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Abstract
Neuroanatomical and neurofunctional studies are often referenced to high-resolution magnetic-
resonance brain datasets. For the analysis of the cortical surface, mapping of functional
information on to the cortex or visualization, it is necessary to remove the outer surfaces of
the brain. For intersubject comparison, it is useful to align the dataset with a coordinate system
and introduce a spatial normalization. We describe an image processing chain that combines
all of these steps in an interaction-free procedure. We report on a period of 2 years of routine
application of this procedure, with>250 successfully processed datasets from healthy subjects
and patients with various forms of brain damage.
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1. INTRODUCTION

The structural variability of the individual human brain has
led to different attempts to define a common reference
system. While the most common approach was developed
by Talairach 40 years ago (Talairach and Tournoux, 1988),
the high spatial resolution of recent neuroimaging techniques
calls for more precise methods of comparing individual
brains. Most notably this has fostered the ‘Human Brain
Project’, a joint project to develop a computerized multimodal
brain atlas (Mazziottaet al., 1995). Common to these
approaches is the registration within a coordinate system
and a method for the spatial normalization of the individual
brain dataset. The ‘stereotactical coordinate system’ has
found the most widespread acceptance. It uses the anterior
(AC) and posterior commissure (PC) as reference structures.
Their midpoint defines the origin of a right-handed coordinate
system. There is little agreement, however, as to what method
of spatial normalization will best serve the demands of the
problem. First-order normalization as suggested by Talairach
(the so-called Talairach space) has found widespread use
(Collins et al., 1994; Fristonet al., 1995). However, due
to their limited accuracy, they might be replaced in the near
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future by second-order methods such as elastic or viscous
transformations (Thompson and Toga, 1996) or symbolic
atlases (Kruggel, 1995).

Besides neurosurgery, the introduction of a reference
system helps to assign functional activity (as revealed by
fMRI, EEG, MEG and PET) to anatomical locations. For the
visualization of cortical functional activation registered with
a high-resolution anatomical dataset, it is first necessary to
segment the individual brain from its outer layers (i.e. skin,
facial muscles, skull, meninges). This operation is often
referred to as ‘brain shelling’ or ‘brain peeling’. To ease
intersubject comparisons, it is useful to align brain scans with
a common reference system.

In this article, we describe how a sequence of image
processing steps and a few neuroanatomical heuristics work
together to allow the identification of AC and PC automat-
ically. This procedure can easily be combined with the
removal of the non-brain parts in the dataset, which otherwise
requires tedious manual work. As an example of spatial
normalization, we will also introduce a mapping into the
Talairach space.

We would like to review relevant definitions and anatom-
ical details in the next section. Section 3 explains details
of the algorithms used in the procedure. Our method was
tested with>250 high-resolution magnetic-resonance (MR)
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Figure 1. Enlarged slice of an MR dataset in the axial (left)
and sagittal (right) direction. Axes of the stereotactical coordinate
system are drawn. The numbers correspond to: (1) anterior
commissure; (2) posterior commissure; (3) adhaesio interthalamica
and (4) splenium of the corpus callosum.

brain datasets acquired with different scanners using different
imaging sequences. In Section 4, we report our results.
The concluding discussion weights advantages, problems and
possible pitfalls of this procedure.

2. DEFINITION OF THE STEREOTACTICAL
COORDINATE SYSTEM

In 1957, Talairach and Tournoux (1988) introduced a refer-
ence system for the human brain. Its primary concern was to
aid neuroradiologists and neurosurgeons in locating specific
structures in the core brain, the basal ganglia, from landmarks
accessible by the then available imaging techniques (X-
ray and pneumencephalography). They selected the AC
and PC as reference structures to define the orientation of
the coordinate system. These commissures are small fibre
bundles that connect both hemispheres and thus cross the
mid-sagittal plane of the brain (see Figure 1). Both delimit
the third ventricle on its anterior and posterior margin. A
recipe for the manual procedure of defining the stereotactical
coordinate system is given by

• locate AC and PC in the mid-sagittal plane of the brain,
• draw a line touching the superior edge of the AC and the

inferior edge of the PC (Figure 1),
• define the positivex-direction along the AC–PC line in

the sagittal direction (front-to-back), and
• define the positivez-direction to lie perpendicular tox

in the mid-sagittal plane (axial direction, top-to-bottom),
thus
• the positive y-direction is perpendicular to the mid-

sagittal plane (coronal direction, left-to-right).

A spatial normalization is introduced by the definition of a
proportional grid in a bounding box around the cerebrum.
This box is given by

• the highest point of the parietal cortex,
• the most posterior point of the occipital cortex,
• the lowest point of the temporal cortex,
• the most anterior point of the frontal cortex, and
• the most lateral point of the parieto-temporal cortex.

Note that the cerebellum is only partially included in the box.
This box is divided:

• in the x-direction into nine parts, of which four are
equally spaced before AC, one is defined by the distance
AC–PC and the remaining four lie behind PC,
• in the y-direction into eight equally spaced parts,
• in the z-direction into 12 parts, of which eight are

equally spaced above AC–PC and the remaining four lie
below AC–PC.

Note that this definition yields a piecewise linear mapping
in each half-space. A location in the brain is referenced
with respect to a ‘box’ in this grid. A brain dataset may
be mapped by a piecewise linear transformation into the
Talairach space. This method of spatial normalization gained
widespread acceptance in neurosurgery and neuroradiology.
Talairach did not define a metric and a directional order in this
space. Thus, Foxet al. (1985) suggested shifting the origin
of the coordinate system to AC, and defined a right-handed
coordinate system as follows:

• thex-direction runs from the leftmost point of the brain
(−64 mm) to rightmost point (+64 mm),
• they-direction extends from the back (−104 mm) to the

front (+68 mm),
• thez-direction defines the topmost point as+72 mm.

This definition corresponds to a linear mapping. The brain
mapping community accepted this definition for the posi-
tional description of focal brain activity centres as revealed
by PET, fMRI, EEG and MEG. Thus, we will denote this
definition as the Talairach–Fox space (Foxet al., 1995;
Fristonet al., 1995).

More recent approaches to spatial normalization followed
this definition, but replaced the method for spatial nor-
malization by higher-order procedures (Christensenet al.,
1996; Thompson and Toga, 1996). Although AC and PC
are visually detectable in high-resolution MR images, the
alignment with this coordinate system is still a manual
procedure to be performed by an expert. We would like
to show that this procedure may be automatized and easily
integrated within a brain peeling procedure.
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Figure 2. Schematic overview of the data flow in the peeling
procedure. For example results of the intermediate steps, see
Figure 3.

3. DETAILS OF THE PROCEDURE

For studying the individual brain anatomy as well as com-
parisons between brain structures of different subjects, it is
advantageous to have a high-resolution MR dataset, in which
the non-brain parts are removed and which is aligned to a
standard coordinate system. Such a dataset is stored in a
‘brain database’ and is available for further anatomical or
functional studies. For the adoption, we need to (i) find
and apply a binary mask to extract the brain, (ii) determine
and apply an affine transform to align the brain with the
coordinate system and (iii) apply any method of spatial
normalization. We cover only the analysis of single-echo
T1-weighted images, which commonly serve as a base for
neuroanatomical analysis and can be achieved within 5–
15 min.

Most of the steps in this processing chain involve standard
algorithms, so we simply refer to the literature for the

Figure 3. Schematic overview of intermediate results of the peeling
procedure.

algorithmic background. Only key processing steps and
anatomical heuristics are discussed in more detail.

3.1. Brain peeling
The first part of the processing chain removes the outer layers
of the brain in the MR scan of a head. We will refer to
this procedure as ‘brain peeling’. The sequence of articles
published so far underline the importance of this procedure
(Clineet al., 1990; Brummeret al., 1993; Joliot and Mazoyer,
1993; Ardekaniet al., 1994; Arataet al., 1995; Kapuret al.,
1995; Kruggel and Lohmann, 1997; Atkins and Mackiewich,
1998). The key point in any peeling procedure is the approach
of separating the brain from its layers. A starting point for
our work is given by Brummeret al. (1993) who proposes
the use of a distance transform. However, all algorithms in
our processing chain operate fully in three dimensions. For a
data flow scheme of the sequence see Figure 2, intermediate
results are shown in Figure 3.

The dataset is preprocessed with an edge-preserving noise
filter (Lee, 1983; Figure 3a). A fast unsupervised clustering
algorithm (Isodata, see e.g. Lohmann, 1998) segments the
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Figure 4. Forward maskm used to compute a distance transform.
Distances ared1 = 0.9016, d2 = 1.289 andd3 = 1.615. The
backward mask is symmetric about the centre of this mask.

image into two classes (Figure 3b). Voxels belonging to
the tissue class are collected and the set of border voxels is
formed (Figure 3c). A distance transform (Figure 3d) of this
border image is computed (Beckers and Smeulders, 1992;
Borgefors, 1996) and thresholded to include only voxels
which are spaced at least a distanced1 from the border
(Figure 3e). We perform a binary ‘and’ operation of this mask
with the set of tissue voxels (Figure 3f) and select the largest
connected component (Figure 3g). This object is enlarged by
a distanced2 using a morphological closing operator to form
our brain mask (Figure 3h). This mask is used to extract brain
voxels from our (unfiltered) input dataset (Figure 3i).

Instead of using a simple Euclidean distance transform
(DT) we used a salient variant, which is gradient-weighted.
Rosin and West (1995) describe various approaches for
computing a salient DT, one of which is based on the
modification of a standard DT algorithm [for a more detailed
description, see Borgefors (1996)]:

1. The three-dimensional (3-D) voxel dataset containing
the tissue voxels is input. Distancesd at tissue voxels
are set to 0, at non-tissue voxels to an arbitrary large
value. In addition a gradient magnitude imageg of the
noise-filtered input dataset is computed.

2. At each pixel at location(x, y, z) in the image, a local
distance maskm (see Figure 4) is centred. Each non-
zero mask valuema,b,c in the local 26-neighbourhood
is added to the value of the corresponding voxeld
in the distance map, weighted by the local gradient
magnitudeg:

sa,b,c =
di

x+a,y+b,z+c +ma,b,c

gi
x+a,y+b,z+c

. (1)

3. The set of indices(a, b, c) at the most salient measures
(i.e. the minimum value) is selected.

4. Using these indices, the distancedx,y,z at the central
voxel is updated:

di+1
x,y,z = di

x+a,y+b,z+c +ma,b,c. (2)

Figure 5. Mask used to separate the brain from its outer layers,
computed using a standard DT (top row) and the salient variant
(bottom row). The salient variant allows reduction the peeling
distanced1 and achieves a better segmentation of the cortex.

5. Repeat steps 2–4 for all voxels in a forward and a
backward pass.

This weighting by the edge magnitude results in a faster rise
of distance values along sharp edges, respectively a slower
rise in regions of low gradients. For an example of the results
of a standard DT versus the salient variant, see Figure 5.

This processing chain necessitates only two parameters,d1
andd2. The first distance specifies the separation between the
brain and the outer layers. Typical values range between 1.0–
3.0 mm with a standard setting of 1.6 mm. The distanced2 is
used to enlarge the first mask and is usually left at 4.0 mm.

3.2. Introduction of the coordinate system
To detect the AC/PC bundles and to register the dataset with
the coordinate system, we need to perform the following
steps: (i) determine the mid-sagittal plane; (ii) detect the
commissures; (iii) find the crossing between the plane and
both commissures; (iv) compute the centre and the axes; and
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(v) compute an affine transform for the peeled image and
apply it.

3.2.1. Finding the mid-sagittal plane
The mid-sagittal plane is defined as a plane separating both
brain hemispheres. It is often mistakenly identified as the
interhemispheric cleft or the brain symmetry plane. In most
individuals, the left hemisphere is slightly larger (especially
the occipital lobe), so the interhemispheric cleft is bent to
the right-hand side. For this reason, the assumption of a
symmetry plane is just a first-order approximation. For the
detection of AC and PC, we are interested in a small area of
this plane in the core brain and may thus introduce only a
small error by assuming planarity.

A planeS inR3 is given by a plane normaln and a distance
d from the origin to that plane. We define a scalar domainÄ

in R3, which is discretized as a 3-D finite-element gridv.
The scalar quantityI (vi ) at a voxelvi is 1 on tissue and 0
on background voxels. One could think of two options for
approximating the mid-sagittal plane:

• detect the interhemispheric cleft by minimization of
tissue voxels in a plane:

S= arg min

{ ∑
vi∈S(d,n)

I (vi )|(d, n) ∈ R×R3

}
(3)

• determine a symmetry plane between tissue voxels in
both hemispheres:

S= arg min

{ ∑
I (vi )=1

|d + n ··· vi | |(d, n) ∈ R×R3

}
.

(4)

With both approaches we found that the desired plane does
not lie in the global minimum of the parameter space [for a
comparable discussion, see Ardekaniet al. (1997)]. The first
approach will find a plane outside the brain (no tissue voxels),
the second may converge to any plane for which tissue voxels
on both sides are balanced. So we had to restrict the search
space by introducing constraints. An initial estimate for the
mid-sagittal planeS is determined most easily by segmenting
the centre of both eyes (e1, e2) and defining a symmetry plane
Ŝ= (d̂, n̂) between them using

n̂ = e1− e2

|e1− e2| and d̂ = n̂ ··· e1+ e2

2
. (5)

For the detection of the vitreous body of the eyes, we started
from the tissue voxels acquired in the brain peeling step
(see Figure 3b). A morphological opening separated small
bridges between the eyes and the skin. We labelled connected

components and computed their shape descriptions (centre,
size and moments). From these shape descriptions, we
selected spherical components of 4000–7000 voxels. If more
than two components were found, we selected the two most
similar which were 50–75 mm apart.

We implemented different optimization schemes for both
weighting functions Equations (3) and (4), among them
Newton’s method, the conjugate gradient method, Powell’s
method, and genetic optimization. This Newtonian scheme
was found to be most stable:

optimizePlane(image v, float d, normal n)
{
shift = shift_max; angle1 = angle2 = angle_max;
while (shift > shift_min && angle1 > angle_min && ..) {

// shift plane in the direction of the normal
// by +shift and evaluate the cost function Eqn. (4)
w1 = computeSymmetry(v, d+shift, n);
// shift plane in the direction of the normal
// by -shift and evaluate the cost function Eqn. (4)
w2 = computeSymmetry(v, d-shift, n);
// compute the shift where w would be 0
shift = 2 * w1 * shift / (w2-w1);
// apply that shift and narrow interval
d = d + shift;
shift = shift / 2;
// a similar procedure is applied for angle1
// and angle2 to optimize the plane normal
...
}

return d, n;
}

Starting from the initial guessesS(d̂, n̂), we apply mod-
ifications to the plane parameters by shifting it closer or
further away from the origin (variableshift) and by tilting
it in both axes of the plane (angle1, angle2). The cost
functioncomputeSymmetry() returns a measure according to
Equation (4), which is minimized while allowing modifica-
tions in successively smaller intervals. We found starting
values for anglemax of 10◦ and shift max of 10 mm to
be sufficient. In non-pathological datasets, we found the
angle between the initial plane normaln̂ and its optimized
value to be<2.5◦, and the difference of the distancêd to
be <5 mm. This algorithm converges within five to ten
iterations and needs∼30 s computation time on a standard
workstation.

3.2.2. Detection of AC and PC
The next and crucial step in the adoption of the stereotactical
coordinate system is the detection of the two reference struc-
tures. Commissures are fibre bundles which connect both
hemispheres and thus may be regarded as ‘shape bottlenecks’
between them. If we span a constant gradient field between
both hemispheres, these bottlenecks are detectable in the
steady state as regions of high flow (Manginet al., 1996).
Thus, AC and PC are detectable as local flow peaks in the
mid-sagittal plane.
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Given a domainÄ inR3, we can formulate for any regular
potentialu(x, y, z) the well-known law of conservative flow:

δu

δt
= −∇u onÄ. (6)

We set a Dirichlet condition on the boundary0 = δÄ as
u = g on Ä. Equation (6) is discretized by introducing a
finite-element gridv inÄ, which corresponds to the binarized
peeled brain. The boundary0 is given by a set of voxels
on two planes which are parallel to the mid-sagittal plane, in
the left and the right hemisphere. We introduce the diffusion
constantd and a boundary potentialg, and use a well-known
iterative integration scheme (Geriget al., 1992) to solve
Equation (6) using the six-neighbourhoodN∗6 :

U (vi , t) = g on0 (7)

U (vi , t + 1) = U (vi , t)+ 1
6d

∑
v j∈N∗6∩Ä

U (v j , t)−U (vi , t).

(8)

This finite-differencing scheme is known to converge very
slowly. We improved the convergence speed by introducing
a multi-resolution grid. The system is computed first on a
model downsampled by 2m, then the solution is distributed to
the next higher resolution and refined. For a single time step
at a specific resolution we formulated the algorithm as:

computePotentialFlow(image v)
{
// initialize potential on the boundary gamma (7)
setBorderPotential(v);
// compute flow for a time step in the 3-D voxel array v
for (all vi in v) {

// do not operate on background voxels
if (I(vi) == 0) continue;
// compute flow from voxels in the 6-neighborhood (8)
flow = 0; n = 0;
for (all vj in the 6-neighborhood of vi) {

if (I(vj) == 0) continue;
flow = flow + U(vj) - U(vi);
n++;

}
// update flow at this voxel
U(vi) = U(vi) + flow / n;

}
}

At each time step, a set of border voxels in the right
and the left hemisphere is initialized with a constant high
(respectively low) potential. On the whole 3-D dataset, we
used four resolution steps with 100, 200, 600 and 1000 time
steps (from lowest to highest resolution). We finally assumed
a steady state and computed the flow rate1U through a voxel
vi in its six-neighbourhoodN6 by

1U (vi ) =
∑

v j∈N∗6∩Ä
[U (v j )−U (vi )]/U (vi ). (9)

Figure 6. Flow-rate image computed from a binarized peeled
dataset. Bright areas correspond to regions of high flow. Shown are
an axial slice (left) in the AC–PC plane and the mid-sagittal plane
(right). By comparison with Figure 1, one can easily detect AC and
PC as flow maxima in this image.

This flow rate clearly depicts shape bottlenecks in the 3-D
dataset, as shown in Figure 6. Because we are interested in
flow maxima only, the choice of the diffusion constant and
the border potential are arbitrary.

Among other structures connecting both hemispheres, we
found AC and PC as peak flow regions. For a complete
dataset this algorithm needs∼40 min of computation time.
To detect AC and PC only, we can limit the search space to a
small subvolume. We tested several heuristics to define this
subvolume. The centre of mass (cm) in a peeled brain was
surprisingly stable in the area between the splenium of the
corpus callosum (see structure 4 in Figure 1), the habenula
and the adhaesio interthalamica (see structure 3 in Figure 1).
On a vector between the centre of the eyesce= (e1 + e2)/2
and the centre of masscm, an initial estimateâc for the
position of AC is given by

âc= ce+ 0.7(cm− ce). (10)

Likewise, an estimatêpc for the PC position is found at

p̂c= cm− 0.1(cm− ce)z (11)

where(cm− ce)z denotes the cranio-caudal component of
this difference vector. These heuristics were found to be valid
in all of our datasets with a deviation<3 mm. One can now
limit the search space for AC and PC to a small subvolume
of 50× 50× 30 voxels computed fromcm andce, so that
the computation time of the flow algorithm reduces to 40 s.
We cut this flow-rate image with the mid-sagittal plane and
search for flow maxima usinĝac and p̂c as starting points.
From these flow maxima, we adjusted the coordinates to find
the superior edge of the AC and the inferior edge of the PC.

Now we were able to introduce the Talairach–Fox space:
with AC as the centre, we denoted the line passing through
AC and PC as they-axis of the coordinate system, defined
thex-axis from the plane normaln, and thez-axis as perpen-
dicular to bothx and y. We computed an affine transform
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to map the peeled brain image into this reference system
which includes rescaling in 3-D to an isotropic resolution.
We finally yielded a peeled brain dataset with isotropical
resolution and registered to a standardized coordinate system.
One should note that the steps to detect AC and PC are
parameter-free and do not need any user interaction.

3.2.3. Normalization in the Talairach space
As outlined in Section 2, the Talairach space is defined by the
extremal points of the brain in each direction of space. These
points are easily determined from a binarized peeled image.
We store the extremal points as attributes in the image dataset
and compute a Talairach mapping when necessary. Three-
dimensional renderings of an example dataset are shown in
Figure 7.

4. IMPLEMENTATION AND RESULTS

The image processing sequence outlined above was imple-
mented as separate modules of the BRIAN visual editor
(Kruggel and Lohmann, 1996). Once the procedure had
stabilized and the range of the parametersd1 and d2 had
been determined, the processing chain was repackaged into a
single module. Further results were achieved by this stand-
alone module. Although this processing chain consists of
a number of separate steps, careful reuse of intermediate
results limited the total processing time to∼12 min on a
conventional workstation. Time-consuming steps were found
with the initial Lee filter and the computation of the gradient
image for the salient distance transform. Both steps are easily
parallelized, reducing the computation time to 3 min using
eight processors.

The robustness of this processing chain was tested with
80 high-resolution MR brain datasets, acquired on eight
different MR scanners (Siemens Impact at 1.0 T, Siemens
Vision at 1.5 T, Phillips Gyroscan at 1.5 T, GE Signa at
1.5 T, and Bruker at 3.0 T) at five different locations (see the
Acknowledgements). We usedT1-weighted 3-D sequences,
including 3-D GRE FLASH (24), SE FLASH (4), and
MDEFT (49). For three datasets, sequence information
was not available. Each dataset contained 128 sagittal (or
axial) slices with an in-plane resolution between 0.86 and
1.0 mm and a plane-to-plane distance of between 1.4 and
1.5 mm. All datasets were checked visually by an expert
(neuroradiologist) to exclude gross artefacts (motion, fold-
ing), developmental abnormalities or the presence of lesions.
Processing consisted of (i) conversion from the machine-
specific format (DICOM or MEDSPEC) into the Vista
format (Pope and Lowe, 1994), (ii) extraction of the spatial
resolution information (field-of-view and interslice distance)

Figure 7. Three-dimensional rendering of a sample head MR dataset
and the output of this procedure, a peeled brain. Beads were placed
on the forehead for registration purposes.

and patient orientation information from the machine format,
(iii) application of this image processing chain and (iv) visual
inspection of the results.

The only user-adjustable parameters of our procedure are
the peeling distancesd1 andd2 (Subsection 3.1), of which in
practice only a variation ofd1 in a range of 1.0–3.0 mm is
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Figure 8. Brain volume after peeling as a function of the peeling
distanced1 in three cases. The default distance of 1.6 mm is found
at the knee of this sigmoid curve.

useful. We will now report experiences with our procedure in
this evaluation set of brain scans.

In 58 of 80 cases (73%), our processing chain succeeded
on the first run with standard settings. In the remaining
22 cases, the peeling was inaccurate with parts of the outer
layers still being attached to the brain. Raising the distance
d1 from the default value to 2.0–2.4 mm resolved this problem
in another 19 cases (23%). A sufficient peeling was not
achievable in three cases (4%) only, where the left mediobasal
temporal cortex was attached to the meninges. A solution
may be provided by introducing a morphological opening
with a small kernel between steps e and f in the peeling
procedure. However, this may have adverse effects on
other brain regions. Thus careful inspection is necessary to
guarantee a proper peeling.

In general, the peeling distanced1 should be chosen to
be as low as possible. Typically, the volume of the peeled
brain follows a sigmoid curve which is dependent ond1 (see
Figure 8). The optimum value ofd1 is found at the lower knee
of this curve. We experimented with adaptive procedures
that vary the peeling distance and determine the optimum by
examining the remaining volume, where∼10 cycles between
peeling steps e to g are necessary. In practice however, we
favour using the standard setting and check the result over the
additional computation time.

Using a gradient-weighted DT, we achieved a distinct
separation in high-contrast regions (i.e. at the neocortical
convexity of the brain), and a broader separation zone in low-
contrast regions (i.e. the base of the brain). However, this

gradient-weighted DT introduced a dependence of the peeling
distanced1 from the image contrast. An optimum range has to
be determined for a particular imaging protocol. The values
are given for our high-contrast MDEFT datasets. For a typical
GRE protocol, where theT1 contrast is generally lower, we
applied distances between 2.0–3.2 mm.

In this evaluation set of 80 scans, we never found it
necessary to modify the peeling distanced2 from its default
value of 4 mm. In>250 scans we needed to raise this distance
to higher values (say, 6 mm) in only cases where high values
of d1 were applied. In datasets of children, we had to lower
d2 to 3 mm.

In 96% of the cases, the reference structures AC and PC
could be detected and a coordinate system adapted. Careful
assessment of the three negative cases revealed the detection
of eye clusters as a problematic step. By visual inspection
of the datasets, no clear border between the vitreous body
of the eye and the surrounding air could be made, with the
consequence that none or only one eye was detected. Asking
subjects to keep their eyes closed during scanning removed
this problem.

To assess the quality of the procedure, we compared
the position of the origin and the orientation of the axes
with reference alignments, which were generated manually.
The deviation between the manually and automatically
determined origin was 1.2 ± 0.4 mm (range 0–2.5 mm).
The maximal rotational deviation before alignment were 4◦
aroundx, 10◦ aroundy and 8◦ aroundz. After alignment,
the deviation between the manually and automatically rotated
axes were 0.8± 0.5◦ (range 0–1.5◦).

Although our procedure was designed to work withT1-
weighted datasets, the peeling part was applied with proton-
density (PD)- weighted head scans as well. However, AC and
PC are not detectable in this weighting, so the alignment does
not work. The procedure is not applicable toT2-weighted
datasets or sets of a few (say,<60) T1-weighted slices. In
datasets with comparatively high between-plane distances,
the connectivity of structures (i.e. the scalp) in 3-D might not
be traceable.

The application of this procedure to pathological datasets
adds another dimension of complexity. To underline
advantages and limits of this procedure we will now discuss
cases with typical intracranial pathological findings. In
Figure 9, we collected brain data sets with (i) a subcortical in-
farction in the deep territory of the left middle cerebral artery,
(ii) a subtotal infarction of the right middle cerebral artery,
(iii) an occlusive hydrocephalus and (iv) an astrocytoma of
the left temporal lobe.

Focal small (hypointense or hyperintense) lesions, as
in case (i), do not pose any problems to this algorithm.
Even mass lesions [case (ii)] are treated well by this
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Figure 9. Peeling results of four pathological cases. Case (i) (first
row): small infarction in the left globus pallidus and interior capsule;
case (ii) (second row): subtotal infarction of the right middle
cerebral artery; case (iii) (third row): occlusive hydrocephalus; case
(iv) (fourth row): astrocytoma of the left temporal lobe.

procedure. In this case however, the symmetry assumptions
made for the determination of the mid-sagittal plane are
grossly violated. We therefore used the automatic peeling
part only and supplied AC and PC directly. Note also
that this extensive lesion led to a shrinking of the brain
in the cranio-caudal direction [see the coronal slice of
Figure 9(ii)]. Similarly, we found no major limitation in
datasets of brain atrophies, i.e. in patients with Alzheimer’s
disease. A 3-D reconstruction of these datasets reveals
the huge extent of this right-sided lesion:≈2

3 of the right
hemisphere was damaged by the infarct (see Figure 10). If
symmetry is maintained, the automated procedure works well
[case (iii)].

However, there are cases where most of the heuristics
incorporated in our procedure are rendered invalid by patho-
logical findings. In case (iv), due to a midline shift to the

Figure 10. Three-dimensional rendering of case (iv) from Figure 9.
A massive tissue loss in the right hemisphere is attributable to a
subtotal infarct of the middle cerebral artery.

right side, symmetry assumptions are violated, and we had
to specify AC and PC manually. In addition, this patient
underwent a partial removal of the skull over a space occupied
by this inoperable tumour. In this area, skin and galea
followed the brain surface very closely, so that a proper
peeling could not be achieved and manual intervention was
necessary. Small hyperintense structures in this hypointense
lesion may be lost during the peeling if they are unconnected
and further away than the peeling distanced2 from other
signal-intensive brain regions (i.e. in the centre of the lesion).
When using the partly peeled dataset from this procedure and
manually removing the remaining parts of the outer hulls, we
achieved a successfully processed dataset in<20 min.

Our experience with≈60 MR datasets of pathological
cases shows that this procedure works in>70% of the
cases without any intervention. In cases like that of
Figure 9(iii) or (iv) however, a careful check of the results
is advisable.

5. DISCUSSION

We described an interaction-free procedure to remove the
outer layers of the brain in MR head scans and to adapt
the stereotactical coordinate system. By adjusting only one
parameter, we were able to segment 96% ofT1-weighted
high-resolution datasets acquired on eight different scanners.
With the experience of>250 successfully processed datasets,
we regard this procedure as sufficiently stable for routine use.

A few issues may play an important role in other
environments and need to be discussed. The simple but
fast unsupervised classification scheme (see Figure 3b) is
sensitive to contrast fluctuations due to inhomogeneities in
the gradient field of the scanner. A few approaches for
inhomogeneity correction in MR datasets were proposed
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(Yan and Karp, 1995; Wellset al., 1996; Rajapakseet al.,
1998; Sled and Zijdenbos, 1998) and might replace the
simple clustering scheme. However, these methods require
a considerably higher amount of computation time. With a
typical variation of the white matter intensity of<15% in
our datasets, we do not consider inhomogeneities as a real
problem. When selecting an imaging protocol for anatomical
scanning, one should always favour a high-T1 contrast over a
good signal-to-noise ratio. In particular, the detection of AC
and PC are subject to the good definition of the white matter
compartment and may fail in datasets with a low-T1 contrast.

With 60 cases of intracranial pathologies studied so far
we certainly cannot claim complete coverage of all types of
pathologies. Obviously, heuristics applied in this algorithm
must be met in order to yield satisfactory results: (i) both
eyes have to be detectable; (ii) in a first approximation,
hemispheres should be symmetric; and (iii) no midline shifts
be present (due to edema, tumours). MR examination
statistics show that these requirements are met in 98% of
the normal cases and in>90% of our cases examined under
clinical conditions.

A few other approaches for the registration of brains
with the stereotactical coordinate system were proposed.
Minoshima (Minoshimaet al., 1992; Minoshima, 1993)
designed a two-stage registration process that starts by
identifying the interhemispheric cleft and then uses empirical
rules to automatically locate four points along the AC–PC
line. However, because this procedure was designed for
PET experiments, these rules are dependent on the tracer
distribution applied (Brummer, 1991). Collinset al. (1994)
used a multiscale cross-correlation for the registration of
a sample dataset with an averaged MR brain volume that
has been aligned with the Talairach space. A similar
approach was described later by Fristonet al. (1995) and
is implemented in the SPM software. They did not detect
the reference structures directly and were thus dependent
on a successful registration with their model. Recently, a
second approach to detect the reference structures of the
stereotactical coordinate system was described by Verard
et al. (1997). Similar to our procedure, they first detected the
mid-sagittal plane and then used a complex scene analysis to
define the position of AC and PC. They reported a precision
in a range comparable to our figures, and a high robustness.

This procedure was integrated into our preprocessing
routine for head scans of test subjects as well as patients.
Results are placed in a common brain database that serves as
a further reference for anatomical and functional evaluations.
We consider this sequence as a basic step to study focal or
diffuse brain diseases and for monitoring their changes with
time. We have just begun to touch the use of image processing
in monitoring disease processes.
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