
Modeling Multiple how much can be inferred from the HR shape 
characteristics about the underlying neuronal Hemodynamic Responses activation? 

in Event-Related 
Functional MRI 

In cognitive studies of human memory, a single 
trial often consists of two (or more) individual 
stimuli, which can be separated in time. Each 
stimulus is expected to elicit HRs, thus two (or 
more) responses may occur during a single trial. 
More specifically, it is of interest, whether ac- 
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first OT the second OT both phases OT are even 
active throughout the delay phase. 

Abstract This paper discusses issues of detecting and de- 
This paper discusses issues of analyzing multiple scribing single and multiple responses in rela- 
responses in f ~ m  data obtained in event-rela,ted tion to the experimental stimulus. In the next 
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experimental studies of human working memory. A 
nonlinear regression context is proposed to quan- 

section, we describe a prototypical memory ex- 
periment used to illustrate the techniques dis- 

titatively compare stimulation parameters and ob- cussed k~ this paper- Then we progres- 
served hemodynamic responses. sively finer techniques of signal description us- 

ing linear univariate regression, selective aver- 
1 Introduction aging of single trials and nonlinear multiple re- 
finctbnal magnetic r ~ o n a n c e  imaging (fM RI, gression. A final discussion focuses on limita- 
[1]) has become One of the major methods for tions and pitfalls of the methods applied here. 
investigating brain function in cognitive sci- 
ence. Most fMRI studies apply the blood- 
oxygen-level-dependent (BOLD) effect which is 
related to temporal changes of the oxygen con- we conskkred a Classical Sternberg Paradigm 
tent in venules and so only indirectly linked [4] with varied sets. Memory lists were corn- 
to neuronal activation via metabolic processes. Posed of consonants of the alphabet, exdud- 
The observed hemodynamic response (HR) is ing the letter y. A subspan set size of 3, 4, 
typically delayed by 3-5s and dispersed by 1.5- 5 and 6 letters presented visually for 2s 
2.5s with respect to a brief stimulus, and per- (cue phase). After a variable delay length (2.0% 
haps also displaced with respect to the acti- 3 . 2 ~ ~  4.1% 5.2% 6 . 2 ~ ~  7.0s) a Probe letter aP- 
vation site. In addition, the effect is rather Peared (Probe Phase). Subjects had to decide 
small, and data noisy. These facts corn- if the probe letter belonged to the previously 
plicate fMRI data analysis and led to a focus presented set. A hit response Was given by 
on the problem of signal detection during the Pressing a button with the ring finger (resP- 
last few years: to determine the site of brain the middle finger for a foil response). 48 trial 
activation in relation to a certain experimental combinations (4 (set sizes) x 6 (delay length) x 
stimulus. 2 (hit/foil manipulation)) were presented ran- 
Recently, event-related experimental designs domlY in a single run- 
were introduced (ER-fMRI). An event (or tri- For fMRI scanning, a single-shot EPI sequence 
al) is understood as a "self-contained behavi- was applied (TR Is, 8 slices parallel to the AC- 
oural/perceptual unit which is temporally lim- PC plane, 64x64 voxels, 192mm field-of-view, 
ited" [2]. Such designs allow the randomized 5mm slice thickness, 3mm gap) in an event- 
presentation of behavioural trials and the study related experimental paradigm with an inter- 

Expelrimenta1 Paradigm 

of responses to a specific stimulation separately. trial interval of 18s, corresponding to 14.4min 
As a consequence, there is an increasing inter- scanning time per run. 7 subjects took part 
est in describing the timecourse of the HR [3]: in this study, 2 of which completed 3 runs, the 
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Cue pooled, incorrect (N=34) and missed (N=20) 
responses were excluded from a total of Probe 

of the task. 
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3 fMRI Data Processing 
Data analysis consisted of several steps: pre- 
processing, activation detection using voxelwise 
linear regression, selective averaging of HRs in 
regions-of-interest (ROIs), and shape analysis 
of the hemodynamic response by nonlinear re- 
gression. These steps are now described in de- 
tail. 

corresponding z-map by a score of 10, and as- 
sessment of the activated regions for their sig- 
nificance on the basis of their spatial extent 
[7]. We defined regions-of-interest (ROIs) as 
the 6 most highly activated 4connected vox- 
els around local maxima in the z-map. We se- 
lected 8 ROIs which were found at homologous 
anatomical sites in at least 5 of the 7 subjects 
incorporated in this study. ROIs at their proto- 
typical locations are shown in Fig. 3 and listed 

band between 0.8 and 2.5 times the fundamen- 3,3 Selective Averaging 
tal stimulation frequency. 

Regression analysis was performed to detect 
3.2 Linear Regression Analysis functional activation. This procedure, how- 
The next data analysis step consisted of the ever, did not allow the discrimination between 
detection of activated areas in the brain. For a double response (once during Cue, Once during 
statistical analysis, two regressors were con- probe phase) and a continued activation- 
structed as follows (see Fig. 1): timesteps 0-2 An obvious next step was to compute power 
and 16-17 were coded as baseline, timesteps 5-7 spectra of the timeseries and to check the rela- 
as activated for the cue regressor (correspond- tion of the power at the stimulation frequency 
ing to the cue phase), two timesteps around the vs. its first harmonic. In activated regions of 
experimental delay time plus 5.5s as activated experiments involving a single stimulus, a typ- 
(for the probe regressor), the other timesteps ical ratio of 1O:l was found. For ROIs of this 
were excluded. experiment, ratios between 1O:l and 10:3 were 
Functional activation was detected by perform- computed, i.e. in all regions, the contribution 
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Figure 3: Univariate regression analysis in a sample subject: significantly activated regions 
related to the cue phase arc: shown in row 1 and 3: during probe phase in row 2 and 4. Properties 
of ROIs are color-coded by their amount of contribution (green: cue: red: probe, yellow: both 
phases). 

ROI Anatomical Site Cut! Phase Probe Phase 

left medio- temporal gyrus 
left transverse occipital gyrus 
right posterior parietal cortex 
left middle frontal gyrus 
left precentral gyrus 
right precentral gyrus 
(banks) of the left sulcus intraparietalis 
supplementary motor area 
left motor cortex 

Table 2: Anatomical sites of ROIs and their participation during the cue and probe phase. 
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of the stimulation frequency was predominant. 
Another simple option to learn more about the 
temporal characteristic is selective averaging of 
trials with the same stimulation characteristics 
[SI. We formed averages within ROIs defined 
above and across all trials of the same delay 
time manipulations. Results for a sample sub- 
ject were compiled in Fig. 2. We found that all 
regions were active during cue and probe phase. 
The activation amount in both phases differed 
from region to region and corresponded roughly 
to the results from regression analysis compiled 
in Tab. 2. No region showed a sustained activa- 
tion throughout the delay phase. Secondary vi- 
sual areas (such as MTGL and TOGL) showed 
an activation drop during the delay phase, al- 
though visual stimulation was continued in the 
form of a fixation point. However, all activa- 
tions overlapped strongly in both phases for de- 
lay times of less than 4s. 

MTG, 

TOG, 

PCGL 

f PCG, - 4 PPC, 
c 
.g SMA 

MFG, 
d 

SIP, 

MCL 

2.0s 3.2s 4.1 s 5.2s 6.2s 7.0s 
Delay Time 

Figure 2: Averaged timecourses for ROIs de- 
fined in Tab. 2, selected from trials of the same 
delay time. 

3.4 Shape Analysis 
Selective averaging was used to visualize tem- 
poral properties of the HR timecourse in dif- 
ferent ROIs. To describe HR properties quan- 
titatively with respect to stimulation parame- 
ters, we set up a nonlinear regression model 191. 
Model and results are now described in more 
detail. 

Nonlinear Regression Model 

We consider acquired functional data y, col- 
lected at k = 6 voxel sites of predefined ROIs 
throughout 1 = 18 timesteps of m = { 144,192) 
trials. Functional data are modeled as a sum 
of a deterministic function g ( . )  and a stochastic 
part E:  

Y = g ( t , P )  + E ,  

where t corresponds to the discrete timesteps 
and p to the p = 6-dimensional vector of model 
parameters of a sum of two Gaussian functions: 

We denote the components of p as 0 0 ,  P3: gain 
(the "height" of both HRs), P1,P4: disper- 
sion (proportional to the duration of the HRs), 
/32,P,5: lag (the time delay from stimulation on- 
set to the HR maximum). Note that parame- 
ters p are functions of the stimulation context 
of a given trial. 
We assume that the stochastic part is inde- 
pendent of the signal and stationary with re- 
spect to time, and its elements are normally 
distributed with a nonsingular covariance ma- 
trix V: E - Nn(O,V), where n = IC * l * m 
corresponds to the number of data points. For 
reasons of simplicity, we set V = I in this study. 
A more advanced formulation may incorporate 
AR(1) autocorrelation in time and space [lo]. 
We find the ML estimate f i  of our model pa- 
rameters as the vector p that minimizes the 
quantity : 

arg min(ETV-'e), where E = y - g ( t ,  p). 
B 

This nonlinear minimization problem was 
solved using Powells algorithm [ 1 I]. 
Using a first-order linear model, we can derive 
confidence limits for the estimation from the 
inverse of the Fisher information matrix F: 

f i  - N ( P ,  Fj'), where Fp = GpV-lG;, 

and Gp denotes the Jacobian matrix of g ( . )  
with respect to p. A simple memure for the 
goodness-of-fit (GOF) is given by: 

G O F = l -  ETV-lE GOF E [0,1], 
yTV-ly' 
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with 1 denoting a perfect fit. A more complex 
measure is derived for the F-statistics, follow- 
ing a suggestion of Hartley (see [9]): 

using P 

where n corresponds to the number of data 
points, p to the number of parameters, and I n  
is the (n,n) identity matrix. 

Results 
We tested different models for the dependency 
of P on the stimulation parameters with this re- 
gression context. The most simple model used 
independent gains (Po, P3) for both phases, 
a fixed dispersion (PI = P4 = 1.8s), and a 
lag time of the second phase, which followed 
the first one by the delay time manipulation d 
plus 2s for the duration of the first stimulation 
phase: 05 = & + d + 2s. 
This model resulted in GOF values of 0.40-0.55 
for all ROIs in all subjects. We excluded 10- 
15% of the trials where subjects missed to re- 
spond or gross misfits due to artifacts in the 
data were noticed. Using the fitted parameters 
as starting values, we successively refined this 
model by introducing additional dependencies 
on the stimulation parameters. Best fits, as 
given by GOF values and Akaike’s information 
criterion, were found for the following model: 

the gain of the first response had a con- 
stant part, but depended on the experi- 
ment duration t and the set size s: Po = 
a0 + a1 * t + a2 * s. 
the dispersion of the first response had a 
constant part, but depended on the set 
size: = 1.8 + a3 * s. 
the lag of the first response had a constant 
part, but depended on the set size: P:! = 
a4 + a5 * s. 
the gain of the second response had a 
constant part, but depended on the ex- 
periment duration and the delay time d:  
P 3  = a6 + a1 * t + a7 * d. 

0 the dispersion of the second response had 
a constant part, but depended on the set 
size: P4 = 1.8 + a8 * s. 

0 the lag of the second response had a con- 
stant part, but depended on the delay 
time, the set size and the hit/foil manipu- 
lation h: /35 = a4 + d+ 2 + ag * s + a10 * h. 

ROI MTGr. TOGr. PPCR MFGr. 

0.768 
121.7 

8.25 
0.128 

4.63 
0.111 
120.2 
3.70 

0.094 
0.000 

-0.252 

-0.317 

0.863 
124.5 

14.57 
0.097 
3.93 

0.260 
56.6 
5.96 

0.300 
0.000 

-0.000 

-0.282 

0.798 
194.2 

13.16 
0.093 
4.54 

0.312 
127.4 
4.36 

0.219 
0.130 

-0.001 

-0.543 

0.726 
111.8 

4.62 
0.152 
4.26 

0.184 
99.6 
4.98 

0.207 
0.031 

-0.101 

-0.404 

ROI PCGL 

0.890 
100.1 

-0.456 
19.18 
0.175 

3.84 
0.446 
132.8 
3.95 

0.206 

-- PCGR 

0.776 
159.6 

3.22 
0.156 

4.03 
0.298 
125.4 
3.25 

0.187 

-0.643 

SIPL 

0.893 
74.3 

-0.254 
13.73 
0.164 
4.15 

0.379 
83.7 
4.95 

0.189 

S M A  MCr. 

0.819 
115.6 

-0.406 
16.51 
0.199 
3.87 

0.376 
140.3 
6.50 

0.223 

0.830 
69.3 

-1.061 
4.57 

0.129 
4.68 

0.322 
272.7 

1.92 
0.096 

a9 0.054 0.062 0.000 0.068 0.033 
a l n  -0.000 -0.051 -0.016 -0.499 -0.136 

Table 1: Goodness-of-fit and fitted parameters 
of nonlinear regression analysis in ROIs from 
a sample subject. For the meaning of these 
parameters, refer to the text section above. 

GOF values for this 11 parameter model ranged 
between 0.70 and 0.91, and were rendered sig- 
nificant (a. < 0.05) by the F statistics. Re- 
sults for a sample subject are shown in Tab. 1. 
Fitted pwameters for the other subjects were 
similar. We interpreted results as follows: 

0 all ROIs were active during both phases of 
a trial (parameters ao, as). 
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0 a slight decrease of all activations with ex- 4 Discussion 
periment time (i.e. per trial number) was Using a nonlinear regression scheme to model 
noticed (parameter u1). This may be in- the HR timecourse in predefined brain regions, 
terpreted as a habituation or optimization we were able to quantify the activation of a 
effect. region during different phases of an experi- 

mental trial and to discriminate their depen- 
the cue Phase response depended on the dency on the stimulation content. A Gaussian 
set size manipulation only. The highest model function for the HR offers the benefit of 
relative gain increase per Set item Was yielding ’7physiologically meaningful” parame- 
found for ROIs PCGL, SIPL and S M A  ters like gain, lag and dispersion, which may 
(ratio a2/ao), and a low hcrease for ROIs easily be understood in terms of the experimen- 
MFGL,  MTGL,  PCGR and MCL- Lag tal stimulation. Regions may either be defined 
and dispersion also increase with set size by prior knowledge, neurofunctional interest or 
(a3 respa a5). These effects may be at- result from an analysis using 7~classica177 signal 
tributed either to a longer Processing time detection methods such as univariate regres- 
with increasing Set size or the consequence sion. Once homologous ROIs have been d e  
of a higher energy consumption. fined in a group of subjects, it is easy to set up 

nonlinear models described here. Given reason- . the lag Of the probe phase response fol- able starting parameters, simple nonlinear opti- 

and the gain was independent Of the set Because only a small subset of the raw data is 
size. entered into analysis, results for a given model 

lowed the probe phase mization methods are sufficient to solve models. 

0 an increasing set size led to a slightly 
longer duration (Q)  and a temporally 
shifted peak (a9) of the probe response, 
which is in the order of the reaction time 
differences found for the behavioural eval- 
uation. 

are available within a few seconds of computa- 
tion time. 
Other physiological influences than stimulus 
variables model the HR shape. The timecourse 
of the BOLD effect is rate-limited, i.e. the slope 
has an upper bound. Thus, experimental ma- 
nipulations that introduce a stronger activation 

lags of the probe response for hits were lead to a temporal shift of the lag and to a more 

found in all ROIs during the experiment, indi- 
cating habituation or an optimization process. 
With short delay times, both HRs merge, and 

0 however, due to comparatively high error an assignment of Parameters to each compo- 
ranges for parameters as-alo (not shown nent is arbitrary. For this reason, we decided 
here for space restrictions), a characteriza- to model the whole timeseries instead of mod- 
tion of ROIs by the amount of dependency eling each trial separately- 
on the stimulation parameters could not With a rather high number of influences, se- 
be made. lection of a proper model is a problem. We 

found a stepwise approach to be most profi- 
0 the ratio of the cue and probe phase cient: starting from a rather simple model in- 

gains (ao/as) indicated a higher involve- cluding ”hard” effects (such as the delay time 
ment of ROIs MTGL,  TOGL,  PPCR manipulation), we then introduced physiologi- 
during the cue phase, a predominant in- cal constraints, and finally, other parameters of 
volvement of ROIs S M A  and MCL dur- the experimental design. Currently, this pro- 
ing the probe phase, while ROIs MFGL,  cess is experience-driven and not exhaustive. 
PCGL, PCGR and SIPL responded ap- Note that we also restricted to linear depen- 
proximately equally in both phases. dencies on stimulation parameters. 

slightly faster than for foils (alo), which dispersed HR shape. A slight gain decrease was 
was in accordance with the behavioural 
evaluation. 
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Neurobiological implications of the study pre- 
sented here will be discussed in a different pub- 
lication. Results are well in accordance with 
,recently published data of studies in human 
working memory [12, 131. However, the nonlin- 
ear regression analysis proposed in this paper 
yielded results beyond standard fMRI ana,ly- 
sis and allowed describing brain activation on 
a much finer level. 
Increasingly complex experimental designs re- 
quire more elaborate statistical procedures to 
quantitatively compare between stimulus and 
response. The proposed nonlinear modeling 
context for the hemodynamic response offers 
a high degree of flexibility. It may serve as an- 
other tool to face the challange of understand- 
ing brain function. 
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