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Abstract: Today, most studies of cognitive processes using functional magnetic resonance imaging (fMRI)
adopt an event-related experimental design. Highly flexible stimulation settings require new statistical
models where not only the activation amount, but also the time course of the measured hemodynamic
response is analyzed. It is possible to obtain statistically valid descriptions of single hemodynamic
responses from a robust nonlinear estimation procedure. Focus is placed on the temporal behaviour of the
hemodynamic response: relative temporal order, changes induced by modification of the experimental
context, and interindividual differences. Example analyses from recent fMRI studies underline the
usefulness of this approach. Hum. Brain Mapping 8:259–271, 1999. r 1999Wiley-Liss,Inc.
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INTRODUCTION

The metabolic processes involved in neuronal activa-
tion consume oxygen [Vilringer and Dirnagl, 1995;
Gjedde, 1997]. A locally diminished oxygen tension
induces a dilation of arterioles, followed by an in-
creased blood inflow and, finally, an oversupply of
oxygenated hemoglobin in the capillary and venous
compartment. This effect is called the hemodynamic
response (HR). The mechanisms of the neurono-
vascular coupling are still under investigation. Stimu-
lus-induced changes in the local concentration of
deoxy-hemoglobin can be most easily measured today
as a dephasing effect in T2*-weighted magnetic reso-
nance images. This blood-oxygen-level-dependent
(BOLD) contrast [Belliveau et al., 1991; Kwong et al.,
1992, Ogawa et al., 1992] is now the most popular
method in functional magnetic resonance imaging

(fMRI) and is employed as one of the major experimen-
tal methods for analyzing cognitive processes in hu-
mans.

Understanding brain function requires information
not only on the spatial localization of neural activity,
but also on its temporal evolution. There is an increas-
ing interest in the time course (i.e., the shape) of the HR
and its modulation with respect to different experimen-
tal conditions. So the question is raised to what extent
conclusions may be drawn about the neuronal event
from the HR shape. However, vascular processes take
time at least an order longer than the underlying
functional activation: the time-to-maximum of a HR
due to a transient stimulus is typically delayed by 5–8
sec and dispersed by 3–4 sec [Friston et al., 1994a;
Sorensen et al., 1996]. The key to detecting changes in
the temporal properties with a higher resolution than 2
sec is the adoption and deconvolution of the HR by a
model function [Kim et al., 1997].

There is no consensus about a physiological model
for the neurono-vascular coupling that would allow
one to derive a spatio-temporal model function for the
HR. However, a number of heuristic models [Friston et

*Correspondence to: Frithjof Kruggel, Max-Planck-Institute of Cog-
nitive Neuroscience, Stephanstrabe 1, D-04103 Leipzig, Germany.
Email: kruggel@cns.mpg.de
Received for publication 16 October 1998; accepted 18 June 1999

r Human Brain Mapping 8:259–271(1999)r

r 1999Wiley-Liss,Inc.



al., 1994a; Cohen, 1997; Lange and Zeger, 1997; Friston
et al., 1998a; Rajapakse et al., 1998] were based on the
idea of describing a HR by a linear convolution of the
neuronal activation with a hemodynamic modulation
function. The primary objective for this work was to
achieve a higher specifity in the detection of functional
activation in the presence of a high noise level. The
evolution of these models follow their complexity:
early models assume constant preset values for the lag
[Friston et al., 1994a], whereas current models deter-
mine HR parameters like lag and dispersion voxelwise
from the data [Cohen, 1997; Lange and Zeger, 1997;
Rajapakse et al., 1998]. Differences in HR parameters at
different sites and between subjects were described
[Rajapakse et al., 1998] and underline the usefulness of
this approach.

One of the reasons for site-dependent differences in
HR parameters is found with the local tissue composi-
tion. It has long been under debate which tissue
compartment dominates the signal measured in fMRI.
Because in a tissue of average composition, 70% are
comprised of venules and veins, it was argued that
.90% of the signal originates in the venous compart-
ment [Gjedde, 1997]. Since the draining veins could be
located close to, or at some distance from, the capillary
compartment, the appearance of a strong signal from
the veins could make it difficult to pinpoint the
(cortical) location where the activation occurred. This
is known as the ‘‘brain vs. vein’’ debate [Singh et al.,
1995]. This issue was partly resolved by examining the
temporal properties of the HR: as known for years in
cerebral angiography, there is a delay of 3–4 sec in the
transition of a contrast agent from the cortical compart-
ment to the early venous phase [Piepgras, 1977]. This
was confirmed by reports of a bimodal temporal
distribution in fMRI: a phase shift corresponding to a
time delay of 5.5 sec was noted for the HR of cortical
areas vs. veins [Lee et al., 1995; Singh et al., 1995].

By careful modification of the experimental context
from trial to trial, relative changes of the HR shape
may be induced. This technique is known as event-
related fMRI [Buckner et al., 1996; Josephs et al., 1997;
Zarahn et al., 1997], and very recently, reports about
HR shape changes due to changes in the stimulation
context appeared in the literature. In a study of
episodic memory, a temporal shift of activation centers
was described in conjunction with an experimental
delay time variation of 2–6 sec [Buckner et al., 1998b].
Friston and colleagues [1998b] discuss that ‘‘in some
instances fMRI can discriminate between dynamics on
a 100 msec timescale despite relatively long repetition
times.’’ However, no report about lag times and their
variability are included here. Luknowsky et al. [1998]

studied the lag times of the V1 and M1 areas in a
visuo-motor reaction task using shifts in a hemifield
stimulation. A high correlation between the presenta-
tion delay and the HR lag was found, as well as a high
correlation between the V1-M1 time difference and the
reaction times.

In the context of an event-related fMRI experiment,
it is useful to describe the observed HR trial- and
region-specific by a set of parsimonious parameters.
Variations of these parameters with the experimental
context may allow the drawing of more detailed
conclusions about the amount and time course of
neuronal activation underlying the HR. Recently, we
described and validated a nonlinear regression context
to allow such analyses [Kruggel and von Cramon,
1999]. In this study, we compile results and experi-
ences obtained with a nonlinear regression context in a
number of different event-related experiments. We
focus on the temporal behaviour of the HR: the relative
order in which HR arise, changes induced by modify-
ing the experimental context, and differences between
subjects. In the next section, we formally describe the
analytical procedure. Then, we report results obtained
by this procedure: general properties of the HR, an
example case study from a language experiment, and a
group analysis of an experiment in working memory
function.

PARAMETER ESTIMATION

We adapted a model function to the hemodynamic
response and generated parameter sets for each trial
and each predefined region-of-interest (ROI). This
section describes the data preprocessing steps and the
estimation context by which results in this study were
obtained.

Preprocessing

The objective of preprocessing fMRI data is to
separate the functional activation from artifacts in-
duced by the scanning process, physiological noise
(i.e., breathing, motion, pulsations), and to correct for
baseline fluctuations. All data sets included in this
study were preprocessed by the following steps [Krug-
gel et al., 1998a]: (1) removal of trials contaminated by
gross artifacts, (2) correction for in-plane movements,
(3) baseline correction by subtraction of a low pass-
filtered signal in the temporal domain (using a cutoff
frequency of 1.5 times the trial length), (4) noise
filtering in the temporal domain (using a cutoff fre-
quency of 0.4 times the trial length). Steps (3) and (4)
include the fundamental frequency (corresponding to
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the stimulation) and its first harmonic in the passband.
Temporal correlations enhanced by filtering are ac-
counted for in the statistical model (see below).

Definition of regions-of-interest

Because we focused on the temporal aspects of the
HR in this study, we defined ROIs that are assumed to
be stationary in space. In principle, any method for
defining such regions may be applied. Because the size
of a region influences the variance of the parameter
estimations, regions should not be too small. In our
experiments, we found an optimal region size of 60 2
90 mm2 (4–6 voxels).

To achieve a good signal-to-noise ratio, we used a
procedure to select automatically the most highly
activated voxels in a brain region. We applied standard
procedures to detect functional activation in the data:
(1) analysis for activated regions by Pearson correla-
tion with a time-shifted box-car waveform (D 5 6s), (2)
conversion of the correlation coefficient into z-scores
and thresholding of the corresponding SPM5z6 by a
score of 8, (3) assessment of the activated regions for
their significance on the basis of their spatial extent
[Friston et al., 1994b], (4) detection of local maxima in
the thresholded SPM5z6, [5] selection of the six most
highly activated 4-connected voxels around local
maxima in the SPM5z6.

Description of estimation model

Our estimation model has already been described in
detail [Kruggel and von Cramon, 1999]. Excellent
discussions about nonlinear regression procedures are
given in Bates [1988] and Seber and Wild [1989].

HR parameter definition

We model the n-dimensional vector of acquired
functional data y, sampled a k voxel sites on l timesteps
of a single stimulation period, as a sum of a determin-
istic function g(·) and a stochastic part e:

y 5 g(t, b) 1 e, (1)

where t denotes the time and b the p-dimensional
vector of model parameters. The best compromise
between goodness-of-fit and the number of model
parameters is found with the Gaussian function [Raja-
pakse et al., 1998]:

g(t, b) 5
b0

b1Î2p
exp 12(t 2 b2)2

2b1
2 2 1 b3 (2)

We denote the components of b as b0: gain (the
‘‘height’’ of the HR), b1: dispersion (proportional to the
duration of the HR), b2: lag (time delay from stimula-
tion onset to HR peak), and b3: baseline. As an
independent measure derived from the data, we define
the norm of a HR as the difference between a data
point and the baseline, summed over all points and
timesteps in a trial: Si51

n (yi 2 b3).

Stochastic background model

It was shown [Bullmore et al., 1996; Benali et al.,
1997; Kruggel and von Cramon, 1999] that the stochas-
tic part in preprocessed fMRI data may be described
approximately by an Ornstein-Uhlenbeck process [Neu-
maier and Schneider, 1998]: (1) it is stationary with
respect to time, (2) its elements ei are normally distrib-
uted with a covariance matrix V: e , N(0, V), and (3)
their correlation is described by an AR(1) model.

This correlation is determined from the data by
fitting an exponential function to the experimentally
obtained semivariogram h [Christensen, 1991; Cressie,
1993] in each spatial and in the temporal dimension
separately:

h(h) 5 5 0 if h 5 0,

a0(1 2 exp (2a1h)) otherwise,
(3)

where h is the distance between two voxel sites, either
in time or space. From the model parameters, we can
derive the variance s2 5 a0 and the autocorrelation r 5
exp (2a1). Then, the (spatial) covariance matrix S of a
linear array of k voxels is defined as:

S 5 s21
1 r r2 · · · rk21

r 1 r · · · rk22

r2 r 1 · · · rk23

· · ·

rk21 · · · 1
2 , (4)

Finally, the spatio-temporal covariance matrix V is
given by the tensor product of the spatial and temporal
matrices:

V 5 Sx # Sy # T. (5)

Estimation

Having set up our model equations, we find the
ML estimate b̂ of our model parameters as the vector b
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that minimizes the quantity:

arg min
b

5(y 2 g(t, b))TV21(y 2 g(t, b))6. (6)

In the case of the Gaussian function, this problem
corresponds to a 4D nonlinear minimization problem,
which can be solved by the downhill simplex method
of Nelder and Mead [Press et al., 1992].

Since the residuals required to set up the covariance
matrix are unknown beforehand, the estimation pro-
cess is iterative. During the first run, we determine the
semivariogram according to Eq. 3 from the data y and
during subsequent runs from the residuals. We found
five iterations sufficient to stabilize the estimations.

Confidence limits

Using a first-order linear model, we can derive
confidence limits for the estimation from the inverse of
the Fisher information matrix F [Cox and Ma, 1995;
Walter and Ponzatto, 1997]:

b̂ , N(b, Fb
21), where Fb 5 GbV21Gb

T. (7)

and Gb denotes the Jacobian matrix of g(·) with respect
to b.

Goodness-of-fit

A simple measure for the goodness-of-fit (GOF) of
the model to the data is derived from the residuals
e 5 y 2 g(t, b) as:

GOF 5
eTV21e

yTV21y
, GOF [ [0, 1], (8)

with 0 denoting a perfect fit. A more complex but exact
equation for the F-statistics is given by [Hartley, 1964;
Seber, 1989, pp. 236–238]:

Fp,n2p ,
(n 2 p)

p

eTPe

eT(In 2 P)e
,

using P 5 GbFb
21Gb

T (9)

where n corresponds to the number of data points, p to
the number of parameters, and In is the (n,n) identity
matrix. Both measures may be used to detect trials
where the model function does not fit the HR well. The
reasons for such misfits and their frequency are dis-
cussed later.

RESULTS

To underline the usefulness of HR modeling in the
analysis of fMRI data, we report results obtained in
three different studies: (1) general findings about
relations between the model parameters, (2) an in-
depth analysis of a sample fMRI experiment in lan-
guage comprehension, (3) a group analysis of a fMRI
study of working memory. All data sets were obtained
using an EPI protocol (single shot, gradient recalled,
TE 30 msec, 40° flip angle, TR 1,000 resp., 2,000 msec)
on a 3T MR scanner (Bruker Medspec 30/100).

Properties of model parameters

We checked the relations between model parameters
in various sites, different fMRI experiments, as well as
within and between subjects. We report here on the
general findings.

There is a highly significant proportionality between
the gain and the dispersion of a hemodynamic re-
sponse (i.e., the ‘‘height’’ and the ‘‘width’’), indicating
that there is an upper limit for the HR slope. This limit
depends on the activation site: primary cortices gener-
ally show rather high slopes and are slightly skewed to
the left, i.e., the rising flank is steeper. With secondary
cortices and basal ganglia, this limit is lower. The HR
in venous areas is usually symmetric with slopes
similar to primary cortices (see Fig. 1).

No simple dependency between the HR gain and lag
is found. First, the slope limit imposes a shift on the HR
maximum (i.e., on the lag) for greater activations.
Second, the lag depends on the activation site. In the
example regions of Figure 1, primary cortices reach
their maximum first (mean 5 7.37 6 1.25s), then sec-
ondary cortices (mean 5 8.61 6 1.86s), then veins
(mean 5 10.62 6 2.32s). Third, lag and norm depend
on the stimulation conditions.

In a first approximation, lag and dispersion of a HR
are independent. The dispersion is related to the
duration of a response and is thus subjected to the
stimulus duration.

If the HR fits a Gaussian model well, norm and gain
should be proportional. We intended the norm as a
measure that is (apart from the baseline parameter)
independent of the estimated parameter set and ‘‘closer
to the data.’’ Thus an inspection of the distribution of
the ratio norm/gain should reveal information about
trials in which the Gaussian model does not fit well to
the HR. For most responses, we found this ratio close
to 2.4 (at TR 5 2.0s, p , 1e 2 12). Ratios lower than 2.0
corresponded to trials with ‘‘crippled’’ responses that
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were not linked to the stimulus. Ratios above 2.8 were
found in trials that were typically overlaid by transient
artifacts. Depending on the region of interest and the
signal-to-noise level, between 0–15% of the responses
were detected as such outliers. Thus if a model fit is
ensured by one of the GOF measures, norm and gain
may be used interchangably.

Example fMRI analysis

We randomly selected a fMRI dataset from a recent
experimental study in language processing [Meyer et

al., 1998]. Single sentences were presented aurally, and
subjects were asked to classify a sentence grammati-
cally for correctness. The presentation of a sentence
needed ,6 sec, followed by a pause of 18 sec. Seventy-
six trials were recorded during an ,30 min experi-
ment. During this time, every 4 sec we acquired four
slices of 128 3 64 voxel with a spatial resolution of
1.9 3 3.8 3 5 mm and 2 mm gap. For consistency, a
single dataset was chosen to demonstrate the use of the
procedures discussed here. Similar evaluations have
been performed on a large number of datasets and
different experimental designs.

Figure 1.
HR dispersion vs. norm for sample regions: Top left: left Heschl’s gyrus (2225 1 200x, R2 5 0.31,
p 5 1.8e 2 7); top right: left medio-temporal gyrus (2222 1 179x, R2 5 0.37, p 5 1.1e 2 8);
bottom left: left thalamus (2114 1 107x, R2 5 0.48, p 5 7.2e 2 11); bottom right: vein complex
(2439 1 250x, R2 5 0.51, p 5 3.8e 2 12).
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Relative temporal ordering

First, the standard procedures to detect functional
activity in this dataset were performed (Fig. 2): (1)
preprocessing using motion correction, baseline estima-
tion, and lowpass-filtering for noise [Kruggel et al.,
1998a], (2) statistical analysis for activated regions by
Pearson correlation with a time-shifted box-car wave-
form (D 5 6s) and conversion of the correlation coeffi-
cients into z-scores, (3) assessment of significance of the
activated regions on the basis of their spatial extent
[Friston et al., 1994b], using a z-score threshold of 8
(Fig. 2). We can display the lag values in a voxelwise
overlay for interpretation in conjunction with a SPM
(see lag map in the bottom row of Fig. 2). There is a
clear distinction in the lag values for early responses
(magenta-blue, ,6–8 sec), middle (blue-green, ,8–10
sec), and late responses (yellow-red, ,10 sec). Note
that early responses are found with the auditory
cortices, middle responses with secondary, language-
related cortices, and late responses with veins. In
comparing the upper and lower rows of Figure 2, it is
important to note that a single activated region does
not necessarily show a consistent temporal behaviour.

Of course, this is a consequence of the crude HR
modeling by the box-car waveform, which acts as an
‘‘integration over time’’ here.

Second, we defined regions of interests (ROIs) by
selecting the six most highly activated connected
voxels from the z-score map. In the 42 ROIs found, we
adapted our HR model in each of the 76 trials, thus
yielding 42 3 76 estimates for the gain, norm, lag, and
dispersion. Timings were corrected for the slice acqui-
sition delay in the EPI protocol. To show the relation of
lag times in ROIs, we selected a few ROIs at function-
ally interesting anatomical locations here. Average
values and confidence ranges of the norm, lag, and
dispersion are compiled in Table I. We have run t-tests
(single sided, paired within a trial, unequal variance,
P 5 0.05) on the lag values for single trials and found a
temporal ordering of: HGL , HGR , MTR , THR ,
THL , STL , FOL , PC , SCV. Note that primary
cortical areas arise first, then secondary cortical areas,
then veins.

Interestingly, a temporal ordering also can be found
along a trajectory starting from the mesial part of
Heschl’s gyrus, running outward on the superior

Figure 2.
Top row: significantly activated regions from an experiment in language processing. Bottom row: lag
times (in s) for the HR in the activated regions. Magenta-blue areas correspond to early responses,
blue-green areas to middle, yellow-red areas to late responses.
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temporal gyrus and anteriorly (see Fig. 3). All time
differences are significant.

Dependency on experimental context

During the experiment, reaction times and re-
sponses were recorded. The presentation length of the
sentence varied between 2,560–4,460 msec. We evalu-
ated the influence of the stimulation context on the HR
parameters by multivariate linear regression models.
From the behavioral data alone, we learned that the
reaction time is primarily dependent on the trial
number, i.e., there was a training effect. Second, it
depended on the sentence length, but not on the
correctness manipulation. To compare the HR with the
stimulation, we used the sentence length rather than
the reaction time.

When evaluating over all ROIs and all trials
(n 5 2,330), we found that per second of increasing
sentence length, the lag increased by 880 msec (6110
msec, p 5 3e 2 15) and the dispersion by 210 msec
(667 ms, p 5 4e 2 8) (see Fig. 4). So within this
temporal stimulus range, there is a direct proportional-
ity between the stimulus and HR duration. Likewise,
the norm increased by 21% per second stimulus dura-

tion, indicating that a longer ‘‘computation time’’
demands a higher amount of energy.

In contrast to the results from behavioral data, there
was a high overall dependency (i.e., over all activated
regions) between the norm and the correctness manipu-
lation: presentation of an incorrect sentence led to an
increase of the lag (245 msec), the norm (17%), and the
dispersion (100 msec). The training effect was found as
a slight decrease of the lag (2360 msec), norm and
dispersion were constant.

Next, we looked at individual regions and tested for
interactions between the norm, the lag, and the disper-
sion with the sentence length and the correctness

TABLE I. Average values and confidence ranges of norm,
lag, and dispersion for sample regions of the experiment

in Figure 2

Location Norm Lag [s] Dispersion [s]

Sup. temporal
gyrus left (STL) 1547 6 741 9.25 6 2.01 5.01 6 1.32

Vein complex
(SCVa) 1680 6 877 10.25 6 2.36 5.01 6 1.27

Precuneus (PC) 861 6 389 9.66 6 2.30 4.86 6 1.39
Heschl’s gyrus left

(HGL) 1241 6 934 6.98 6 1.28 4.66 6 1.08
Heschl’s gyrus

right (HGR) 1353 6 515 7.30 6 1.21 4.60 6 0.93
Medio-temporal

gyrus right
(MTR) 1341 6 576 8.24 6 2.02 4.77 6 1.18

Thalamus left
(THL) 893 6 451 8.49 6 1.80 4.97 6 1.44

Thalamus right
(THR) 956 6 395 8.34 6 1.97 4.96 6 1.38

Anterior insula left
(AIL) 766 6 366 9.80 6 2.97 4.87 6 1.50

Frontal operculum
left (FOL) 926 6 402 9.66 6 2.47 4.85 6 1.32

a In vicinity of the great cerebral vein.

Figure 3.
Surface view of the left temporal lobe. In the top figure, z-scores
are mapped onto the surface, in the lower figure, lag times (in s) are
displayed. Four regions with averaged timings mark a signal
trajectory along the superior temporal gyrus. Color coding of the
z-scores and lag times correspond to Fig. 2.

r Temporal Properties r

r 265 r



Figure 4.
Dependency of norm and lag on sentence length. Parameters of the regression lines are for the norm
(526 1 210x, R2 5 0.014, p 5 4e 2 8) and for the lag (5.84 1 0.88x, R2 5 0.027, p 5 3e 2 15). A
similar high correlation is found for the dispersion vs. the sentence length.
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manipulation at the single trial level. Significant inter-
actions (P , 0.05) between the norm and the sentence
length were found in ROIs on the left superior tempo-
ral gyrus (see Fig. 3) as well as on the right side (see
Fig. 5). The correctness manipulation interacted with
the norm only in the left thalamus, the precuneus, and
a few ROIs on the right superior temporal gyrus (Fig.
5). Interestingly, only ‘‘early’’ responses (white circles)
interacted with the norm, ‘‘middle’’ responses (green
circles) with the correctness manipulation.

We summarize from these results: (1) on the basis of
an EPI protocol using a repetition time of 2 sec, lag

time differences of ,250 msec were resolved in a series
of 76 single trials, (2) we were able to show that the
auditory cortex arose before secondary, language-
related areas, then veins, (3) a temporal sequence of
activated regions was found to originate from Heschl’s
gyrus and spread along the superior temporal gyrus
anteriorly and laterally, and (4) it was possible to
connect stimulation data (i.e., sentence length, re-
sponses) with estimated model parameters in a mean-
ingful way.

Example group study

To underline further the usefulness of this approach,
we re-evaluated a group of datasets acquired in a fMRI
study of working memory [Zysset et al., 1998]. Subjects
learned three sets of letters (4, 6, or 8 characters) at least
2 days before the scanning session. A trial started with
the display of a small red box (for 800 msec), followed
by the cue and after a delay (0, 2 or 4 sec), the probe.
Subjects had to indicate by a button press whether the
probe item belonged to the cued set, 108 randomized
trials were run using an intertrial interval of 18 sec.
Seven axial slices (64 3 64 voxels, 3.8 3 3.8 3 5 mm
voxel size, 2 mm gap) were recorded using an EPI
protocol using a repetition time of 1 sec. All timings
were corrected for the slice acquisition delay in the EPI
protocol. Seven healthy female and six male students
(age 22.3 6 1.4 years) were included in the study; all
finished the experiment. From an alphabetical list of
coded filenames, we selected every third dataset (n 5 4)
for inclusion in this evaluation. We concentrated on six
ROIs, which are shown in Figure 6.

We computed HR parameters (for each subject, trial,
and ROI) and tested their dependency on the stimula-
tion parameters. From the list of ROIs for a given
subject, we selected those that most closely resemble
the locations in Figure 6. The proper selection of a
specific ROI from a larger cluster of activated voxels is
critical: ROIs lateral to IPGL (i.e., on the gyral crown)
show different properties and may belong to a differ-
ent functional area. Similar findings were made for
ROIs superior and posterior to CMA, which presum-
ably belong to the supplementary motor area and the
precuneus. However, we consider an advantage of this
method, that precisely corresponding anatomical re-
gions are compared, without the need of using ques-
tionable intersubject alignment procedures.

Findings were summarized as follows: (1) all ROIs in
all subjects show a significant increase of the lag values
with increasing delay time, (2) in CMA and IPGL, an
increasing delay time leads to an increase of the
dispersion, (3) only AIL and PPCL show a dependency

Figure 5.
Surface view of the right temporal lobe, showing average lag times
for ROIs. Early responses are located in Heschl’s gyrus, which only
show a dependence on the sentence length (numbers in white).
Middle responses, which are located more laterally and anteriorly,
show a dependency on the correctness manipulation (numbers in
green). Color coding of the z-scores and the lag values correspond
to the scales in Fig. 2.
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of the norm on the set size, and (4) a slight decrease of
the norm with the trial number (i.e., the experiment
length) was found for most regions, but rarely reached
significance. It is again interesting to note that an
increase in the norm is found in conjunction with a
higher ‘‘computational burden,’’ here the set size.

We studied the order and duration in which ROIs
are activated. We defined the HR onset and outset
times as the difference (resp. sum) of the lag and the
dispersion. Sample results for a single subject, aver-
aged within trials of the same delay time, are compiled
in Table 2.

We found differences in the onset and outset times of
up to 2 sec between subjects, which were much higher
than the within-subject variances. This suggests use of
the relative time to order in intrasubject comparisons
instead of building group averages. We assigned this
order by performing t-tests (paired within a trial,
unequal variance, single-sided) between ROI timings.
By comparison within the group, we could separate
the ROIs into: (1) a group of ‘‘early’’ regions (CMA, AIL)
that are predominantly active during the first (encod-
ing) phase of the experiment, (2) a ‘‘middle’’ group
(IPGL, MPCL, PPCL), which follows the first group in
onset time and is active throughout the delay phase,
and (3) a ‘‘late’’ group (MCL), which is predominantly
active during the response phase.

Discussion of results

By adapting a Gaussian model function to the HR,
we extracted the shape-describing parameters norm,
lag, and dispersion and studied the temporal proper-
ties of the HR. Our experiences with this approach are:

• On the basis of typical single-trial fMRI design,
using a repetition time TR of 1 or 2s with 6–18
acquisitions per trial, it is possible and useful to
model the HR in single trials and per ROI.

• Whereas the variance in lag times for single estima-
tions was in the order of 600 msec, it was shown
that in repeated measurements, temporal differ-
ences down to 250 ms (in experiment 1) and 100
msec (in experiment 2) could be resolved. This is
close to the physical limit of TR/În, where n the
number of trials.

• Estimated parameters for the norm, lag, and disper-
sion varied with experimental manipulations and
differed between subjects.

• We found an upper bound for the ratio of gain and
dispersion (i.e., the slope) of the hemodynamic
response: thus a very high norm required an
increase in lag and dispersion. This upper bound
depended on the activation site and the subject.

Figure 6.
ROIs in a working memory experiment: AIL: superior anterior insula, MPCL: middle prefrontal
cortex, IPGL: inferior precentral gyrus, CMA: cingulate motor area, MCL: motor cortex, PPCL:
posterior parietal cortex.

TABLE II. Onset and outset times (in sec after stimulus
onset) of the HR vs. delay times in the ROIs of Figure 6

ROI
delay [s]

Onset Outset

0 2 4 0 2 4

CMA 2.27 2.53 2.92 8.41 8.62 9.48
AIL 3.02 2.92 3.62 8.81 8.85 10.04
IPGL 3.41 3.16 4.50 9.41 9.37 10.71
MPCL 3.53 2.94 4.39 9.46 9.58 10.89
PPCL 3.79 3.33 4.46 10.43 9.92 11.03
MCL 4.06 4.25 5.73 10.44 10.89 12.29
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• Homogeneously activated regions did not necessar-
ily exhibit consistent temporal properties, i.e., they
may span different functional cortices.

• Experimentally introduced response delays re-
sulted in shifts in the lag. A longer stimulation
induced a shift in the lag, and an increase in the
dispersion. High correlations between the disper-
sion and stimulus duration were found (see Fig. 4).

• An experimentally introduced higher computa-
tional demand was reflected in a higher norm, but
not generally in a longer duration of the HR.

• Norm and lag generally tended to decrease slightly
with experiment duration, indicating training ef-
fects or habituation.

• A consistent relative ordering of activations by
their onset and outset times in a group of subjects
was found to be more informative than comparing
group average times.

In the language comprehension experiment, a tempo-
ral sequence of activations was found, which spread
from Heschl’s gyrus to the lateral surface of the
superior temporal gyrus and anteriorly to the tip of the
temporal lobe. Differences in lag times found here
correspond nicely with similar values obtained at
comparable brain locations in a study of human
auditory processing [Robson et al., 1998]. These loca-
tions may correspond to the recently described ‘‘pitch
processing areas’’ [Griffith et al., 1998; Zatorre, 1998],
which are assumed to take part in the analysis of
temporal structures in sound.

The spatial activation pattern obtained in the work-
ing memory study compares nicely with a similar
study of episodic memory [Buckner et al., 1998a].
Using a set of Gamma model function with fixed shape
parameters but varying lag times, areas were sepa-
rated into ‘‘early,’’ ‘‘middle,’’ and ‘‘late’’ responses for
their temporal properties [Buckner et al., 1998b] and a
temporal shift of the AIL activation was found [Schac-
ter et al., 1997]. Our procedure automatically adapts to
shape and lag variations, and the corresponding HR
parameters are directly derived from the data.

We must emphasize that the estimated HR param-
eters do not directly allow us to draw conclusions
about the properties of the underlying neuronal activa-
tions. Some findings of this study, i.e., the shift of the
lag with the experimental delay in the working memory
experiment, are directly understandable in terms of the
experimental context and thus will reflect time shifts of
the activation pattern. An increase in the norm of the
HR was consistently found with an increase of the
‘‘computational burden,’’ i.e., an increase of the set size

in the memory experiment or the presentation of a
grammatically incorrect sentence.

We doubt, however, that the estimated lag times
correspond directly to the timescale of neuronal events:
differences of lag times of .2 sec on the left superior
temporal gyrus (see Fig. 3) are hard to explain by
cognitive mechanisms alone. From fMRI data alone,
we are unable to derive information whether the
BOLD signal stems from capillary or venous compart-
ment, which may explain differences in lag values of
.1 sec. When comparing ROIs in distinct cortices,
variations in the vascularization pattern and the vessel
reagibility may influence the HR shape. It is not
surprising that we find interindividual differences in
lag and dispersion times of homologous cortical areas
that are not directly reflected in the reaction times.

From the temporal activation pattern in the working
memory experiment, we may also learn that several
sites in the brain are simultaneously activated: even
the BOLD signal in the motor cortex rises much before
a response is required. Activations that last beyond the
experimental response may reflect postprocessing (i.e.,
control processes).

Prerequisites for applying this statistical framework
are: (1) a fMRI scanning protocol with a TR of 2 sec or
better, (2) a trial length of at least 12 sec in order to
collect and identify separate responses, (3) or at least
six acquisitions per trial. Because a low signal-to-noise
ratio implies a high variance of parameter estimates, it
is advisable to apply this method to highly activated
regions. Preprocessing for baseline correction and
reduction of physiological and system noise [Kruggel
et al., 1998] is helpful here.

GENERAL DISCUSSION

We consider the description of the HR by a model
function a major advantage because it provides a
compact and concise parameterization of the HR shape.
Current choices for model function are arbitrary, since
none is based on a comprehensive physiological model.
The preference of the Gaussian function in this study is
only justified by the fact that we obtained the best fits
in a nonlinear estimation procedure. Deriving model
functions from empirical studies is questionable. Be-
cause HR vary with experimental conditions, averag-
ing over responses will introduce unpredictable shape
changes in the mean response. High noise levels in the
BOLD signal and only a few time points per period
impede a clever selection of trials from the time course
directly. We are aware of restrictions imposed by

r Temporal Properties r

r 269 r



choosing a Gaussian model function. Four problems
should be mentioned:

1. The Gaussian function is symmetric. By visual
inspection, we had the impression that early
responses are asymmetric, i.e., the rising edge is
steeper. Late responses (especially from venous
areas) tend to be more symmetric.

2. We did not model the initial negative dip [Ernst
and Hennig, 1994] and the terminal undershoot
[Menon et al., 1993], which were demonstrated
for BOLD signals from the visual cortex. By
correcting for baseline fluctuations, we centered
the signal and thus lost any information about a
reference intensity. With the short trial periods of
the experiments shown here, the undershoot is
superimposed by the rising edge of the next
response. In addition, it is still under discussion
whether the initial dip is detectable in cortices
other than V1.

3. If a Gaussian model function is understood as a
result from a linear convolution, the underlying
neuronal event should be infinitely short. Some
stimuli (e.g., the aural presentation of a sentence)
will elicit a neuronal activation that lasts for a few
seconds. Thus the corresponding HR will only ap-
proximately be modeled by a Gaussian function.

4. We implicitly assumed that the response is mono-
phasic, i.e., there is only one HR per trial. Multi-
phasic HRs are expected to be detected by the
F-statistics as a high rate of misfits in a specific
ROI. In the experiments of this study, we did not
find clear examples of multiphasic HRs.

Some of these issues may be resolved by introducing
more complex model functions. However, most of our
current fMRI experiments are conducted with a prefer-
ence of spatial resolution over temporal resolution, so
that only 6–18 time points per period are available.
This imposes limits for the amount of model param-
eters. The estimation context proposed here allows us
to change model functions easily.

Whereas the HR estimation is performed in a nonlin-
ear regression context, all subsequent statistical mod-
els to compare the HR parameters with behavioral
variables and experimental conditions are multivariate
linear regressions. If we plan to infer from HR param-
eters about properties of the underlying neuronal
activations, we need to take care that linear relations
among a stimulus, the neural response, and the HR
may not hold. In recent studies of HR properties in
event-related experimental designs, roughly linear
properties of the hemodynamic response in terms of

additivity in rapidly repeated single trials were demon-
strated [Dale and Buckner, 1997]. However, it is well
known from animal experiments that, e.g., the stimu-
lus duration is not mapped linearly to a neuronal
activation. Nonlinear activation properties have been
demonstrated in the form of a ‘‘u-shaped behaviour’’
of the HR norm vs. the word stimulation frequency
[Friston et al., 1998a] and for short (,6 sec) auditory
stimuli [Robson et al., 1998] as well as short (,4 sec)
visual stimuli [Vazquez and Noll, 1998a].

There were issues raised about the assumption that
trials (and thus their HRs) are independent [Buckner et
al., 1998a; Vasquez and Noll, 1998b]. If such influences
exist, they must be taken into account either by
randomization of the stimulation pattern, or included
in the statistical model as a confound. We consider it a
positive side effect of the analytical model proposed
here, that the estimation context is separated from
statistical models regarding the experimental manipu-
lation. In the form of the HR parameter data sets, we
obtain a very compact description of the experimental
results, which may be followed by any suitable statisti-
cal inference.

The purpose of this report is twofold: (1) to show
how the temporal information can be derived from the
hemodynamic response in fMRI data, and (2) that it is
possible to compare behavioral data with HR shape
parameters in a meaningful way. By careful modifica-
tion of the experimental context in an event-related
setting, it is possible to draw conclusions from the HR
shape about the underlying neuronal activation, assum-
ing a linear convolution model. The time domain is
another dimension available for experimental manipu-
lation in fMRI experiments and thus another approach
for investigating the dynamical properties of the brain.
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