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Abstract. Today, most studies of cognitive processes using functional
MRI (fMRI) experiments adopt highly flexible stimulation designs, where
not only the activation amount but also the time course of the measured
hemodynamic response is of interest. The measured signal only indirectly
reflects the underlying neuronal activation, and is understood as being
convolved with a hemodynamic modulation function. An approach to
better allow inferences about the neuronal activation is given by model-
ing this convolution process. In this study, we investigate this approach
and discuss computational models for the hemodynamic response. An
analysis of a recent fMRI experiment underlines the usefulness of this
approach.

1 Introduction

Functional magnetic resonance imaging (fMRI) has become one of the major
experimental methods for analyzing cognitive processes in humans. The most
common fMRI technique employs the blood-oxygen-level-dependent (BOLD)
contrast [1], which is sensitive to changes of the relative local concentration
of oxygenated hemoglobin (HbO2) vs. deoxy-hemoglobin and thus reflects an in-
direct measure of the brain’s neuronal activation. This effect is small, and data
are noisy: thus, analysis of fMRI data has mostly focused on the detection and
statistical quantification of functional activation.

Fig. 1. Signals at various stages of the convolution model of fMRI time series
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Understanding brain function requires information not only on the spatial
localization of neural activity, but also on its temporal evolution. There is an in-
creasing interest in the time course (i.e. the shape) of the hemodynamic response
(HR) and its modulation with respect to different experimental conditions. The
measured fMRI signal y(t) is understood as the result from a series of convo-
lutions of the input stimulus function i(t) ([2], see Fig. 1). So the question was
raised to what extent conclusions may be drawn about the neuronal activation
n(t) from the HR shape g(t). For example, the hemodynamic modulation in-
troduces time constants at least an order longer than the underlying functional
activation; the time-to-maximum of a HR due to a transient stimulus is typically
delayed by 5-8s and dispersed by 3-4s [3]. So the key to detecting changes in the
neuronal activation is the adoption and deconvolution of the HR by a model
function [4].

A number of heuristic functions have been proposed to describe the hemo-
dynamic response: the Poisson function [3], the Gamma function [5,6], a linear
combination of the Gamma function and its temporal derivatives [7], and the
Gaussian function [8]. The evolution of these approaches follows their modeling
complexity; early approaches assumed constant pre-set values for the lag [3],
while current models determined HR parameters voxelwise in the time series
[5,6,8], or even per stimulus period [9]. HR parameters were shown to depend
on the subject, the site and the stimulation conditions [8,9,10], which underlines
the usefulness of this approach. However, some issues were raised.

– With the Poisson or the Gamma functions, interesting shape characteristics
like delay (time-to-maximum), rise and fall times are hard to obtain.

– While the best fits to an HR are generally found with the Gaussian function,
especially responses following short stimuli were asymmetric (shorter rise
than fall times).

– For a better understanding of the underlying neuronal processes, a deconvo-
lution of the hemodynamic modulation to yield parameters of the neuronal
activation directly is highly desirable.

– None of these functions is based on a physiological model. Although models
of the oxygen delivery at membranes have been proposed [11], details of the
neurono-vascular coupling are still under discussion and have not yet led to
a comprehensive physiological model of hemodynamic modulation.

Aims of this study were: (1) to test the feasibility of introducing more complex
model functions for the HR, (2) to separate parameters describing the hemo-
dynamic modulation from parameters of neuronal activation, and (3) to find
physiologically more plausible models for the hemodynamic modulation.

Recently, we described and validated a non-linear regression context [9] to
model the HR per stimulation period (trial) and region-of-interest (ROI), which
is briefly reviewed in the next section, along with a discussion of the three model
functions studied here: (1) the Gaussian function, (2) a convolved asymmetric
Gaussian function, and (3) a convolved compartment model. To compare the
usefulness of these approaches, we re-analyzed a fMRI study of working memory.
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2 Description of the Estimation Model

A theoretical discussion and validation of our estimation model is described else-
where [9]. For an excellent discussion about non-linear regression procedures, see
[12]. Throughout this paper, we assume that the locus of a functional activation
is known. This knowledge may arise from a previous determination by well-
established signal detection procedures or defined as regions of neurofunctional
interest. These regions are considered as stationary in space. Note that we focus
on single trial experimental designs here: a single cognitive task is given, and the
hemodynamic response to this stimulus recorded.

2.1 Model Definition

We consider a subset of the fMRI data collected spatially from a ROI of k
voxels and temporally from a single experimental trial at l discrete timesteps
and denote this n = k ∗ l-dimensional vector as y. Timesteps are referenced by a
l-dimensional vector t. We model the hemodynamic response as a deterministic
function g(t,β), where β denotes a p-dimensional vector of model parameters,
and we require that g(t,β) is differentiable at least once with respect to β. Data
y are composed of g(·) and a stochastic part ε:

y = g(t,β) + ε. (1)

The stochastic part is independent of the signal and stationary with respect to
time, and its elements are normally distributed with a nonsingular covariance
matrix V:

ε ∼ Nn(0,V), then y ∼ Nn(g(β),V). (2)

This allows us to use preprocessed data where the processing has introduced (or
enhanced) a correlation structure. A way to determine the covariance structure
from experimental data is described later in this section.

We will now propose the model functions g(·) investigated in this paper. The
first two are heuristic but offer a parsimonous number of parameters. The third
function is complex but tries to incorporate the properties of tissue compart-
ments involved in the BOLD effect.

Model 1: Gaussian Function The best compromise between goodness-of-fit
and the number of model parameters is found with the Gaussian function [8]:

g(t, β) = a exp(−(t − t0)2/(2d2
0)) + b. (3)

We denote the 4 components of β as a: gain (the “height” of the HR), d0: disper-
sion (proportional to the duration of the HR), t0: lag (the time from stimulation
onset to the HR peak), and b: baseline. Here, no distinction can be made between
“neuronal” and “vascular” parameters.
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Model 2: Convolved Asymmetric Gaussian Function A first approach to
closer model the processes depicted in Fig. 1 is to define the HR function g(t)
by a convolution of a neuronal stimulation function n(t) with a hemodynamic
modulation function f(t):

g(t, β) = n(t) ⊗ f(t) + b, (4)

where ⊗ denotes the convolution operator and b is a baseline term. We simply
assume a square-wave function for the neuronal stimulation n(t):

n(t) =
{

a if t >= t0 and t < t0 + t1,
0 otherwise. (5)

A Gaussian function is introduced for hemodynamic modulation function f(·),
here with different dispersions (d0, d1) for the rising and the falling edge:

f(t) =
{

exp(−t2/(2d2
0)) if t < 0,

exp(−t2/(2d2
1)) if t >= 0. (6)

In this model, β consists of 6 parameters (d0: dispersion on the rising edge, d1:
dispersion on the falling edge, a: gain, t0: neuronal response onset, t1: neuronal
response duration, b: offset). Modeling of the convolution process allows us to
address the meaning of a, t0, and t1 as “neuronal” parameters, resp. d0, d1 as
vascular parameters.

Model 3: Convolved Compartment Model In model 3, the formulation of
a stepwise defined Gaussian function for the hemodynamic modulation function
f(·) is still heuristic. It is physiologically more plausible to model the hemody-
namic modulation process by a compartment model. We define the HR model
function g(t) as in 4 and the neuronal stimulation n(t) as in 5 and now focus on
a new definition of f(t).

For the BOLD contrast, as discussed in the introduction, it is viable to think
of the oxygenated blood as an “endogenous tracer” of brain activation. The ki-
netic of external tracers such as radioactive markers or pharmaceuticals have
successfully been modeled by compartment models since 1920 [13]. This mod-
eling context is rich and well understood (for introductions, see [12,14]). Com-
partments correspond to a body subspaces (i.e. tissue, vasculature), in which
the local concentration of a tracer (i.e. oxygenated blood) is modified by trans-
port between compartments (i.e. by diffusion, flow) or active processes (i.e. by
consumption). If we assume a linear imaging process, then the HR measured
in fMRI is proportional to the HbO2 concentration, and a compartment model
should allow us to draw conclusions about the temporal oxygen flow pattern.
Such a model is depicted in Fig. 2.

HbO2 flows from the arterial into the capillary compartment at a rate γ0,
as mediated by a consumption process in the tissue compartment. The oxygen
exchange between capillaries and tissue is described by rates γ1 and γ2. Finally,
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Fig. 2. Movement of oxygen in two vascular and a tissue compartments

rate γ3 denotes the HbO2 drainage into the venous compartment. Assuming
constant rates, the kinetic equations for the compartment model in Fig. 2 are:

ḟ1 = −γ0f1,

ḟ2 = γ0f1 + γ2f3 − (γ1 + γ3)f2, (7)
ḟ3 = γ0f2 − γ2f3.

The solution to this linear system of differential equations can be written in a
sum-of-exponentials model for the ith compartment (see [12], p. 379ff):

fi = ki1 exp(−γ0t) + ki2 exp(λ0t) + ki3 exp(λ1t), (8)

where the parameters λ0,1 and kij are:

λ0 = −1
2

(
γ1 + γ2 + γ3 +

√
(γ1 + γ2 + γ3)2 − 4γ2γ3

)
,

λ1 = −1
2

(
γ1 + γ2 + γ3 −

√
(γ1 + γ2 + γ3)2 − 4γ2γ3

)
,

k1j = [1, 0, 0] , (9)

k2j =
[

γ0(γ2 − γ0)
(γ0 + λ0)(γ0 + λ1)

,
γ0(γ2 + λ0)

(γ0 + λ0)(λ0 − λ1)
,

γ0(γ2 + λ1)
(γ0 + λ1)(λ1 − λ0)

]
,

k3j =
[

γ0γ1(γ2 − γ0)
(γ0 + λ0)(γ0 + λ1)

,
γ0γ1(γ2 + λ0)

(γ0 + λ0)(λ0 − λ1)
,

γ0γ1(γ2 + λ1)
(γ0 + λ1)(λ1 − λ0)

]
.

The parameter vector β for this model consists of 8 items (γi: 4 transfer rates,
a: gain, t0: neuronal response onset, t1: neuronal response duration, b: offset).
We attribute a, t0, and t1 as “neuronal” parameters, resp. the transfer rates as
vascular parameters.

2.2 Stochastic Background Model

It was shown [15,16] that the stochastic part in preprocessed fMRI data may
approximately be described by an Ornstein-Uhlenbeck process [17]: (1) it is
stationary with respect to time, (2) its elements εi are normally distributed with
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a covariance matrix V (see 1) and (3) their correlation is described by an AR(1)
model. We assume that the spatio-temporal covariance matrix V is separable in
space and time:

V = S � T, (10)

where � denotes the Kronecker product. The elements of the (spatial) covariance
matrix S are given by the variance sii = σ2 and the covariance sij = cov(h) which
depend on the distance h of the voxels i and j. Most easily, a semivariogram η(h)
[18] is used to determine the type of stationary dependence in the data:

η(h) = σ2 − cov(h) ≈ 1
2 ∗ nh

∑
(i,j)∈N(h)

(yi − yj)2, (11)

where N(h) is the set of voxel pairs at distance h, and nh is the number of
pairs in the set. For an AR(1) process with positive correlations, an exponential
function fits to the semivariogram:

η(h) = α0(1 − exp(−α1h)), (12)

where h is the distance between voxel sites. From the model parameters, we
can derive the variance σ2 = α0 and the autocorrelation ρ = exp(−α1). The
covariance matrix S of a linear array of k voxels is defined as:

S = σ2




1 ρ ρ2 · · · ρk−1

ρ 1 ρ · · · ρk−2

ρ2 ρ 1 · · · ρk−3

· · ·
ρk−1 · · · 1


 , (13)

Similarly, a matrix T is formed for the temporal domain and composed as given
in 10.

2.3 Estimation

We find the ML estimate β̂ of our model parameters as the vector β that mini-
mizes the quantity:

arg min
β

{
(y − g(t,β))T V−1(y − g(t,β))

}
. (14)

In the case of the Gaussian function in model 1, this problem corresponds to a
4-dimensional nonlinear minimization problem, which can easily be solved by the
downhill simplex method of Nelder and Mead [19]. This method is not feasible
with the more complex models 2 and 3, where the cost function (14) is expected
to possess multiple local minima. Because derivatives of the model functions are
only available as finite difference approximations, derivative-free optimization
methods are preferable. We investigated the use of (1) a combination of simu-
lated annealing with the downhill simplex method [19], (2) Shor’s minimization
method [20], and (3) an optimization using a genetic algorithm [21].
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2.4 Confidence Limits and Statistical Tests

Using a first-order linear model, we can derive confidence limits for the estimation
from the inverse of the Fisher information matrix F [22]:

β̂ ∼ N(β,F−1
β

), where Fβ = GβV−1GT
β , (15)

and Gβ denotes the Jacobian matrix of g(·) with respect to β.
A simple measure for the goodness-of-fit (GOF) is given by the χ2-statistics:

χ2 = εT V−1ε, where ε = y − g(t,β) (16)

A more complex measure is derived for the F-statistics, following Hartley
[23]:

P = GβF−1
β

GT
β (17)

Fp,n−p ∼ (n − p)
p

εT Pε

εT (In − P)ε
, (18)

where n corresponds to the number of data points, p to the number of parame-
ters, and In is the n ∗ n identity matrix.

3 Experiments

To study the usefulness of this modeling approach, we re-evaluated datasets
acquired in a fMRI study of working memory [24].

Behavioral Experiment : Subjects learned three sets of letters (4, 6 or 8 char-
acters) at least two days before the scanning session. A trial started with the
display of a small red box (for 800ms), followed by the cue and, after a delay (0,
2 or 4 seconds), the probe. Subjects had to indicate by a button press whether
the probe item belonged to the cued set. 108 randomized trials were run using
an intertrial interval of 18s.

fMRI Parameters: During the behavioral experiment, 7 axial slices (64x64
voxels, 3.8x3.8x5mm voxel size, 2mm gap) were recorded on a Bruker Medspec
300 system using an EPI protocol with a repetition time of 1s. All timings were
corrected for the slice acquisition delay in the EPI protocol.

Preprocessing : We randomly selected data obtained from 4 subjects. Data
were preprocessed by (1) correction for in-plane movements and (2) corrected
for baseline fluctuations, (3) lowpass filtered in the temporal domain to reduce
the amount of system and physiological noise (see [25] for details). As a result
of this preprocessing, only the fundamental frequency (corresponding to the
stimulation) and its first harmonic were retained in the temporal domain of the
data.

Definition of ROIs: Standard procedures were applied to detect functional ac-
tivation in the datasets: (1) analysis for activated regions by Pearson correlation
with a time-shifted box-car waveform (∆ = 6s), (2) conversion of the correlation
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coefficient into z-scores and thresholding of the corresponding z-map by a score
of 10, (3) assessment of the activated regions for their significance on the basis
of their spatial extent [26]. Now that we detected voxels with functional activa-
tion, we defined ROIs by collecting the 6 most highly activated voxels around
local maxima in the z-map. We obtained a total of 94 ROIs from 4 subjects. An
illustrative map of ROIs is shown in Fig. 3.

Fig. 3. An illustrative z-map overlay onto the corresponding anatomical from the work-
ing memory experiment. Neurofunctionally interesting ROIs are labeled: AIL: superior
anterior insula, MPCL: middle prefrontal cortex, IPGL: inferior precentral gyrus,
CMA: cingulate motor area, MCL: motor cortex, PPCL: posterior parietal cortex,
SCL: sensory cortex

Averaging : To reduce the number of estimations, we averaged voxels within
a ROI at a given timestep and across trials with the same delay time manip-
ulation (0, 2, and 4 s). So per ROI, we obtained three different timecourses of
18 timepoints each. As a consequence of averaging in space, we simplified our
estimation model by setting S = Ik, where k = 6.

Tests We adapted the 3 HR models defined in the preceeding section to
the 3 averaged timecourses in the 94 ROIs. To achieve realistic solutions, we
constrained the solution space by the following intervals:

– model 1: gain: 0 <= a < 5000, dispersion: 0 <= d0 < 10, lag: 0 <= t0 < 10,
and baseline: −500 < b <= 0,

– model 2: onset and duration: 0 <= ti < 10, dispersions, gain and offset as
above.

– model 3: diffusion constants: 0 <= γi < 10, onset, duration gain and baseline
as above.

For model 1, the downhill simplex algorithm was applied, with computation
times of less than a second per estimation. For models 2 and 3, we achieved the
best GOFs using the genetic algorithm. Parameters of the genetic optimization
process were: 1000 generations, 500 population members, p(exchange) = 0.2,
p(mutation) = 0.01, p(crossover) = 0.2.
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4 Results

To give an impression of typical waveforms and modeling results, we selected
a signal from the left motor cortex MCL (see Fig. 3) in one of the subjects.
Averaged HRs of different experimental delay times are shown in Fig. 4.
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Fig. 4. HRs from region MCL for the 3 different delay times

For longer delays, the HR in this region was higher, the time-to-maximum and
duration were longer. This was reflected in the parameters of the 3 HR models
(see Table 1). For all models, the increasing height of the HR with delay time was
found as an increase of the gain a. For model 1, the shift of the time-to-maximum
led to an increase of t0, the increasing width to an increase in the dispersion
d0. For model 2, the parameters attributed to the hemodynamic modulation
(d0 and d1) were relatively independent of the delay time manipulation. Shift
and delay were reflected in increasing values of t0 and t1. Finally, with the
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convolved compartment model, only an increase of t1 with the delay was found,
rate constants were similar.

Table 1. HR parameters for the signals in Fig. 4 for the 3 different experimental delays

Model 1: Gaussian Function
Delay [s] a t0 [s] d0 [s] χ2

0 324 3.95 2.78 2381
2 429 4.34 3.21 1270
4 496 5.05 3.34 1994

Model 2: Convolved Asymmetric Gaussian Function
Delay [s] a t0 [s] t1 [s] d0 [s] d1 [s] χ2

0 2324 2.58 3.31 2.00 3.30 724
2 3420 3.45 3.55 2.94 3.07 1193
4 4062 3.36 5.05 2.78 3.04 1625

Model 3: Convolved Compartment Model
Delay [s] a t0 [s] t1 [s] γ0 γ1 γ2 γ3 χ2

0 1847 0.06 5.63 0.66 6.11 4.60 1.27 770
2 2439 0.03 6.47 0.39 6.50 6.10 1.54 1934
4 3056 0.06 7.24 0.60 6.17 6.56 1.52 2161

By inspection of the waveforms, we typically found that ROIs in all subjects
showed an increase of the time-to-maximum and the gain with increasing delay
time, similar to the example HR in Fig. 4. A closer examination of the estimated
modeling parameters by a cluster analysis revealed differences, which allowed us
to group ROIs into 4 categories (see Table 2):

– Group 1 : early rise, little dependence on the delay time manipulation. ROIs
of this category were found in cortical areas, which are relevant for encoding
the stimulus. Examples include the posterior parietal cortex PPCL.

– Group 2 : early rise, delay dependence: ROIs of this category are relevant for
maintaining the stimulus. Examples include the anterior insula AIL.

– Group 3 : late rise, delay dependence: ROIs take part in the decision process
following the delay and for generating the motor response. An ROI in the
primary motor cortex (MCL) belongs to this group.

– Group 4 : late rise, little delay dependence. An example for this group is given
with the sensory cortex (SCL): subjects left their finger on the response
button independent on the delay time.

In accordance with the observation of general delay dependence, most ROIs
either belong to group 2 or group 3. It is interesting to note that most early
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Table 2. Onset (t0), duration (t1) and end time (te = t0+t1) of the neuronal activation
as estimated by model 2. Examples for 4 groups defined by their different temporal
behaviour are shown. ROI labels correspond to Fig. 3, all values are given in [s]

Group 1: PPCL Group 2: AIL Group 3: MCL Group 4: SCL

Delay t0 t1 te t0 t1 te t0 t1 te t0 t1 te

0 2.90 1.74 4.64 3.27 0.71 3.98 4.02 1.46 5.48 4.04 4.26 8.30
2 2.78 2.54 5.32 2.86 1.85 4.91 3.71 4.68 8.39 4.80 4.34 9.14
4 3.90 1.64 5.54 2.92 3.61 6.53 4.92 4.89 9.81 4.98 4.93 9.91

activated areas in group 2 exhibited their delay time dependence in the duration
time t1, while late responses in group 3 showed a delay time dependence in the
end time te. This finding may be interpreted as a pre-activation of group 3 areas
during the delay phase: i.e. the motor cortex is “held active” until the response
decision following the delay period.

Experiences with the 3 models were summarized as:

– Model 1: For the Gaussian model, 3 parameters describe the shape of the
response: the lag t0, the dispersion d0, and the gain a. It was shown [9] that
these parameters are interpretable in terms of the experimental stimulation.
However, there is no distinction between parameters describing the hemody-
namic modulation and neuronal activation in this model. Thus, no decision
is possible whether a wide HR is due to a longer activation (i.e. a neuronal
effect) or a longer dispersion (i.e. a hemodynamic effect). However, good
convergence properties allowed us to use a rather simple and very efficient
optimization scheme.

– Model 2: Fits are better in comparison with model 1, often down to χ2 ≈ 50,
which was a consequence of modeling the HR asymmetry by two different
dispersion parameters. As it was suspected previously [9], HRs which arise
early and follow short stimuli were found asymmetric with a shorter ris-
ing edge d0 (typically 2-3s) than falling edge d1 (typically 3-4s). Late and
wide HRs tend to be symmetric with dispersions in the order of 3-4s. The
attributed neuronal activation parameters, onset t0, and duration t1, are
interpretable in the context of the fMRI experiment. A genetic algorithm
was necessary to optimize this model, so there is a marked increase in the
computation time (12min per estimation) in comparison with the previous
model.

– Model 3: We adapted HRs both to model equations for the capillary com-
partment 2 and the tissue compartment 3. Fits for both compartments are
comparable with model 1, with slightly better values for compartment 2.
This is in agreement with the mechanism of the BOLD effect; the fMRI sig-
nal arises from the vascular compartment. Rates γ0 (inflow) and γ3 (outflow)
(see Fig. 2) were found between 0.3-0.7, rates γ1 (vessel to tissue) and γ2
(tissue to vessel) in the order of 6-9. This is interpretable as an easy transfer
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(of oxygen) between the vascular and tissue compartment, while the slug-
gish (active) effect of vascular dilatation and constriction was modeled by
low inflow and outflow rates. Onset times t0 were always below 1s, and the
duration in the order of 4-7s. With the current formulation and optimization
approach, this model needs the rather high amount of computation time of
32min per waveform.

5 Discussion

The description of the HR by a model function is considered as an advantage
because it provides a compact and concise parameterization of the HR shape.
Current choices for model function are arbitrary, since none is based on a com-
prehensive physiological model. Our preference for the Gaussian function in pre-
vious studies was only justified by the fact that we observed the best fits in a
non-linear estimation procedure.

In this study we tested the feasibility of separating “neuronal” from “vascu-
lar” parameters by introducing complex HR model functions. Separating hemo-
dynamic from neuronal factors is highly desirable in cognitive research, not only
to better characterize the neuronal mechanisms of a cognitive task, but also to
better understand the reasons for interindividual differences in terms of “good”
and “bad” responders in fMRI experiments.

From experiences with model 2 we confirmed that asymmetries are present in
HRs. By including parameters to adapt to asymmetries, marked improvements
in the fits were achieved, especially with brief stimuli and early responses. The
introduction of the convolution operation in the modeling context allowed us to
separate parameters. However, no experimental justification yet exists for the
designation as neuronal or vascular properties other than the conformance of
results with the current understanding of cognitive processes involved in the
example fMRI study. However, it is rather easy to design fMRI experiments
better targeted towards a justification of this hypothesis.

The non-linear regression model from (1) and (14) allows the use of complex,
highly non-linear functions in our problem domain. We had to resort to a costly
optimization method (the genetic algorithm) and to averaged waveforms instead
of using single trial data directly. From this feasibility study we learned that it is
possible to derive rather narrow limits for hemodynamic modulation parameters.

An interesting reformulation of the compartment model follows from the
observation that oxygen delivery to the tissue compartment obeys a Hill-type
equation [11,27], i.e. transfer rates γi from the vascular to the tissue compartment
are non-linear functions of the oxygen tension. At least in healthy subjects, this
functional dependency is well described and thus may be introduced in a more
complex formulation of the compartment model in 7. Since usually only a few
timesteps per trial are recorded, there is an upper bound for the parameter
number for any model function.

We regard HR modeling as a new tool in fMRI data analysis which will
lead to a deeper understanding of the mechanisms underlying the physiological
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and neuronal basis of brain functioning. Models as proposed in this paper open
another approach for investigating the dynamical properties of the brain.
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