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Today, most studies of cognitive processes using functional
MRI (fMRI) experiments adopt a single-trial design. Highly
flexible stimulation paradigms require new statistical models in
which not only the activation amount but also the time course of
the measured hemodynamic response is analyzed. Most previ-
ous approaches have been based on a linear regression context
and have introduced hemodynamic model functions to improve
the signal detection. In this report a nonlinear regression
context is derived, from which shape parameters for the hemo-
dynamic response are obtained per trial and per region of
interest. These parameters allow the investigation of stimulus-
induced shape variations of the hemodynamic response. By
embedding the estimation into a robust statistical framework
and rigorously analyzing the spatiotemporal interactions in the
fMRI data, it is possible to derive statistically valid descriptions
of single hemodynamic responses. The model, estimation algo-
rithm, validation, and an example analysis from a single-trial
fMRI study are reported. Magn Reson Med 42:787–797, 1999.
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Within the last few years, functional MRI (fMRI) has gained
enormous interest in the study of cognitive processes in
humans. Primary reasons for its success are found in its
high spatial and (moderate) temporal resolution, its nonin-
vasiveness, and its ease of application. However, the blood
oxygen level–dependent (BOLD) effect (1–3) measured in
fMRI is only indirectly linked to the neuronal activation
via mechanisms of the neuronovascular coupling, which
currently are not fully understood. It is now commonly
accepted that the hemodynamic response (HR) after neuro-
nal activation consists of several phases: 1) Within millisec-
onds after stimulus onset, the local oxygen consumption
elicits a transient shortening of the T*2 time and thus
causes a signal decrease (4,5). 2) The initial hypo-
oxygenation in the active region is oversupplied by an
increased inflow of oxygenated hemoglobin (HbO2), lead-
ing to a signal increase at a maximum of 5–6 sec after
stimulus onset (6). 3) Limitations of the vascular regulation
and/or transport of the HbO2 excess induce a dispersion of
the signal increase by 3–4 sec. 4) a final negative dip has
been reported but not yet interpreted.

It is currently under discussion to what extent properties
of the underlying neuronal activation can be inferred from
the shape of the HR. It is not unreasonable to hypothesize
that 1) a stronger neuronal activation leads to an increased
bold response; 2) a prolonged neuronal activation is accom-

panied by a prolonged HR; and 3) a time difference in the
activation onset (i.e., between a sensory and a response-
related area) is reflected by a temporal shift in the HRs of
these areas. However, whereas a cognitive task under study
takes a few hundred milliseconds to complete, the time
scale of the vascular response is much longer. Furthermore,
the blood supply is not uniform throughout the brain, and
besides regional differences other physiological variables
(e.g., heart rate, blood pressure, slope of perfusion changes)
might influence the shape of the HR. Nevertheless, recent
fMRI studies have shown that experimentally introduced
delays led to temporal shifts of the HR (7,8) that were
indeed on the order of the neuronal time scale.

Recently, single-trial fMRI designs (STD) have been
introduced (9–11). A trial-based behavior is understood as
a ‘‘self-contained behavioural/perceptual unit which is
temporally limited’’ (9). Such designs allow the randomiza-
tion of the presentation of behavioral trials and the study of
the response to a specific stimulation separately.

The focus of this report is to describe a general statistical
context for modeling the HR in single-trial fMRI experi-
ments. Four concepts are important in the context of this
model and deserve discussion beforehand:

1. We separate the signal detection problem from the
signal description problem. Throughout this report,
we assume that the locus of a functional activation is
known. This knowledge may arise from a previous
determination by well-established signal detection
procedures or defined as regions of neurofunctional
interest (ROI). In these regions we determine a trial-
and ROI-wise description of the HR by neurophysi-
ologically meaningful parameters. The results of such
an estimation procedure are given as a three-dimen-
sional table, where the first dimension corresponds to
separate ROIs, the second dimension to the indi-
vidual experimental trials, and the third dimension to
the set of estimated parameters.

2. We introduce a nonlinear regression context which
allows a wide variety of functional models for the HR.
Because the signal-to-noise ratio in fMRI data is low,
special care must be taken to ensure the stability,
validity and accuracy of the estimation procedures.

3. We separate the statistical evaluation of the experi-
ment from the signal description. The data table as a
result from the estimation process is a very compact
model representation of the brain activation elicited
in this experiment and may be imported into any
statistical package for further evaluation.

4. Regarding trials as behavioral entities, we now have a
single set of HR parameters per region available for
combination with parameters of the experimental
design and behavioral data (responses, reaction times,
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etc.). This allows the setting up of very clearly
defined statistical models without the need of han-
dling baseline conditions, signal drift, or questions of
activation significance. The compact representation
makes quick testing of different statistical models and
alternate hypotheses possible.

The remainder of this report is organized as follows. In
the next section, we introduce a nonlinear regression
model suitable for the estimation of the HR in fMRI data.
We then report on the model validation using simulated
data and a comparison of confidence intervals determined
by the mathematical model with a Monte Carlo simulation.
We then underline the usage of this model with results
from an example fMRI experiment. In the Discussion, we
weight advantages and disadvantages of this model. This
report is primarily concerned with theoretical aspects of
the model. Detailed neurobiological results will be pre-
sented separately.

A NONLINEAR REGRESSION MODEL FOR fMRI

In a quite general model of focal brain activation we
consider a measured event E(e, s, t, · · · ), which is
dependent on the stimulation event e, a brain site s, and the
time t. The dots denote a number of other influences (aperiodic
and quasiperiodic body motion, scanner instabilities, noise,
motivation, etc.), which are not discussed here. These influ-
ences have either been reduced by a preprocessing step (12)
or are collectively modeled as an (additive) stochastic part
e. Let us assume that a significantly activated brain region s
has been determined by any of the well-established meth-
ods (see ‘‘Example fMRI Analysis’’ and ‘‘Importance of
Temporal Characterization’’), which is constant in position
and extent. These assumptions simplify the event model to
E(e, s, t) 1 e. The estimation problem is now the adaptation
of a model function to the time course of E.

Description of the Model

This section focuses on the maximum likelihood (ML)
estimation of hemodynamic model parameters from fMRI
data (13,14). Let S be an ROI of k 8-connected voxels, and T
an l-dimensional vector of discrete time steps in a single
experimental trial. Denote a subset of the fMRI data Y 5
5 y (s, t), s [ S, t [ T 6. We model the data as a sum of a
deterministic function g (t, b), where b denotes a p-
dimensional vector of model parameters, and a stochastic
part e 5 5e(s, t), s [ S, t [ T6:

y (s, t) 5 g(t, b) 1 e(s, t) ; s[ S, t [ T. [1]

Thus, we have n 5 k l equations to estimate the p model
parameters b, with p , n. To analyze the problem using
standard results from multivariate calculus, it is required
that g(t, b) is differentiable with respect to b. Furthermore,
we assume that the stochastic part is independent of the
signal and stationary with respect to time, and its elements
are normally distributed with a nonsingular covariance
matrix V:

e , Nn (0, V), then Y , Nn (g(T, b), V), [2]

where g(T, b) denotes the vector-valued equivalent of g(·).
We will indicate a way to determine the covariance struc-
ture from experimental data later in this section.

The ML estimate b̂ is obtained as the vector b that
minimizes the quantity:

arg min
b

5(Y 2 g(T, b))TV21(Y 2 g(T, b))6. [3]

Any nonlinear optimization algorithm, such as the down-
hill simplex method (15), may be used to obtain b̂.

Model Functions for the Hemodynamic Response

A number of functions have been proposed to model the
HR: the Poisson function (16), the g function (17,18) and
the Gaussian function (19), which all are viable choices for
g(·). In the context of this report, we concentrate on the
Gaussian function:

g (t, b) 5
b0

b1
exp 12 (t 2 b2)2

2b1
2 2 1 b3 , where t [ T. [4]

We propose this function because it offers the best good-
ness of fit (19), and its model parameters are interpretable
in terms of physiological variables. We denote the compo-
nents of b as b0: gain (the ‘‘height’’ of the HR), b1:

dispersion (in seconds, proportional to the duration of the
HR), b2: lag (in seconds, the time delay from stimulation
onset to the HR peak), and b3: baseline. Parameters b1, b2

are constrained to be positive and within the length of a
trial period: 0 , b1 # tl21 and 0 , b2 # tl21. As an
independent measure derived from the data, we define the
norm of an HR as the difference between a data point and
the baseline value, summed over all points and time steps
in a trial: Ss[S St[T (y (s, t) 2 b3).

The Stochastic Part

The spatiotemporal covariance matrix V, as introduced in
Eq. [2], contains n2 unknowns and thus may not be
determined directly without making certain assumptions.
Covariance structures in fMRI data were first examined in
the temporal domain by Bullmore et al. (20) and in the
spatial domain by Benali et al. (21). Both found an
AR(1) model in good accordance with the data. To ensure
that the ML procedure (see Eq. [3]) yields an unbiased
estimate, it is necessary to show that the residuals are
(asymptotically) normally distributed and stationary in
time and space. Any process which is normally distrib-
uted, stationary and has an AR(1) covariance structure may
be denoted as a discrete realization of an Ornstein-
Uhlenbeck process (22,23), and hence is Markovian. We
now demonstrate how 1) normality, 2) stationarity, and 3)
the covariance structure are determined from the data.
These assumptions also assure that the covariance matrix
is invertible.

Normality

The normality of the residuals is assessed by the analysis of
the first four moments. Let us denote g

1
as the mean, g2 as

the dispersion, g3 as the skewness, and g4 as the kurtosis of
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the residuals e, which are computed by using standard
textbook procedures (24). We collect all n residuals from
all m trials (i.e., q 5 n m data points) in a check for
normality. According to our model in Eq. [2], we require
that g1 < 0. The normality assumption will be rejected at a
significance level of 5% if

T1 5
0 g3 0

2În1

. 1 using n1 5
6(q 2 2)

(q 1 1)(q 1 3)
, or [5]

T2 5
0 g4 2 3 1 (6/(q 1 1) 0

2În2

. 1

using n2 5
24q (q 2 2)(q 2 3)

(q 1 1)2(q 1 3)(q 1 5)
. [6]

Stationarity

Weak second-order stationarity is tested across all r 5 l m
time steps within a ROI. For the temporal domain, we
apply Anscombe’s test and check the correlation of the
residuals with time t (24):

ct 5

o
t50

r21

3o
s[S

(e(s, t) 2 e )(t 2 t )4

Îo
t50

r21

3o
s[S

(e(s, t) 2 e )2(t 2 t )24
, [7]

where bars denote the average of a variable across all items.
The stationarity assumption will be rejected at a signifi-
cance level of 5% if 0 ct 0Îkr 2 1/2 . 1.

For the spatial domain, we use the Goldfeldt-Quandt
procedure (24). Residuals from any two sites s0, s1 in the
ROI are collected across all trials and then used to compute
the ratio

c0,1 5

o
t50

r21

[e(s0, t ) 2 e (s0)]2

o
t50

r21

[e(s1, t) 2 e (s1)]2

; s0, s1 [ S , [8]

where c0,1 has a Fisher distribution with (r 2 1, r 2 1)
degrees of freedom. The stationarity assumption in space
will be rejected at a significance level of 5% if:

c0,1 . F0.05(r 2 1, r 2 1) or c0,1 , F0.95 (r 2 1, r 2 1). [9]

Covariance Structure

For a weakly stationary process, the correlation between
residuals e(s0, t0) and e(s1, t1) depends only on the ‘‘dis-
tance’’ between sites in space and time. Since we assume
AR(1) correlations, the covariance matrix V is defined com-
pletely by the variance g2

2 and the lag-1 autocorrelation
coefficients r in the x, y, and t directions. For reasons of
simplicity, we estimate r separately in space and time, thus
separating V into a spatial and a temporal correlation matrix:

V 5 g2
2 (VS ^ VT ), [10]

where ^ denotes the Kronecker product. For the temporal
domain, we simply estimate the lag-1 sample autocorrelation:

r̂T 5

o
s[S

3o
t51

l21

e(s, t)e(s, t 21)4
o
s[S

3o
t50

l21

e(s, t)24 [11]

and set up the inverse of the temporal correlation matrix
directly:

VT
21 5

1

(1 2 rT
2) 1

1 2rT 0 · · · 0

2rT 11rT
2 2rT · · · 0

0 2rT 1 1 rT
2 · · · 0

· · ·

0 · · · 1

2 . [12]

The determination of the spatial correlation matrix is
more involved, because residuals are only available on an
irregular configuration of sites. The AR(1) correlation
function of a stationary process on a regular spatial grid is
given by (13, p. 97):

rS (s0, s1) 5 rX
h rY

v,

using h 5 H (s0, s1), v 5 V (s0, s1), [13]

where H(·) and V(·) return the absolute distance between
two sites in the x and y directions, and rX, rY denote the
spatial autocorrelations. The problem is now to determine
rX and rY from the data. First, we form subsets of all pairs of
sites, which are located the same absolute distance h, v:

Sh,v 5 5s0,s1 0s0 [S,s1 [S,H (s0, s1) 5 h,V (s0,s1) 5 v 6 , [14]

and then estimate r̂ h,v for this subset:

r̂h,v 5

o
t[T

3 o
s0,s1[Sh,v

e1s0, t 2e 1s1, t 24
o
t[T

3 o
s0[Sh,v

e (s0,t )24
. [15]

Now, we find r̂X, r̂Y by LS estimation:

arg min
rX,rY

5o
h,v

(r̂h,v 2 rX
h rY

v )26. [16]

By using these estimates, we can compute the correlation
rS between any sites si, sj in the ROI by Eq. [13], and thus set
up the spatial correlation matrix:

VS 5 1
1 rS(s0,s1) rS(s0,s2) · · · rS(s0,sk21)

rS(s0,s1) 1 rS(s1,s2) · · · rS(s1,sk21)

rS(s0,s2) rS(s1,s2) 1 · · · rS(s2,sk21)

· · ·

rS(s0,sk21) · · · 1

2 , [17]
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which is symmetric and always invertible. Finally, we
compose the inverse of the spatiotemporal covariance
matrix: V21 5 1 ⁄ g2

2 (Vs
21 ^ VT

21).

Confidence Intervals

Confidence intervals may be determined from Monte Carlo
simulations. This requires prior knowledge about the
properties of brain activation, and a model for noise and
artifacts. We report on the results of such a model in the
experimental section. Deriving confidence intervals for the
estimates b from the model equations is more involved
(13,26,27). To simplify the notation, we drop the depen-
dence of g(·) on T. We expand g(b) by a first-order
Taylor-series about the true parameter vector b̃:

g(b̂) < g(b̂) 1 Gb̂
T(b̂ 2 b̂), [18]

where G b̂ denotes the Jacobian matrix of g(·) with respect to
b̂. By using an equivalent formulation of Eq. [3]:

Gb̂ V21 [Y 2 g(b)] 5 0, [19]

and insertion of Eq. [18] yields:

Gb̂ V21 [Y 2 g(b̂) 2 Gb̂
T(b̃ 2 b̂) ] 5 0. [20]

Solving for b̃, we find:

b̃ 5 b̂ 1 Fb̂
21Gb̂ V21 (Y 2 g(b̂)), [21]

where F is called the Fisher Information Matrix Fb 5
GbV21Gb

T. Because b̃ is a linear function of the data, its
estimator follows a multivariate normal distribution:

b̂ , Np(b̃, Fb̃
21). [22]

Thus, under this first-order linear model, the estimator is
unbiased, and its covariance, Fb̂21, is the Cramer-Rao lower
bound for the nonlinear model of Eq. [1].

It is possible to improve the confidence bands by intro-
ducing higher order approximations (28). However, this
requires Monte Carlo simulations to derive the confidence
intervals for each parameter set, which is not feasible for
routine estimation.

Estimation Algorithm

Given a set of regions of interest and a set of trials, we
repeat the following estimation procedure for each ROI and
each trial. First, we collect data from the ROI in a specific
trial, set V 5 In and starting parameters for b. The optimiza-
tion problem is given by minimizing Eq. [3] in the p
parameters of the model function g(·). From the residuals,
the spatiotemporal covariance matrix is computed, and the
optimization process repeated. A fixed number of itera-
tions (typically 5) is used. For a region of interest this
procedure needs about 10 sec for 100 trials. A typical fMRI
data set is evaluated within 5 min on a conventional
workstation. At length, we summarize our algorithm as

follows:

1. Collect data points y(s,t) ; s [ S,t [ T.
2. Set the spatiotemporal covariance matrix as the iden-

tity matrix: V 5 In.
3. Select starting values for b.
4. Repeat for N iterations:

Optimize Eq. [3] by the downhill simplex method
Compute g2, rX, rY, and rT from the residuals (Eqs. [11]
and [16])
Set up the spatiotemporal covariance matrix V (Eqs.
[10], [12], and [17]).

5. Find confidence intervals for model parameters b̂.
6. Examine normality and stationarity in the residuals

from all trials in a ROI.

MODEL VALIDATION

For the validation of the model explained in the previous
section, we have to show that 1) the parameter estimation
is stable with respect to noise levels and distributions
typically found in fMRI data sets, and 2) the confidence
intervals for the model parameters derived analytically
(see ‘‘Confidence Intervals’’ in previous section) comply
with experimentally obtained results. We refer to the HR
parameters as defined in ‘‘Model Functions for the Hemo-
dynamic Response.’’

Performance of Parameter Estimation

To assess the stability of the parameter estimation, we used
simulated fMRI data sets. We modulated a prototypical HR
with known properties (spatial distribution, temporal
shape; Fig. 1) onto a brain patch with unknown back-
ground characteristics. A recent single-trial fMRI experi-
ment with a TR 5 2 sec and a trial length of 12 time points
was chosen, and a prototypical HR was collected from a
significantly activated cortical area and averaged in time
and space (Fig. 1a). A patch of 10 3 10 voxels was selected
from the same experiment which did not contain any
significant task-related activation. The prototypical HR
was modulated onto the patch in a connected region of 6
voxels (Fig. 1b) over 76 trials, using an amplitude range of
20 arbitrary units (AU) to 500 AU in 25 steps, correspond-
ing to z scores between 4.4 for an amplitude of 80 AU to
14.2 for an amplitude of 500 AU. Patches with a smaller
amplitude were rendered insignificant by a z score thresh-
old of 3.5. To determine the true (noiseless) parameters for
the prototypical HR, we modulated the signal with an
amplitude of 500 onto an artificial noise-free patch. We
determined HR parameters for the 26 amplitude settings
and the 76 trials.

The results of the tests were summarized as follows:

● The gain was proportional to the HR amplitude by a
factor of 2.48. For an amplitude of 500 AU, the gain
was determined as 1241 AU 6 217 AU, which com-
pares favorably with the true value of 1245 AU in the
noiseless case.

● The lag was slightly underestimated for cases of a low
signal-to-noise ratio (Fig. 2a), which is a consequence
of the asymmetric distribution of the lag values. The
lag, again for an amplitude of 500 AU, is 7.09 sec 6
0.40 sec (true: 7.09 sec). As expected, the distribution
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of the lag narrowed with increasing signal-to-noise
ratio.

● The dispersion was constant, independent of the
amplitude (Fig. 2b), and estimated as 2.90 sec 6 0.43
sec (true: 2.97 sec). As expected, the distribution of the
dispersion narrowed with increasing signal-to-noise
ratio.

● The norm was proportional to the amplitude by a
factor of 6.19. The norm for an amplitude of 500 AU
was 3097 AU 6 532 AU, which agrees with the true
value of 3113.

We conclude that this nonlinear regression procedure is
stable against noise levels typically found in fMRI data
sets.

Confidence Intervals

To learn more about the confidence regions for the estima-
tion, we ran a Monte Carlo simulation. We modulated the
prototypical HR onto an artificial patch, using an ampli-
tude of 100 AU and a Gaussian noise level of s 5 40, which
compares with the usual signal to noise ratio found in
preprocessed fMRI data. 25 activated areas of 25 voxel size
and 100 periods were generated, thus yielding 2500 sets of

parameter estimates. Their distribution and confidence
regions (99.73%, 99.0%, 95.4%, 90.0%, and 68.3%) are
plotted in Figure 3. The 95% confidence intervals at this
noise level are determined as gain: 252 AU 6 74 AU, lag:
7.11 sec 6 0.71 sec, dispersion: 2.97 sec 6 0.48 sec, norm:
620 AU 6 182 AU. The confidence intervals, as deter-
mined from the diagonal elements of the inverted Fisher
matrix (see Eq. [22], are found for the gain: 258 AU 6 68
AU, lag: 7.20 sec 6 0.40 sec, dispersion: 3.07 sec 6 0.42
sec, norm: 652 AU 6 165 AU, which agree well with the
simulation.

EXAMPLE fMRI ANALYSIS

We randomly selected an fMRI data set from a recent
experimental study on language comprehension. Using a
single-shot EPI protocol, we acquired every 2 sec 4 T*2-
weighted slices of 128 3 64 voxel with a spatial resolution
of 1.9 3 3.8 3 5mm and 2 mm gap. The auditory presenta-
tion of a sentence needed approx. 6 sec (3 time steps),
followed by a pause of 18 sec (9 time steps). 76 trials (912
time steps) were recorded during an approximately 30 min
experiment. The right-handed test persons were asked to
classify a sentence for syntactical correctness and to re-
spond via a button press with the right hand. For consis-
tency, a single data set was chosen to demonstrate the use

FIG. 1. Spatial pattern (a) and time course (b) of the hemodynamic
response used in the simulation study. Parameters of this prototypic
response (at an amplitude factor of 500 AU) are: gain 1245 AU, lag
7.09 sec, dispersion 2.97 sec.

FIG. 2. Dependency of the HR parameters on the test function
amplitude, shown here for the lag (a) and the dispersion (b).
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of the procedures discussed in this report. Similar evalua-
tions were performed on a large number of data sets and
different experimental designs.

The standard procedures to detect functional activity in
this data set were applied as follows: signal preprocessing
(12) using 1) motion correction, 2) estimation of the
baseline by voxelwise low-pass filtering in the temporal
domain using a cutoff frequency of 1.5 times of the
stimulation frequency, 3) baseline correction by subtract-
ing the estimated baseline from the motion-corrected data,
and 4) signal restoration using spatiotemporal Markov-
Random-Field model (29) to reduce physiological and
system noise; signal detection by 1) analysis for activated
regions by Pearson correlation with a time-shifted box-car
waveform (D 5 6 sec), 2) conversion of the correlation
coefficients into z scores, 3) thresholding of the correspond-
ing SPM5z6 by a score of 8, and finally 4) assessment of the
activated regions for their significance on the basis of their
spatial extent (30) (Fig. 4). For signal quantification by the
model proposed in this report, 44 ROIs were defined by
their 6 most highly activated voxels from the SPM5z6. We
modeled the HR trial- and ROI-wise in preprocessed data
using a Gaussian function by the estimation context ex-
plained in ‘‘A Nonlinear Regression Model for fMRI’’ and
yielded 44 by 76 estimates of gain, norm, lag, and disper-
sion. Timings were corrected for the acquisition delay of
separate slices in the EPI protocol. Nine neurofunctionally
interesting regions were marked in Figure 5.

Before we actually report on the HR estimation results,
the estimation performance and model validity (by analy-
sis of the residuals) shall be discussed.

Estimation Performance

Results of an example region in Heschl’s gyrus on the right
side (HGR in Fig. 5), where a satisfying fit to the Gaussian
model function was found, are shown in Figure 6a. In other
regions, especially with a lower signal-to-noise ratio, some
HR are crippled or too deviant in the sample region to
warrant a good fit. Figure 5b displays an example from the
precuneus (PC in Fig. 5), where the second and the seventh
period are not well adapted. By applying certain heuristics
on the estimated parameters and examining the goodness
of fit, these misfits can be detected and marked in the
output. Typically 0–15% of the trials are marked as outliers.

Analysis of the Residuals

From the sample signal in Heschl’s gyrus (HGR in Fig. 5),
we computed the distribution of the residuals as
N(20.022,40.92). A Q-Q plot revealed a high conformance
with a normal distribution; however, a deviance on ex-
treme cases (,2g2 or .2g2) was found. Normality in the
distribution according to Eq. [5], with T1 5 0.243 and T2 5
0.437, was confirmed for this region. Normality criteria
were not fulfilled for all ROIs, however. For most regions,

FIG. 3. a–d. Results of a Monte Carlo simulation to study the confidence regions for HR parameters. Confidence ellipsoids are given for levels
of 99.73%, 99.0%, 95.4%, 90.0%, and 68.3%.
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T1 had small positive values, indicating a distribution
slightly skewed to the left. In some regions, normality was
rejected due to T2 . 1. We found distributions with longer
tails here, mostly as a consequence of unmodeled compo-
nents and (physiological) artifacts in the data. Such viola-
tions of the distributional assumptions are not considered
harmful to the ML estimation process (20). These criteria
indicate regions (or temporal intervals) disturbed by arti-
facts, so the corresponding HR parameters might be re-
garded with caution or excluded from further analysis.
Stationarity as defined by Anscombe’s test (see Eq. [7]) and
the Goldfeld-Quandt procedure (see Eq. [8]) was accepted
for all ROIs in preprocessed data. If a spatial or spatiotem-
poral filter was applied during preprocessing, we found
rX,Y values in the range of 0.40–0.60, in comparison with
0.10–0.30 in unfiltered data. If spatial correlations are low
(r , 0.10), the spatial matrix VS is well approximated by

the identity matrix and might be substituted as such in Eq.
[10]. Correlations in the temporal domain were determined
in a similar range. As indicated from the performance
study, a good signal-to-noise ratio improves the confidence
bands of the estimation. Since filtering for system and
physiological noise in fMRI data is effective in the tempo-
ral domain (12), we always preprocess the raw data and
consider the temporal autocorrelations in the estimation.

Estimation Results

HR parameters were estimated for all the 44 ROIs in 76
trials. Summary statistics for 9 sample regions from Fig. 5
are compiled in Table 1.

The inter-trial variation of the lag values is considerably
higher in comparison with the simulated data. This is
easily explained by considering that sentences were au-

FIG. 4. Significantly activated regions from a study in language comprehension, overlaid onto their corresponding brain slice.
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rally presented and lag times were computed from the
onset of the presentation. In addition, we ran t-tests (single
sided, paired, unequal variance, p , 0.05) on the lag values
for single trials. We found a significant temporal ordering
as follows:

HGL , HGR , MTGR , ThR , ThL , FOCL , PC , VC [23]

Interestingly, a temporal ordering can also be found
along a trajectory starting from the mesial part of Heschl’s
gyrus, running outwards on the superior temporal gyrus
and to the anterior temporal lobe.

Comparison With Stimulation Data

Since the duration of the aurally presented sentence and
the sentence type (correct or incorrect) are known they may
be compared with the HR parameters.

For all ROIs, norm, lag, and dispersion increase with
sentence length, indicating that a longer activation time
corresponds to a higher energy consumption and thus a
more increased BOLD effect. We fitted linear models to test
the dependency of norm, lag, and dispersion on the
sentence length (Fig. 7). All fits were highly significant
(p , 1e 2 4). Per second of increasing sentence length, the
norm increases by 188 AU (corresponding to an increase of
121% for a step from 3 to 4 sec), the lag by 1880 msec, and
the dispersion by 1210 msec.

In addition, the norm depends on the correctness manipu-
lation: presentation of an incorrect sentence leads to an
increase of the lag (1245 msec), the norm (117%), and the
dispersion (1100 msec). During the experiment, norm and

dispersion are constant, whereas the lag decreases slightly
(2360 msec). This may be attributed to practicing the
stimulus.

When analyzing single ROIs, significant interactions
between the norm and the sentence length are found in a
number of ROIs on the superior temporal gyrus on both
sides. The correctness manipulation interacts with the
norm only in the left thalamus, the precuneus, and the
right superior temporal gyrus.

DISCUSSION

This report deals with a method to analyze fMRI data
targeted to STDs. The hemodynamic response is modeled
in a nonlinear regression context trial- and ROI-wise. We
will now focus on a number of issues that require discus-
sion.

Choice of Model Function

Describing the HR by a model function is a major advantage
because it provides a compact and concise description of
the HR shape. Currently, the discussion about the ‘‘best’’
model function is open, and any choice is clearly arbitrary,
because none is based on a comprehensive physiological
model. Cohen (31) and Lange and Zeger (17) proposed the
Gamma function and were followed by Friston et al. (18),
who used a set of two fixed-parameter Gamma functions to
model the HR. In accordance with Lange, we found—
especially in STD—that the Gamma function yielded a
rather high number of unsatisfactory fits. The Poisson
function offers only a single-shape parameter and is not

FIG. 5. Selection of highly activated regions
(see Fig. 4) with an extent of 6 voxels. Nine
neurofunctionally interesting regions were la-
beled.
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considered a suitable model function. Judging from good-
ness-of-fit criteria, the Gaussian function models the HR in
STDs best. This finding is in agreement with findings of a
standard linear regression context by Rajapakse et al. (19).
An argument for using asymmetrical model functions is
given by the expectation that the slope of the rising edge of
the HR is steeper than the falling edge. In our closely timed
single-trial experiments this is rarely found. When using
spatially or temporally averaged responses, a Gaussian
function is expected to yield the best fit. Other choices of
model functions are sinusoidal orthogonal basis functions
(20) or splines (32). However, they require more parameters
(and thus more time steps per trial in the data), and the
determined parameters do not allow an easy derivation of
physiological meaningful variables (such as maximum,
slope, etc.).

From calculus we know that at least as many time steps
per trial as parameters of the model function are required.

For the three- and four-parameter functions discussed here
we found sufficient fits in STDs with a period length down
to 8 time steps. We did not attempt to model the multipha-
sic nature of the hemodynamic response. Trials are tightly
spaced in standard STDs, so the terminal undershoot runs
over into the next rising edge. The early dip is only
detectable in highly time-resolved fMRI experiments at

FIG. 7. Dependency of the HR model parameters norm (a) and lag
(b) on the auditory presentation time of a sentence. The solid lines
indicate linear regression models fitted to the data (p , 1e-4). Per
second of increasing sentence length, the norm increases by 188 AU,
the lag by 1880 msec and the dispersion (not shown) by 1210 msec.

Table 1
Characterization of the HR Parameters in Sample Regions
(see Fig. 5) of the Example fMRI Experiment

Location Norm (AU) Lag (sec)
Dispersion

(sec)

Vein complex 1680 6 877 10.25 6 2.36 5.01 6 1.27
Precuneus 861 6 389 9.66 6 2.30 4.86 6 1.39
Heschl’s gyrus left 1241 6 934 6.98 6 1.28 4.82 6 1.08
Heschl’s gyrus right 1353 6 515 7.30 6 1.21 4.75 6 0.93
Middle temporal gyrus

right 1341 6 576 8.24 6 2.02 4.77 6 1.18
Thalamus left 893 6 451 8.49 6 1.80 4.97 6 1.44
Thalamus right 956 6 395 8.34 6 1.97 4.96 6 1.38
Anterior insular cortex

left 766 6 366 9.80 6 2.97 4.87 6 1.50
Frontal opercular cortex

left 926 6 402 9.66 6 2.47 4.85 6 1.32

FIG. 6. From the experiment in sentence comprehension, 8 trials
were selected of 12 time steps each. The auditory stimulus is shown
as a dotted line, together with data (shown as dots) sampled from two
regions, Heschl’s gyrus on the right side (HGR, a) and the precuneus
(PC, b) and their trialwise modeled response using a Gaussian
function (solid line). Arrows mark trials were a satisfying adaption
could not be achieved.

Modeling the Hemodynamic Response 795



higher fields. It is a question at issue what should be
considered as baseline in these experiments. In our estima-
tion context we were ignorant to these findings and
modeled only the signal increase. We do not assign any
physical meaning to offset parameter b3 in Eq. [4] and
regard a trialwise constant offset just as a first-order
approximation.

Of course, the Gaussian model function here is not well
suitable to model prolonged activation. Even if it is pos-
sible in principle to use this estimation context with block
designs, none of these functions would obtain a good fit.
Therefore, ideally, the stimulus presentation should be
short. In a random selection of several experiments we
found acceptable and reliable fits with presentation times
of up to 4 sec (i.e., aurally presented sentences).

Interpretation of the HR Parameters

Another advantage of using model functions is the ability
to derive physiologically meaningful parameters. The lag
as the time to the HR maximum can be understood in terms
of the experiment and easily be integrated into statistical
models (i.e. for comparison with stimulation length, reac-
tion times, learning etc.). The lag is useful to introduce a
temporal ordering of the arising HR. To better interpret the
reason for a temporal ordering, the dispersion information
must be taken into account: a comparatively high disper-
sion corresponds to a temporally long HR, whereas a low
dispersion reflects a rather short HR, which is possibly
shifted in time with respect to the stimulation onset. The
usefulness of lag and dispersion in inferring about the
sequence of neuronal activations is currently under inves-
tigation.

Gain and norm may be used interchangeably according
to our experiences. In the majority of activations analyzed,
they are linked with a constant factor with relatively tight
limits. The norm might be given preference because this
parameter is ‘‘closer to the data.’’ In our experience, norm
and gain reflect the energy consumption of an activated
area. The dispersion is proportional to the duration of a
brain activation and thus interpretable as an indicator of
the ‘‘computation time’’ of a cognitive process. The quo-
tient of gain and lag is an approximation of the HR rise time
and may be linked to the energy consumption of an
activated area. Finally, the residual variance g2

2 is an
important quality indicator of the fit. The quotient g2

2/gain
is trivially dependent on the signal-to-noise level, but in
addition, an indicator of a possible misfit. This quotient is
found to be in the order of 0.05–0.20.

Importance of Temporal Characterization

It is a major advantage of this procedure that the temporal
properties of a HR are now accessible to statistical analysis.
Rather than the conventional computation of averaged
waveforms and (visual) comparison of their shape charac-
teristics the method includes shape properties as statistical
parameters. First results show that conclusions about time
differences of less than 300 msec seem to be statistically
significant. This confirms similar reports by Friston et al.
(18). By no means is this estimation context restricted to
regular designs in time. With respect to the discussion of

estimation restrictions above, the length of a trial may vary
in wide margins.

When ROIs are considered as connected, significantly
activated, regions, this does not necessarily imply that
these region are homogeneous with respect to their tempo-
ral characteristics. In a number of experiments we found
confluent activated regions, for example along the superior
temporal gyrus or the intraparietal sulcus, which showed
significantly different properties when split up into dis-
tinct ROIs.

Of course, it is necessary to alleviate the current require-
ment of predefined ROIs. This is straightforward in this
modeling context: first, we estimate the HR parameters
voxelwise and then decide on the basis of some similarity
criteria which voxels may be merged. The center and
extent of such a region is not necessarily constant from trial
to trial. As much as the signal-to-noise ratio allows, it is
necessary to introduce stricter criteria for region homogene-
ity and add location and extent to the parameter list in this
estimation context.

CONCLUSION

We have extended the current approaches of modeling the
HR in functional MRI into the context of explicit STDs. By
combining the model with a rigorous stochastical analysis
of the spatiotemporal interactions in fMRI data and embed-
ding the estimation into a robust framework, we are able to
derive statistically sound descriptions of HRs in a certain
brain area. This approach achieves a much finer level of
description of a fMRI experiment and opens new perspec-
tives for functional interpretation.
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