis)similarities between trials from different experiments, it is clearly
insufficient. Jaakkola and Jordan [16] proposed the use of a mixture of fully fac-
torised mean field distributions, and Bishop et al. [4] empirically demonstrated
the usefulness of this approach in the context of sigmoid belief networks. A fu-
ture direction of research will be to extend the approach presented in this paper
to the use of such mixture distributions, and investigate the usefulness of this
for the purpose of fMRI data modelling.

For fMRI data, it is also natural to consider modelling structure in the time
domain, since an experiment consists a sequence of images corresponding to
the sequence of trials. Theory for such a model could be built on the existing
theory for hidden Markov models (HMM) [28], which has recently been subject to
substantial development in the context of graphical models and machine learning
[15,19,32]. This strand of research will be pursued as an extension of the mixture
model discussed in the previous paragraph.
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