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When studying complex cognitive tasks using func-
ional magnetic resonance imaging (fMRI) one often
ncounters weak signal responses. These weak re-
ponses are corrupted by noise and artifacts of various
ources. Preprocessing of the raw data before the
pplication of test statistics helps to extract the signal
nd can vastly improve signal detection. Artifact
ources and algorithms to handle them are discussed.
n an empirical approach targeted to yield an optimal
ecovery of the hemodynamic response, we imple-
ented a test bed for baseline correction and noise-
ltering methods. A known signal is modulated onto

oreground patches obtained from event-related fMRI
xperiments. Quantitative performance measures are
efined to optimize the characteristics of a given filter
nd to compare their results. Marked improvements in
he sensitivity and selectivity are achieved by opti-
ized filtering. Examples using real data underline

he usefulness of this preprocessing sequence. r 1999

cademic Press

Key Words: fMRI, spatio-temporal filtering, physi-
logical noise, preprocessing.

INTRODUCTION

Many neuronal brain activations elicit an oxygen
onsumption and give rise to a hemodynamic response
HR) of the supplying vascular system. This response is
easured as the so-called BOLD (blood-oxygen-level-

ependent) effect in functional magnetic resonance
maging (fMRI). In T2*-weighted images, this BOLD
ffect gives rise to an intensity change restricted to a
ertain brain area and transient in time with respect to
he stimulation. However, effects are small and cor-
upted by noise and artifacts, so that roughly 40–200
epetitions are necessary to detect a statistically signifi-
ant response. This high repetition count is especially
roblematic with complex cognitive tasks like memory
r language experiments, and one obviously wants to
imit the number of repetitions with the help of more
ensitive signal detection methods.
In addition to thermal noise, the following artifact
ources have been identified as corrupting the BOLD s
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ignal and interfering with the analysis of fMRI data:
1) gross body movements during the experimental
ession, (2) physiological movements (pulsations, swal-
owing, abdominal movements, breathing), (3) regional
ensitivity losses (signal voids) due to susceptibility
ifferences at tissue borders (i.e., the transition bone–
rain), (4) ghost images, (5) flow artifacts in the vicinity
f large vessels, and (6) long-term instabilities of the
canner baseline. Depending on their time scale, these
ources appear as ‘‘trends,’’ ‘‘fluctuations,’’ or ‘‘noise’’ in
he time series; depending on their origin, they may be
lassified as ‘‘physiological’’ or ‘‘system’’ noise. Of course,
ther cognitive processes unrelated to the experimental
ask contribute to the physiological noise.

The best approach for artifact reduction is to work
irectly on their sources, i.e., improve the hardware,
he scanning protocol, and subject fixation. Some major
ources are hard to avoid, like heartbeat and breathing
Weisskoff et al., 1993; Jezzard et al., 1993; Hu et al.,
995; Biswal et al., 1996; Noll et al., 1996; Scarth et al.,
996; Le et al., 1996), swallowing (Birn et al., 1998), or
custical scanner noise (Bandettini et al., 1998). At any
tage of technical development, some amount of arti-
acts is found in the recorded data, which may be
andled by post hoc correction methods. They (1) use
rior knowledge about the spectral characteristics of
he artifact sources (Weisskoff et al., 1993; Jezzard et
l., 1993; Bandettini et al., 1998; Lowe et al., 1998),
2) apply corrections from a biosignal recorded along-
ide (Hu et al., 1995; Biswal et al., 1994, 1996; Noll et
l., 1996; Birn et al., 1998), or (3) make use of multiple
mage acquisitions (Hu et al., 1994; Le et al., 1996;
uonocore et al., 1997; Sijbers et al., 1998).
Instead of focusing on the best correction method for

ny given artifact source we may pragmatically ask for
he best method to retrieve the BOLD signal from fMRI
ata. Following a strategy from classical signal analy-
is, it is advantageous to separate a signal conditioning
tep (i.e., the deconvolution of artifacts) from the signal
etection step (i.e., the inferential statistics). The chal-
enge of fMRI preprocessing is (1) to separate the
ask-related BOLD signal from ongoing artifacts and
oise unrelated to the task (and thereby increasing the

ensitivity), (2) to recover the BOLD signal shape, and
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531FILTERING METHODS FOR fMRI
3) to retain the high spatial resolution of fMRI. The
bjective of this paper is to compare several filtering
ethods for their use in fMRI preprocessing using a
lter testbed. Based on quantitative comparisons, we
erive conclusions about their usefulness in a baseline
orrection and signal restoration step.

TEST BED DESCRIPTION

To derive conclusions based on quantitative evalua-
ions, we constructed a test bed, in which we modulated
known signal with a known spatial distribution onto
atches obtained from fMRI experiments presumed to
ontain only background noise. We compared spatiotem-
oral properties of the known signal with the filter
utput and characterized the filter performance by six
ifferent test measures.
Our primary interest is in processing fMRI data

sing event-related experimental designs. Throughout
his paper, we assume that the HR due to an experimen-
al stimulus is monophasic, i.e., the fundamental fre-
uency of the BOLD signal corresponds to the stimula-
ion frequency n. We found this assumption to be valid
n all experimental designs studied so far.

Most fMRI protocols available today allow the acqui-
ition of a set of image slices at a given time step, and
ypically, there is a spacing (of 2 mm) between slices. We
onsider slices to be independent and treat two-dimen-
ional spatial models only. All algorithms discussed
ere are easily extensible to three spatial dimensions.
n our models the third dimension corresponds to time.

Test Patches

To cover the range of typical event-related paradigms
n cognitive fMRI experiments, we have selected three
ifferent studies: (1) an experiment of language compre-
ension (TR 2 s, 12 time steps per trial, 76 trials), (2) a
orking memory experiment (TR 1 s, 18 time steps per

rial, 104 trials), (3) an experiment in lexical priming
TR 1 s, 8 time steps per trial, 320 trials). All experi-
ents were run using an EPI protocol on a Bruker 3T
edspec 300 system (64 3 64 voxel, resolution

.8 3 3.8 3 5 mm, 2-mm gap, axial slices parallel to
C–PC). All further slice positions are given relative to

he AC–PC plane.
From each of these studies, four datasets were ran-

omly chosen. Two patches of 10 3 10 voxels were
elected from each dataset at a brain region where no
ctivation was found using a standard statistical proce-
ure (see below). In the case of aurally presented
timulation material (experiments 1 and 3), these
atches were taken from the right occipital lobe (at 10
m) and the right frontal lobe (124 mm). In experi-
ent 2, visual stimulation was used, so we selected

atches from the right frontal lobe (10 mm) and a right

entroparietal region (142 mm). All patches were free t
f background voxels, but contained a random propor-
ion of white matter, gray matter, and CSF voxels. A
otal of 24 patches were included in this study.

For detection of functional activation, we took a
timulus function derived from the experiment, con-
olved it with a Gaussian hemodynamic modulation
unction using a lag of 4.8 s and a dispersion of 3.6 s
Clark et al., 1998), computed a Pearson correlation
ith the convolved waveform, transformed the correla-

ion coefficient into a z score, and determined the
ignificance of activated clusters by their spatial extent
or z . 3 (Friston et al., 1994).

Test Signals

Because the spectral properties of the HR are un-
nown beforehand, we included three different wave-
orms as BOLD signal models in our test suite: (1) a
ine wave; (2) a prototypical HR, which was obtained by
veraging the responses of a highly activated sample
egion in space and time; and (3) a square wave (see
ig. 1). The properties of a real BOLD signal are
xpected to lie within these extremes. The period
ength was matched against the trial length of the
orresponding experiment.

Spatial Pattern

We defined two spatial patterns for the test signal, a
ingle 4-voxel activation and four single voxel activa-
ions (see Fig. 1). We used sharp transitions between
ctivated and nonactivated regions in order to test the
patial properties of a filter. For a specific test, one of
he three waveforms was modulated onto this patch
sing one of the two spatial patterns, multiplied by an
mplitude factor to achieve a certain signal-to-noise
atio on input.

Test Measures

The performance of the filter methods was deter-
ined by a set of test measures which describe the

patial and temporal properties, the sensitivity and
electivity of a filter. First, we need to give a few basic
efinitions:
The signal energy Esig is computed from a signal y(t)

ampled regularly at N time steps via its periodogram
(·) (see Press et al., 1992, pp. 549–553) by summing
ver the multiples of the base frequency f :

Esig 5 o
k51

N/(2 f )

P(k f ). (1)

ecause additive noise (and perhaps some subtle unde-
ected activation) in the patch contributes to Esig, we
efine a ‘‘true’’ signal energy as the difference between

he signal energy and the spectral energy E0 at the
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532 KRUGGEL, VON CRAMON, AND DESCOMBES
ame frequencies if no modulated signal is present:
true 5 Esig 2 E0. The signal-to-noise ratio (SNR) is
efined as

SNR 5 Etrue /o
k50

N/2

P(k). (2)

he correlation Cab of signals ya(t) and yb(t) is given by
he product of their normalized periodograms:

Cab 5 o
N/2

Pa(k)Pb(k). (3)

FIG. 1. Top: Scheme of the two spatial patterns of the test signal
ottom: Test waveforms applied for patches from experiment 1. Sine w
k50 a
Now we define the following test measures:
● The recovery of a preprocessing method is defined

s the correlation Cto between the test signal and the
utput signal. The recovery ranges between 0 and 1,
here 1 corresponds to a perfect restoration of the test

ignal. This measure defines a temporal (shape) resto-
ation property of a preprocessing method.
● By sensitivity we denote the least SNR for which

he signal can be detected by a standard statistical
rocedure (see Test Patches). We compute a Pearson
orrelation of the output signal with the test function,
onvert the correlation coefficient into a z score, and

test signal is modulated on black pixels, white pixels are untouched.
e (dashed), square wave (dotted), and prototypical HR (solid).
. A
verage across the foreground voxels. Sensitivity val-
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533FILTERING METHODS FOR fMRI
es are given for z 5 3.0. Thus, lower SNRs indicate a
etter filter sensitivity.
● Selectivity denotes how well a filter selects the test

ignal: The test signal was scrambled randomly in time
nd modulated onto the patch, and its energy Eran after
reprocessing was determined. The selectivity is then
omputed as Esig /Eran.
● The ratio SNRout /SNRin should ideally be indepen-

ent of the input signal level. When comparing filter
haracteristics, the absolute value of this ratio is less
elevant than the range of signal levels for which this
atio is maintained constant. We define linearity as the
ange of signal levels for which the change of the ratio
s less than 10%. For quantitative analysis of fMRI
ata, filter linearity is an important feature.
● By spatial blurring B we define a measure of how
uch a spatial filter blurs the spatial modulation pattern:
5 E0/E1, where E0 denotes the mean true energy of the

ackground (E1, foreground) voxels of the test pattern.
● Because we modulate the same signal energy on

ll foreground voxels, an ideal filter should yield the
ame relative level on output. The spatial smoothness S
s defined as the relative energy spread of the output
ignal in the set of foreground voxels: S 5 (Emax 2 Emin) /
, where Emin denotes the minimal and Emax the
aximal true signal energy and E their mean. This
easure defines a spatial restoration property of a

reprocessing method: low values of S indicate a higher
egularization and thus a better restoration.

BASELINE CORRECTION

In fMRI datasets, intensity fluctuations modulate
he time series of any foreground voxel (see Fig. 2, top).
hese fluctuations are slow with respect to the length of
n experimental trial, i.e., their frequency is lower than
he stimulation frequency. They depend on the voxel
ocation (i.e., on the tissue properties), on the scanner
roperties (i.e., linearity, long-term stability), and per-
aps on physiological effects. These fluctuations often
ake up to 10% of the total signal intensity and thus

an easily hide functional activations. The (time-indepen-
ent) intensity of a foreground voxel, together with the
uctuations, is referred to as baseline. Trends and
uctuations violate the assumption of temporal station-
rity, which is a requirement for most test statistics.
To correct for baseline fluctuations, the easiest way is

o estimate the baseline and subtract it from the input
ignal. Here, one has to be cautious not to model signal
hanges attributable to functional activation. In the
emporal domain, any suitable baseline estimator has
he spectral properties of a low-pass filter with a cutoff
requency below the stimulation frequency.

There is a broad range of algorithms available from
lassical time series analysis for baseline estimation.
e selected four typical examples: (1) moving average
MA) filters, (2) low-pass (LP) finite impulse response p
lters, (3) autoregressive filters (AR models), and (4)
alman filters. Subtraction of the filter output from the

nput signal effectively results in high-pass filtering.
he anatomical information (i.e., the time-independent
art) is separated from the functional activation. We
ested the performance of the four baseline filters for all
4 patches from the three experiments, using test
ignals at SNR 5 0.2. To conserve space, figures shown
ere correspond to test runs using a prototypical hemo-
ynamic response, averaged across results from all 24
est patches, and include standard error bars.

Moving Average Filter

The MA filter estimates the state of a voxel at time t0
rom the mean in a window of 2N 1 1 time points
round t0:

y s
f(t0) 5 o

r52N

N

ys(t0 1 r)/(2N 1 1), 2N # r # N. (4)

he MA filter is characterized by its window size, or
lter length. Example results from the test bed for the
rototypical HR using the single peak pattern are
ompiled in Fig. 3.
The MA filter showed a performance optimum for all

est measures at a filter length which corresponds to
pproximately 1.4 times the length of a single trial, i.e.,
or a trial length of 12 time steps, averaging over 17
ime steps achieved optimal results for baseline estima-
ion. Using fewer coefficients spoiled the functional
ctivation while longer filters did not follow baseline
uctuations close enough.

Finite Impulse Response Low-Pass Filter

The LP filter is described by (Rorabaugh, 1993)

y s
f(t0) 5 o

r52N

N

frwr ys(t0 1 r), 2N # r# N, (5)

here fr denotes the 2N 1 1 low-pass filter coefficients
or the cutoff frequency l,

fr 5 5
l/p if r 5 0,

sin (rl) /p if 0 , 0r 0 # N,
(6)

nd wr the 2N 1 1 coefficients of a Hamming window,

wr 5 0.54 1 0.46 cos 1pr

N 2 , 2N # r # N. (7)

he LP filter is characterized by its cutoff frequency l,
hile N 5 25. Example results, again using the single

eak pattern, are compiled in Fig. 4.



m
t

r

w
e
r
m
t
w
d
u

fl
s

534 KRUGGEL, VON CRAMON, AND DESCOMBES
The LP filter exhibited an almost constant perfor-
ance for cutoff frequencies, which were equal or lower

han the stimulation frequency n.

Autoregressive Filter

For the AR filter, we consider the baseline to be a
ealization of the process

y s
f(t) 5 o

p

ar ys(t 2 r) 1 e(t), (8)

FIG. 2. Native time series (top) and corresponding power spect
uctuations and a negative drift are visible. The power spectrum
timulation frequency. The broad peak at higher frequencies is attribu
r51 t
here ar is the p parameter of the AR( p) process (West
t al., 1997), and e(t) , N(0, s2). In the tests, only for a
ather high number of coefficients ( p $ 15), a perfor-
ance comparable to the two previous filters was ob-

ained. A comparatively low recovery for the signal shape
as found, and the optimum number of parameters
epended on the noise characteristics of the patch
nder study.

Kalman Filter

A stateless Kalman filter (Grewal et al., 1993; Pe-

(bottom) of a sample activated voxel. In the time series, baseline
ibits a prominent peak at 76, which corresponds to the cognitive
to breathing.
rum
exh
ted
ersen et al., 1998) may also be applied for baseline
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535FILTERING METHODS FOR fMRI
FIG. 3. Recovery (top), z score (middle), and selectivity (bottom)
f a MA filter for baseline correction. The ratio of the filter length N to
he period length n is given on the x axis. A clear optimum is seen at a
atio of 1.4.
FIG. 4. Recovery (top), z score (middle), and selectivity (bottom)
f a LP filter for baseline correction. The ratio of the cutoff frequency l
o the period length n is given on the x axis.
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536 KRUGGEL, VON CRAMON, AND DESCOMBES
stimation,

y s
f(t) 5 ys(t 2 1) 1 ( p /( p 1 r))( ys(t) 2 ys(t 2 1)), (9)

p 5 (1 2 p /( p 1 r)) p 1 q, (10)

here p is the estimated covariance, q is the process
oise, and r is the measurement covariance. The prop-
rties of such a filter depend on the ratio r /q. We set r 5
.01 empirically and set q 5 r /10 f, where f is the filter
arameter.
The Kalman filter showed a reasonable performance

or a filter parameter f $ 1, which corresponds to
ettings of the measurement covariance r 5 0.01 and
he process noise q 5 1e 2 3.

Filter Comparison

From the results of the test bed, we determined
ptimal parameters for each filter. We modulated wave-
orms with an input SNR of 0.01–0.20 onto the patches
nd computed the SNR on output (see Fig. 5) using the
est filter parameters. Except for the AR filter, a linear
ehavior was found. The best sensitivity was deter-
ined for the MA filter, closely followed by the LP filter.

n Table 1, numerical values for the optimal filter
arameters are compiled. Because these filters operate
n the temporal domain, the parameters spatial blur-
ing and smoothness are not meaningful here.

Discussion

In addition to removing the T2-weighted image, LP,
A, and Kalman filters achieved a marked increase in

he sensitivity and selectivity of the signal detection as
ell as in the recovery of the signal shape. Although the

FIG. 5. Linearity of baseline correction methods. The input SNR
s plotted against the output SNR. All baseline filters were supplied
ith the best parameter settings. In order of decreasing sensitivity,
tA . LP . Kalman . AR.
eak performance of a MA filter was better than the
alman and LP filters with respect to all parameters,

he latter reveals a much higher independence of the
esults in relation to the filter parameter. Thus, the LP
lter does not need to be fine-tuned with respect to the
timulation frequency. Because the AR filter is compu-
ationally intensive and exhibits a nonlinear behavior,
aseline estimation by an AR model is not considered
seful.
We restricted to the baseline estimation in the time

eries only: a spatiotemporal filter needs to track
natomical edges (i.e., the transition CSF–cortex) and
hus requires edge-preserving properties in the spatial
omain. We tested spatial extensions of a temporal
oving average and finite impulse response filter and

id not find any advantage in using spatial information
ere.
Estimation of the baseline by a matched LP filter

ppears to be sufficient for the correction of baseline
uctuations. In all experiments studied so far, a cutoff

requency of 1.0–1.5 times the trial length (in time
teps) appears to be sufficient. By baseline correc-
ion we get rid of anatomical edges in the data, which
s a prerequisite for efficient spatiotemporal noise
ltering.

SIGNAL RESTORATION

After baseline correction, the remaining data are
omposed of (1) functional activation, (2) physiological
oise, and (3) system noise. The aim is to restore the
hape of the functional activation in space and time,
hus separating it from signal variations uncorrelated
ith the experimental task. In the temporal domain,

his corresponds to filtering higher frequency portions,
ike the broad peak in the example spectrum of Fig. 2
bottom), which corresponds to artifacts introduced by
reathing.
Because anatomical edges are now absent, we may

ake advantage of any spatial coherence to restore the
unctional signal. The aim of restoration is to add some
onstraints of homogeneity and smoothness on the
olution. These constraints may be applied either in the

TABLE 1

Performance of Filters for Baseline Correction

Filter Parameter Recovery Sensitivity z score Selectivity

one — 0.000 0.0720 8.06 2.84
A N/n 5 1.4 0.216 0.0427 12.0 4.89
P l/n 5 1.5 0.164 0.0471 10.7 3.85
R p 5 20 0.137 0.1294 10.2 8.09
alman f 5 2 0.115 0.0782 7.28 2.88

Note. Shown are results for optimal filter parameters.
emporal or in the spatial domain, separately, or in both
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537FILTERING METHODS FOR fMRI
omains. In the temporal domain, a smoothness con-
traint is justified by an upper found for the slope of the
OLD signal. The slope of the HR is found on the order
f 4–6 s and thought to be limited by vascular response
echanisms. In the spatial domain, prior knowledge

bout the size of the activated structures may be used
s spatial smoothness constraints: for example, the
OLD signals from cortical regions appear as clusters
f 3–12 mm width (corresponding to 1–4 voxels).
However, results of the signal restoration step are

ased on a tradeoff between conflicting aims: to achieve
moothness in the spatial domain without spoiling the
ctivation and to limit the bandwidth in the temporal
omain in order to filter out quasiperiodic artifacts
ithout altering the (presumed) HR shape.
We studied five algorithms for signal restoration. The

rst three operate in the temporal dimension, the
ourth operates in the spatial domain, and the last
perates in the spatiotemporal domain. We tested the
erformance of the five restoration algorithms for all 24
atches from the three experiments, using test signals
t SNR 5 0.2. Prior to signal restoration, all patches
ere baseline corrected using a LP filter (l/n 5 1.5). To

onserve space, figures shown here correspond to test
uns using a prototypical hemodynamic response, aver-
ged across results from all 24 test patches, and include
tandard error bars.

Finite Impulse Response Low-Pass Filter

The LP filter in the temporal domain was already
escribed in the previous section [see Eq. (5)]. For
ignal restoration, we are interested in the low-
requency band, i.e., we use the filter output directly.
xample results from the test bed are shown in Fig. 6.
The shape recovery shows an optimum at l/n 5 0.38,
hich corresponds to a passband including the funda-
ental stimulation frequency and its first harmonic.
or this setting, plots of the z score and the selectivity
re also optimal. Note that this filter setting depends
n the stimulation frequency only.

Temporal Gaussian Filter

Gaussian filtering in the temporal domain (GT) is
chieved by a convolution of the time series with a
ne-dimensional Gaussian function:

s
f(t0) 5 o

r52N

N

gr ys(t0 1 r),

with gr 5
1

Î2ps
exp (2r2/2s2), 2N # r # N.

(11)

he GT filter is characterized by the standard deviation

of the Gaussian function, with filter dimensions of
FIG. 6. Recovery (top), z score (middle), and selectivity (bottom)
f a LP filter for signal restoration. The ratio of the filter length l by
he period length n is given on the x axis. An optimum is seen at a
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538 KRUGGEL, VON CRAMON, AND DESCOMBES
ypically N $ 3s. Example results for comparison with
he LP filter are given in Fig. 7.

We found a rather broad peak at s 5 1.8 in the signal
ecovery, which corresponds to the temporal smooth-
ess of the HR (at a TR 5 2 s here). The maximum z
core was located at s 5 1.4, while the selectivity had a
road maximum starting at s 5 1.6. Thus, a setting of
$ 1.6 emerged as a good compromise here. Note that

his setting is independent of the stimulation fre-
uency; however, it needs to be matched against the
lope of the HR, which depends on the stimulus charac-
eristics, the brain region, and the individual physiologi-
al factors. In the three different experiments studied
ere, an optimal setting range was s 5 1.4–2.0.

Autoregressive Filter

An AR process may be used to model the functional
ctivation in the temporal domain directly. The compu-
ational outline was already given in Eq. (8). A clear
eak was found for an AR(2) model. However, in
omparison with the two previous filters, performance
as low for the recovery and selectivity. Again, a
onlinear behavior was found (see below). We also
ested ARMA models, but did not obtain any advantage
ver AR filters.

Spatial Gaussian Filter

Gaussian filtering in the spatial domain (GS) is a
opular choice for noise filtering, especially in fMRI
reprocessing (Lowe and Sorenson, 1997). GS filtering
s achieved by successive convolutions in both spatial
imensions. The filter is characterized by the param-
ter s, which is converted into the other well-known
haracterization, the full width at half-maximum
FWHM) by multiplying by 2.34. The spatial properties
f this filter are shown in Fig. 9.
In terms of the performance measures, all param-

ters decreased dramatically with increasing s to lower
alues than the unprocessed case, which is explained
y the spatial blurring induced by this filter. Only the
patial smoothness revealed a shallow optimum at s 5
.2 (FWHM 5 2.8 voxels). At this setting, there was
onsiderable blur and loss of sensitivity and selectivity.
he recovery decreased by a third of the unprocessed
ase, and was 10 times lower in comparison with other
ethods (see Table 2). We consider GS filtering not
seful for the restoration of small signals in event-
elated fMRI data.

Signal Restoration by a Markov Random Field Model

We included a filter based on a Markov random field
MRF) to introduce a spatiotemporal model for signal
estoration. With respect to a comprehensive descrip-
ion in this journal (Descombes et al., 1998), we deliber-

tely keep the discussion short here.
FIG. 7. Recovery (top), z score (middle), and selectivity (bottom)
f a Gaussian filter in the temporal domain for signal restoration. The
lter parameter s is given on the x axis. For this experiment, TR 5
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539FILTERING METHODS FOR fMRI
We consider that data X consist of the underlying
ignal Y corrupted by additive noise h. Reformulating
he problem of reconstructing Y given X in a Bayesian
ramework, we have to maximize the a posteriori
robability P(Y 0X ) ~ P(Y )P(X 0 Y ), where P(Y ) refers to
he prior model and P(X 0Y ) to the likelihood of model
nd data.AGibbs field formulation of the prior probabil-
ty is given by

P(Y ) 5
1

Z
exp 32o

c[C
Vc( ys(t)4, (s, t) [ c), (12)

here C is a finite subset of voxels (a clique), Vc is the
otential associated with the clique c, and Z is a
ormalization constant. We consider a 3D spatiotempo-
al MRF model, in which two dimensions correspond to
he spatial dimensions of a fMRI slice and the third
imension refers to the temporal domain. For each
oxel site s at time point t, a clique is defined by its four
losest spatial neighbors, the two next temporal neigh-
ors, and the two temporal neighbors one stimulation
eriod apart. The interaction between two voxel sites
yi, yj) is modeled by the following potential function:

Vc( yi, yj) 5 2b /(1 1 (0 yi 2 yj 0 /d)2). (13)

he b parameter may roughly be understood as the
nteraction strength between two sites. The d param-
ter defines the intensity difference of a transition
etween activated and nonactivated states. We use the
ame parameter values in the spatial and the temporal
omains. A similar interaction is introduced for the
ikelihood term,

P(X 0Y ) 5
1

Z
exp [2Vl( ys(t))], using (14)

Vl( ys(t)) 5 2b /(1 1 ( 0 ys(t) 2 xs(t) 0 /d)2), (15)

hich attaches the restored signal Y to the measured

TABLE 2

Performance of Filters for Signal Restoration

ilter Parameter Recovery Sensitivity z score Selectivity

one None 0.164 0.0471 10.7 6.98
P l/n 5 0.38 0.584 0.0189 18.1 40.0
S s 5 1.2 0.054 0.0929 6.01 3.10
T s 5 1.6 0.491 0.0219 17.8 36.6
R p 5 2 0.151 0.0471 9.65 7.47
RF b 5 1.0, d 5 1600 0.616 0.0151 20.7 18.7

Note. Shown are results for the optimal filter parameters.
ata X. The global energy UX(Y ) for a configuration is e
FIG. 8. Recovery (top), z score (middle), and selectivity (bottom)
f a MRF model for signal restoration. The filter parameter b (at
5 1600) is given on the x axis. Note that recovery and z score values
xceed those of the previous algorithms.
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efined by

UX(Y ) 5 o
s,t

Vl( ys(t)) 1 o
c[C

o
s,t

Vc(c). (16)

o find the configuration which minimizes the global
nergy, we applied a simulated annealing scheme (Ber-
hod et al., 1996). The spatial properties of the MRF
lter are compared with the GS filter in Fig. 9.
Stable performance plots were found for d $ 800,
hich roughly corresponds to 1.5 times the noise level
etermined in these patches. Recovery, sensitivity, and
electivity benefit from increasing values for the inter-
ction strength b (see Fig. 8). The edge-preserving proper-
ies of this filter are documented in spatial blurring
alues, which were a magnitude better compared with

FIG. 9. Comparison of the spatial properties of the GS (top) and M
owever, there is considerable blur and sensitivity loss at this setting
5 1600. The edge-preserving properties of this filter are illustrated b
GS filter (see Fig. 9). From a series of tests, we selected
5 1600 and b 5 1.0. The stochastic nature of the

ptimization algorithms resulted in a certain run depen-
ency, which was negligible for this parameter setting.

Filter Comparison

From the results of the test bed, we determined
ptimal parameters for each filter. We modulated wave-
orms with an input SNR of 0.01–0.20 onto the patches
nd computed the SNR on output (see Fig. 10) using the
est filter parameters. Except for the AR filter, a linear
ehavior was found. The best sensitivity was deter-
ined for the MRF filter and comparable values for the
P, GS, and AR filters. In Table 2, numerical values for

he best filter parameter settings were compiled.

filter (bottom). For the GS filter, an optimum is found with s 5 1.2;
r the MRF filter, the interaction coefficient b is given on the x axis at
w blurring values and a good spatial smoothness. Note that the scale
RF
. Fo
y lo

or the spatial blurring plot is 10 times less than that for the MRF model.
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FIG. 10. Linearity of signal restoration methods. The input SNR
s plotted against the output SNR. All filters use the best parameters
or this problem (see Table 1). In order of decreasing sensitivity,

RF . LP . GT . AR . GS.
Discussion

We summarize the results of the signal restoration
ests as follows:

● All filters except GS and AR offered a dramatic
ncrease in all test measures compared with the native
ase.
● The best figures were obtained with the MRF, LP,

nd GT filters. Shape recovery and sensitivity were
est for the MRF filter, while LP and GT filters
rovided a better linearity and selectivity.
● In the light of the challenges for preprocessing,

est results were obtained with the MRF filter. If the
omputation time is scarce, the use of a matched LP or
T filter is suggested.

A REALISTIC EXAMPLE

For a final demonstration, we include an evaluation
f experiment 1 using baseline correction (LP filter,
/n 5 1.5) and no signal restoration (Fig. 11a) or signal
FIG. 11. Comparative evaluation of the different signal restoration methods: (a) native, (b) LP filter, (c) GS filter, (d) GT filter, (e) AR filter,
nd (f) MRF filter.
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estoration using an LP filter (Fig. 11b, l/n 5 0.38), GS
lter (Fig. 11c, s 5 1.2), GT filter (Fig. 11d, s 5 1.6), AR
lter (Fig. 11e, p 5 2), or MRF filter (Fig. 11f, b 5 1.0,
5 1600). From the preprocessed datasets, we com-
uted a z score by a standard statistical procedure (see
est Patches). Shown are color-coded overlays with a
ositive z score range from 12 to 24. A marked increase
n sensitivity is found with the LP, GT, and MRF filters,
specially for the much better delineated thalamic
ctivation.

GENERAL DISCUSSION

In this paper, we discuss artifact sources corrupting
he BOLD signal in fMRI data and how they can be
econvolved using digital filters. With a focus on data
btained in cognitive experiments using event-related
esigns, special attention has been paid to the recovery
f BOLD signals, which are small in amplitude and
patial extent.
It is not unreasonable to assume that results ob-

ained in this study are transferrable to other imaging
rotocols and to scanners operating at field strengths
ther than 3T: artifact sources remain the same, only
he amount of their contribution may vary. Our test bed
llows a transparent and quantitative comparison
cross filter algorithms and imaging protocols, and we
ake the test bed available to ease such comparisons.
Filtering techniques discussed here are applicable to

MRI data obtained under blocked designs, but are less
ffective. With increasing length of an experimental
lock, the filter passband needs to be widened, and it is
arder to discriminate between baseline and BOLD
ignal fluctuations. Extending the recommendations
or event-related experiments to designs with block
engths up to 60 s was found to be possible. When very
hort intertrial intervals (i.e., 4–8 s) are used, artifacts
ue to breathing become a major problem, and the
ltering methods discussed here do not perform suffi-
iently well. In these cases, correction approaches
sing simultaneously recorded biosignals (Biswal et al.,
996; Birn et al., 1998) are expected to yield better
esults.
With cognitive fMRI experiments, there is an increas-

ng interest in the description of the temporal shape
nd spatial extent of BOLD responses with respect to
odifications of the stimulation conditions. It is still
nder investigation how much may be inferred about
he underlying neuronal activation from shape charac-
eristics of the HR. Throughout this paper, we made the
implifying assumption that the paradigm frequency n
orresponds to the fundamental frequency of the BOLD
ignal. In experiments using a single stimulus per trial,
e did not find any convincing example of a multiphasic
esponse. Moreover, the spectral properties of the BOLD
ignal show that the first harmonic (2n) contributes
nly about 10% to the spectral power, while higher
armonics are indistinguishable from noise. This sug-
ests that the spectral passband should be restricted to
rather narrow range. When multiple responses per

rial are expected, one may prefer to increase the cutoff
requency in the restoration step.

By filtering, we enhance autocorrelations in the data.
s a consequence we have to correct for the effective
egrees of freedom in the statistics (Friston et al.,
995). As discussed by Purdon and Weisskoff (1998), it
s preferable to use an empirical noise model instead of
eriving it from the hemodynamic response function
Friston et al., 1995). fMRI data were found to be AR(1)
orrelated in space and time (Bullmore et al., 1996;
enali et al., 1997; Kruggel et al., 1999). Thus, autocor-
elations may be taken into account via a spatiotempo-
al covariance matrix in the statistics.
With a reliable baseline correction scheme, it is

ossible to compare data from different experimental
locks. Matching filter characteristics to the properties
f the BOLD signal in a preprocessing step increases
he sensitivity and selectivity of BOLD signal detection
nd improves the recovery of the BOLD signal shape,
hich is important to detect small activations found in

ognitive experiments. Good signal restoration tech-
iques are a prerequisite for modeling hemodynamic
esponses with parameterized functions (Bullmore et
l., 1996; Kruggel et al., 1999). These benefits open new
erspectives for the design of fMRI experiments in
ognitive research.
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