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Abstract. Quantitative analysis of the changes to the brain’s white
matter is an important objective for a better understanding of patholog-
ical changes in various forms of degenerative brain diseases. To achieve
an accurate quantification, an algorithm is proposed for automatic seg-
mentation of white matter atrophies and lesions from T1-weighted 3D
Magnetic Resonance (MR) images of the head. Firstly, white matter,
gray matter and cerebrospinal fluid (CSF) compartments are segmented.
Then, external and internal cisterns are separated by placing cutting
planes relative to the position of the anterior and posterior commissure.
Finally, a region growing method is applied to detect lesions inside the
white matter. Since lesions may be adjacent to the gray matter, we use
the external cisterns as a clue to prevent the algorithm from absorbing
low gray level points in the gray matter.

The method is fully applied to detect the white matter lesions and rele-
vant structures from a set of 41 MR images of normal and pathological
subjects. Subjective assessment of the results demonstrates a high per-
formance and reliability of this method.

1 Introduction

A number of brain diseases lead to focal and diffuse pathologic changes de-
tectable by MR tomography. However, the clinical relevance of these findings
with respect to cognitive abilities or impairments of a patient is often unclear.
Traditionally, pathologic changes in MR tomograms are assessed visually or us-
ing semi-automatic techniques. These measures are compared with behavioral
data to assess the clinical relevance of MR findings. While visual inspection and
expert rating are still the ”gold standard” in MR evaluation, it is hoped that
image processing can assist and support this process and yield results which are
rater-independent and have a higher reliability.

Extraction of such quantitative measures is concerned with computing a
number of descriptors representing the properties of anatomical structures in
the brain. The most important step in quantitative analysis is an accurate seg-
mentation of tissues in MR images. The segmentation of tissues has received
considerable attention in medical image processing community [1-4]. Although
promising results on large sets of normal images is reported, validation of the
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Fig. 1. Different processing steps for segmentation of white matter lesions in MR image.

techniques on pathological datasets remains a persistent problem. Not surpris-
ingly, the problem of white matter lesion detection has also received a consider-
able interest in the literature where the use of various image analysis techniques
including pyramidal approach [5], intensity based [6, 7] and model based [8] tech-
niques, have been addressed. The reader is referred to good surveys on general
purpose image segmentation techniques [9,10] and those which are specificly
designed or optimized for MRI segmentation purpose [1-4].

WM lesions are one of the main signs of various forms of degenerative brain
diseases. In T1-weighted MR images, they appear as faint, dark, arbitrarily
shaped blobs, which range from a few millimeters to several centimeters in size.
A better understanding of the size, number and the spatial distribution of the
lesions may give important clues to the mechanisms of the disease, provide a
new tool for monitoring their change over time and allow drawing conclusions
about the progression of a disease. A reliable detection of these lesions is diffi-
cult: fuzzy lesion boundaries, noise and non-uniformity in MR images produce
a severe lack of definition of WM lesions. They may also lead to a reduction
of the WM volume, which is also detected indirectly as an increase of the CSF
compartment.

In this paper we aim to present a region based algorithm for the segmentation
of the white matter, the internal and external CSF compartments and lesions
from volumetric T1-weighted MR images of the head. As shown in Figure 1, we
first segment the main tissues (WM, GM and CSF) from the MR data using a
region growing method. The CSF compartment is split into internal and exter-
nal cisterns using a heuristic technique. In the final step, the holes within the



segmented WM are used as starting points for the region growing method to find
the highest gradient boundary for every blob in the white matter. Since there
are junctions between the lesions and the cortex, we use the external cisterns as
clue to prevent the growing process from covering the low intensity points in the
cortex.

This paper is organized as follows. Section2 presents a brief overview of the
region growing method followed by a description of various processing steps
applied to segment the white matter lesions from the brain. Section 3 considers
the capability of the algorithm and evaluates its performance on a large set
of normal and pathological datasets. The last section presents summary and
conclusion of this study.

2 Methods

The method [11] starts from a seed point and absorbs the highest gray level
point in its boundary to expand the region. During the growing process, it con-
siders a discontinuity measure, called peripheral contrast, to choose from a set of
regions evolved during the growing process, a region with the highest gradient
boundary as the final output. The discontinuity measure computes the differ-
ence between the gray level average of internal boundary of the region and its
current boundary. The “internal boundary” is the boundary produced by the
set of connected outermost voxels of the current region and “current boundary”
as the set of voxels adjacent to the current region. This algorithm is used in the
first processing step to segment the scalp and other signal intense parts of the
head.

A modified technique [12] which applies a new criterion is then employed
to segment the white matter, gray matter and the CSF. Here, the segmented
region in the previous step, called thereafter the mask, is used to prevent the
growing process from joining the non-brain parts of the head. The criterion
detects the point with the minimum gray level value in the current region which
links the brain to the mask. These junctions are detected and blocked to allow
the algorithm to consider the lower gray-level points in the local neighborhood
without growing into the already segmented mask.

The criterion checks every new candidate point y; with the set of points in
the mask S. If the point is inside the mask, y) € S, the size of the region would
reduce to k where yr = Ymin is the last minimum gray level point joined to the
region. The set of subsequently appended points, with index ¢ > k + 1, will be
labeled as the mask, and the growing process continues by absorbing a new point
in the boundary. Such criterion can be formalized using:

yi >y for i=k+1,k+2 .., (1)

where y; is the sequence of pixels joining the region and yy belongs to the mask.



2.1 Segmentation of white matter, Gray matter and CSF

To demonstrate the capability of our algorithm for segmentation of white matter,
gray matter and CSF, we consider the behavior of the algorithm applied to a
3D MR image shown in Figure 2-top. The mappings of gray level and peripheral
contrast for the image for a starting point inside the brain stem is shown in
Figure 2-bottom. The gray level mappings are shown for two conditions: (i)
using the segmented scalp as a mask and, (2) using no mask and, therefore,
ignoring the criterion (1). The mask is segmented using the algorithm when a
point inside the scalp is used to start the growing process [11].

Let us consider the sequence of points absorbed by the growing process. If
the algorithm is applied without the criterion (1), the region grows to include
the white matter and then through bright junctions (i.e. optical nerves) joins
the eyes and other signal intense parts of the head. The sharp increase in the
gray level at index number 7.7e + 5 is related to growing into the eyes and the
scalp. When the mask is used, the mapping does not show any rise at this point.
The criterion blocks the minimum point joining the scalp, and the current region
continues to grow inside the brain. Comparing the two gray level mappings, it
becomes evident that the gray level values of the new points are decreasing when
the mask is used while fluctuations are observed when the mask is not applied.
We, therefore, are interested to choose the locally highest gradient boundary by
considering the peripheral contrast only when the mask and criterion (1) were
used.

The peripheral contrast, see Figure 2-bottom, starts from low values and
increases at the beginning of growing process. This rise is related to the relatively
high gradient at the boundary of the white matter. The peripheral contrast
changes slowly by the gradient inside the gray matter and shows a sharp increase
when the gray matter is being covered. It then reduces when the growing process
absorbs lower gray level values in the CSF. Because a low gradient inside the
CSF is encountered, a clear peak for the brain compartment at index number
1.68e + 6 is found. The third small peak at index number 2.3¢ + 6 is related to
the gradient at the boundary of CSF and the dura mater.

We use the three changes in the peripheral contrast as indicators for seg-
menting white matter, brain and CSF. For our pathological datasets, the white
matter typically has a very fuzzy gradient boundary producing only a small
change in the peripheral contrast measure. To increase the reliability of WM
segmentation, we use the gradient of the peripheral contrast during the growing
process and segment the region when a change in the gradient direction is ob-
served. The global peak generated by the high gradient boundary of the brain
is used as a reference for separating CSF and WM.

2.2 Post processing step

A post-processing step is applied to remove some thin structures, eg. parts of the
optical nerves, veins and dura mater which connect the brain to its outer hulls.
Typically, those junctions are very thin and, therefore, can be easily pruned
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Fig. 2. First row: Orthogonal sections from a 3D brain dataset. Second row: The
segmentation of tissues from the MR image (white: white matter, gray: gray matter
and dark gray: CSF). The graph shows the gray level and peripheral contrast mappings
for the two conditions during the growing process.



by applying morphological filters [13] with a small structuring element. This is
performed using a closing filter followed by a dilation with spherical Structuring
elements with diameters of 5 and 3 voxels, respectively.

2.3 Segmentation of ventricles

The inner cisterns mostly contain CSF and are surrounded by white matter.
Only small connections exist which link the 3rd ventricle to the external cisterns.
Cutting at this junction is expected to separate the external cisterns from the
ventricles. The tiny membrane between the 3rd ventricle and the quadrigeminal
cistern is often not fully connected due to the partial volume effect and thus
leads to segmentation problems.

Because datasets are aligned with the stereotactical coordinate system, we
can simply use the positions of the anterior (CA) and the posterior commissure
(CP) to generate suitable cutting plains for separating inner and outer cisterns.
The first cut is performed parallel to coronal plane with a thickness of 4mm,
width of 16mm (centered at CP) starting from Imm above CA down towards
the neck. Two other cuts were performed with a reference from CP: one parallel
to the axial plane starting from 8mm up and 7mm back of the head with the
width of 18mm towards the neck. A small cut is also performed parallel to the
sagittal plane, 3mm below CP with the width of 40mm connecting the two
previous planes. However, this last cut was not necessary for most of the cases
but useful for brains with extreme atrophies.

2.4 White matter lesion detection

To detect the small white matter lesions, we use the region growing method
starting from the holes inside the segmented white matter. The growing process
absorbs the low gray level points in its current boundary thus covering the lesion.
The external cisterns are used as a mask to prevent the algorithm from growing
into the gray matter or outside the brain. The peripheral contrast is then used
to find the highest gradient boundary for each lesion.

An example of the gray level and peripheral contrast for two different lesions
is shown in Figure 3. The peripheral contrast starts at a center point and reduces
to a minimum value at index numbers 35 and 50. It then gradually approaches
the zero level and increases sharply at the final stages of the growing process
when most of boundary points are excluded based on criterion (1). This peak
is related to very high gray level points (spikes) which will be absorbed at the
end of process. The process is terminated when the number of boundary points
are very low. The global minimum is used to segment the WM lesions. Limits
for a minimum size of 5 voxels and a peripheral contrast of —6 are imposed to
exclude false positive detections, which correspond to small and faint regions at
resolution limits of the MR scanner.
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Fig. 3. Gray level and peripheral contrast mappings for two different white matter
lesions.

3 Results

We used 41 T'1-weighted MR images obtained by scanning persons suffering from
brain atrophy (possible Alzheimer’s disease), white matter disease, and lacunar
infarcts. The images were obtained by a 1.5 Tesla clinical MR scanner at the
university hospital Leipzig during a routine study of patients. All datasets were
aligned with the stereotactical coordinate system before segmentation and their
spatial resolution was interpolated to an isotropical resolution of 1mm.

The two starting points required for the segmentation algorithm were chosen
inside the scalp and a bright part of the brain. Segmented tissues after the post-
processing step are shown in Figure 4. WM lesions are shown in white overlayed
on the original MR image (top row). Inner cisterns are shown in black, outer
cisterns in gray (middle row) with respect to the segmented brain in white.

The results were assessed by a specialist in the field using visual inspection
of cross-sections and 3D renderings of the segmented brains. Brain segmenta-
tion was very reliable and well in agreement with the specialist. White matter
segmentation proved to be more difficult, partly due to the “routine” quality
of the data, and partly due to the marked cortical atrophy in some cases. This
problem also caused difficulty in detection of the relevant turning point from
the peripheral contrast. The CSF and ventricles were segmented quite reliably.
In some cases, the heuristic placement of the cutting planes clipped parts of the
3rd ventricle. However, the error induced hereby was less than 3% of the total
ventricle volume in all cases.



Fig. 4. Different structures segmented by our algorithm from a case of mixed
dementia. First row: Original image. Second row: White matter (bright gray),
Gray matter (dark gray), internal cisterns (black), external cisterns (white).
Third row: White matter lesions (white) overlayed on the original image.

The validation of the white matter lesions is very difficult due to similarity
and junctions of the lesions with gray matter. The performance as evaluated on
the images were very well in agreement with an independently performed visual
inspection by a specialist. Table 1 presents the size and number of white matter
lesions for 3 normal subjects and 7 patients.

In comparison to normal subjects, all patients showed a reduction of the GM
and the WM compartment (see Table 1), i.e. a global brain atrophy. In the first
case, this atrophy led to a substantial increase of the inner cisterns, while in all
other cases, only the outer cisterns were enlarged. A rough 1:1 ratio of the GM:



Diagnosis Age Sex brain EC IC WM GM LS LN
ml % ml % ml % ml % ml % ml no

Mixed Dementia 81 m 1331 72 328 17.8 180 9.8 802 44 529 29 11.7 70
Mixed Dementia 82 f 1044 74 341 24.1 28 1.9 606 43 437 30 10.3 45
M. Alzheimer 84 m 1245 68 543 29.7 43 2.4 711 39 533 29 6.1126
WM Disease 77 f 1036 70 395 26.8 44 3.0 518 35 517 35 8.8 63
WM Disease 75 m 1104 69 416 26.1 72 4.6 552 35 552 35 6.7 60
WM Disease 77 f 1298 74 437 249 22 1.2 649 37 649 37 9.5 90
WM Disease 77 f 1061 70 429 28.2 28 1.8 532 35 530 35 14.1 126
Control 32 m 1347 82 277 16.9 14 0.8 660 40 687 42 0 0
Control 25 m 1418 81 309 17.7 14 0.8 699 40 719 41 0 0
Control 24 m 1527 83 294 16.0 19 1.0 763 41 764 41 0 0

Table 1. Measures of intracranial compartments extracted from our segmentation
algorithm for 7 pathological and 3 normal subjects. Volumes of the compartments are
given in ¢m® and in percentage of the intracranial volume (CSF4brain) are tabulated
for the brain, internal cisterns (IC), external cisterns (EC), white matter (WM), gray
matter (GM), white matter lesion size (LS) and also the number of white matter lesions
(LN).

WM compartment, which was found for the controls, was maintained for cases
4-7, indicating a global atrophy. For cases 1-3, a substantial atrophy of the GM
compartment was detected.

We summarized our findings in Table 2 for patients suffering from Alzheimer’s
disease, a global brain atrophy in conjunction with a focus on the GM compart-
ment was found, and the external cisterns were enlarged. Patients suffering from
a WM disease retained the GM:WM ratio found in controls, although the brain
volume was reduced. Both findings may overlap. It is still under study why in
some cases only the inner cisterns are enlarged.

The main strength of the algorithm is that it needs only two starting points
to segment the structures. The starting points were chosen automatically relative
to CA and CP. Acceptable results were achieved on 36 out of 41 images without
manual intervention. The starting points for other images were chosen manually.

4 Conclusion

We have proposed a new algorithm for segmentation of white matter lesions from
T1-weighted volumetric images of the head. The algorithm applies a region grow-
ing algorithm to segment different tissues (WM, GM, CSF) based on changes in
the discontinuity measure during the growing process. Inner and outer cisterns
are separated by introducing cutting planes. Finally, small holes in the white
matter are used as starting points to segment WM lesions. The external cisterns
were used to prevent the region growing process from including gray matter in
the lesions.



Diagnosis Brain EC IC GM:WM
Volume Comp. Comp. Ratio

M. Alzheimer i T = 1
Mixed Dementia i 0 =1 {
WM Disease i 1 = =

Table 2. Atrophy patterns for the subgroups of the patients.

The performance of the technique applied for white matter lesion segmenta-

tion from 41 datasets obtained by 1.5-Tesla scanner are very encouraging.
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