
Segmentation of white matter lesions fromvolumetri
 MR imagesS. A. Hojjatoleslami, F. Kruggel, and D. Y. von CramonMax-plan
k-institute of 
ognitive neuros
ien
eStephanstra�e 1A, D-04103 Leipzig, GermanyAbstra
t. Quantitative analysis of the 
hanges to the brain's whitematter is an important obje
tive for a better understanding of patholog-i
al 
hanges in various forms of degenerative brain diseases. To a
hievean a

urate quanti�
ation, an algorithm is proposed for automati
 seg-mentation of white matter atrophies and lesions from T1-weighted 3DMagneti
 Resonan
e (MR) images of the head. Firstly, white matter,gray matter and 
erebrospinal 
uid (CSF) 
ompartments are segmented.Then, external and internal 
isterns are separated by pla
ing 
uttingplanes relative to the position of the anterior and posterior 
ommissure.Finally, a region growing method is applied to dete
t lesions inside thewhite matter. Sin
e lesions may be adja
ent to the gray matter, we usethe external 
isterns as a 
lue to prevent the algorithm from absorbinglow gray level points in the gray matter.The method is fully applied to dete
t the white matter lesions and rele-vant stru
tures from a set of 41 MR images of normal and pathologi
alsubje
ts. Subje
tive assessment of the results demonstrates a high per-forman
e and reliability of this method.1 Introdu
tionA number of brain diseases lead to fo
al and di�use pathologi
 
hanges de-te
table by MR tomography. However, the 
lini
al relevan
e of these �ndingswith respe
t to 
ognitive abilities or impairments of a patient is often un
lear.Traditionally, pathologi
 
hanges in MR tomograms are assessed visually or us-ing semi-automati
 te
hniques. These measures are 
ompared with behavioraldata to assess the 
lini
al relevan
e of MR �ndings. While visual inspe
tion andexpert rating are still the "gold standard" in MR evaluation, it is hoped thatimage pro
essing 
an assist and support this pro
ess and yield results whi
h arerater-independent and have a higher reliability.Extra
tion of su
h quantitative measures is 
on
erned with 
omputing anumber of des
riptors representing the properties of anatomi
al stru
tures inthe brain. The most important step in quantitative analysis is an a

urate seg-mentation of tissues in MR images. The segmentation of tissues has re
eived
onsiderable attention in medi
al image pro
essing 
ommunity [1{4℄. Althoughpromising results on large sets of normal images is reported, validation of the
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essing steps for segmentation of white matter lesions in MR image.te
hniques on pathologi
al datasets remains a persistent problem. Not surpris-ingly, the problem of white matter lesion dete
tion has also re
eived a 
onsider-able interest in the literature where the use of various image analysis te
hniquesin
luding pyramidal approa
h [5℄, intensity based [6, 7℄ and model based [8℄ te
h-niques, have been addressed. The reader is referred to good surveys on generalpurpose image segmentation te
hniques [9, 10℄ and those whi
h are spe
i�
lydesigned or optimized for MRI segmentation purpose [1{4℄.WM lesions are one of the main signs of various forms of degenerative braindiseases. In T1-weighted MR images, they appear as faint, dark, arbitrarilyshaped blobs, whi
h range from a few millimeters to several 
entimeters in size.A better understanding of the size, number and the spatial distribution of thelesions may give important 
lues to the me
hanisms of the disease, provide anew tool for monitoring their 
hange over time and allow drawing 
on
lusionsabout the progression of a disease. A reliable dete
tion of these lesions is diÆ-
ult: fuzzy lesion boundaries, noise and non-uniformity in MR images produ
ea severe la
k of de�nition of WM lesions. They may also lead to a redu
tionof the WM volume, whi
h is also dete
ted indire
tly as an in
rease of the CSF
ompartment.In this paper we aim to present a region based algorithm for the segmentationof the white matter, the internal and external CSF 
ompartments and lesionsfrom volumetri
 T1-weighted MR images of the head. As shown in Figure 1, we�rst segment the main tissues (WM, GM and CSF) from the MR data using aregion growing method. The CSF 
ompartment is split into internal and exter-nal 
isterns using a heuristi
 te
hnique. In the �nal step, the holes within the



segmented WM are used as starting points for the region growing method to �ndthe highest gradient boundary for every blob in the white matter. Sin
e thereare jun
tions between the lesions and the 
ortex, we use the external 
isterns as
lue to prevent the growing pro
ess from 
overing the low intensity points in the
ortex.This paper is organized as follows. Se
tion2 presents a brief overview of theregion growing method followed by a des
ription of various pro
essing stepsapplied to segment the white matter lesions from the brain. Se
tion 3 
onsidersthe 
apability of the algorithm and evaluates its performan
e on a large setof normal and pathologi
al datasets. The last se
tion presents summary and
on
lusion of this study.2 MethodsThe method [11℄ starts from a seed point and absorbs the highest gray levelpoint in its boundary to expand the region. During the growing pro
ess, it 
on-siders a dis
ontinuity measure, 
alled peripheral 
ontrast, to 
hoose from a set ofregions evolved during the growing pro
ess, a region with the highest gradientboundary as the �nal output. The dis
ontinuity measure 
omputes the di�er-en
e between the gray level average of internal boundary of the region and its
urrent boundary. The \internal boundary" is the boundary produ
ed by theset of 
onne
ted outermost voxels of the 
urrent region and \
urrent boundary"as the set of voxels adja
ent to the 
urrent region. This algorithm is used in the�rst pro
essing step to segment the s
alp and other signal intense parts of thehead.A modi�ed te
hnique [12℄ whi
h applies a new 
riterion is then employedto segment the white matter, gray matter and the CSF. Here, the segmentedregion in the previous step, 
alled thereafter the mask, is used to prevent thegrowing pro
ess from joining the non-brain parts of the head. The 
riteriondete
ts the point with the minimum gray level value in the 
urrent region whi
hlinks the brain to the mask. These jun
tions are dete
ted and blo
ked to allowthe algorithm to 
onsider the lower gray-level points in the lo
al neighborhoodwithout growing into the already segmented mask.The 
riterion 
he
ks every new 
andidate point yi with the set of points inthe mask S. If the point is inside the mask, y� 2 S, the size of the region wouldredu
e to k where yk = ymin is the last minimum gray level point joined to theregion. The set of subsequently appended points, with index i > k + 1, will belabeled as the mask, and the growing pro
ess 
ontinues by absorbing a new pointin the boundary. Su
h 
riterion 
an be formalized using:yi > yk for i = k + 1; k + 2; :::; � (1)where yi is the sequen
e of pixels joining the region and y� belongs to the mask.



2.1 Segmentation of white matter, Gray matter and CSFTo demonstrate the 
apability of our algorithm for segmentation of white matter,gray matter and CSF, we 
onsider the behavior of the algorithm applied to a3D MR image shown in Figure 2-top. The mappings of gray level and peripheral
ontrast for the image for a starting point inside the brain stem is shown inFigure 2-bottom. The gray level mappings are shown for two 
onditions: (i)using the segmented s
alp as a mask and, (2) using no mask and, therefore,ignoring the 
riterion (1). The mask is segmented using the algorithm when apoint inside the s
alp is used to start the growing pro
ess [11℄.Let us 
onsider the sequen
e of points absorbed by the growing pro
ess. Ifthe algorithm is applied without the 
riterion (1), the region grows to in
ludethe white matter and then through bright jun
tions (i.e. opti
al nerves) joinsthe eyes and other signal intense parts of the head. The sharp in
rease in thegray level at index number 7:7e+ 5 is related to growing into the eyes and thes
alp. When the mask is used, the mapping does not show any rise at this point.The 
riterion blo
ks the minimum point joining the s
alp, and the 
urrent region
ontinues to grow inside the brain. Comparing the two gray level mappings, itbe
omes evident that the gray level values of the new points are de
reasing whenthe mask is used while 
u
tuations are observed when the mask is not applied.We, therefore, are interested to 
hoose the lo
ally highest gradient boundary by
onsidering the peripheral 
ontrast only when the mask and 
riterion (1) wereused.The peripheral 
ontrast, see Figure 2-bottom, starts from low values andin
reases at the beginning of growing pro
ess. This rise is related to the relativelyhigh gradient at the boundary of the white matter. The peripheral 
ontrast
hanges slowly by the gradient inside the gray matter and shows a sharp in
reasewhen the gray matter is being 
overed. It then redu
es when the growing pro
essabsorbs lower gray level values in the CSF. Be
ause a low gradient inside theCSF is en
ountered, a 
lear peak for the brain 
ompartment at index number1:68e+ 6 is found. The third small peak at index number 2:3e+ 6 is related tothe gradient at the boundary of CSF and the dura mater.We use the three 
hanges in the peripheral 
ontrast as indi
ators for seg-menting white matter, brain and CSF. For our pathologi
al datasets, the whitematter typi
ally has a very fuzzy gradient boundary produ
ing only a small
hange in the peripheral 
ontrast measure. To in
rease the reliability of WMsegmentation, we use the gradient of the peripheral 
ontrast during the growingpro
ess and segment the region when a 
hange in the gradient dire
tion is ob-served. The global peak generated by the high gradient boundary of the brainis used as a referen
e for separating CSF and WM.2.2 Post pro
essing stepA post-pro
essing step is applied to remove some thin stru
tures, eg. parts of theopti
al nerves, veins and dura mater whi
h 
onne
t the brain to its outer hulls.Typi
ally, those jun
tions are very thin and, therefore, 
an be easily pruned
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Fig. 2. First row: Orthogonal se
tions from a 3D brain dataset. Se
ond row: Thesegmentation of tissues from the MR image (white: white matter, gray: gray matterand dark gray: CSF). The graph shows the gray level and peripheral 
ontrast mappingsfor the two 
onditions during the growing pro
ess.



by applying morphologi
al �lters [13℄ with a small stru
turing element. This isperformed using a 
losing �lter followed by a dilation with spheri
al Stru
turingelements with diameters of 5 and 3 voxels, respe
tively.2.3 Segmentation of ventri
lesThe inner 
isterns mostly 
ontain CSF and are surrounded by white matter.Only small 
onne
tions exist whi
h link the 3rd ventri
le to the external 
isterns.Cutting at this jun
tion is expe
ted to separate the external 
isterns from theventri
les. The tiny membrane between the 3rd ventri
le and the quadrigeminal
istern is often not fully 
onne
ted due to the partial volume e�e
t and thusleads to segmentation problems.Be
ause datasets are aligned with the stereota
ti
al 
oordinate system, we
an simply use the positions of the anterior (CA) and the posterior 
ommissure(CP) to generate suitable 
utting plains for separating inner and outer 
isterns.The �rst 
ut is performed parallel to 
oronal plane with a thi
kness of 4mm,width of 16mm (
entered at CP) starting from 1mm above CA down towardsthe ne
k. Two other 
uts were performed with a referen
e from CP: one parallelto the axial plane starting from 8mm up and 7mm ba
k of the head with thewidth of 18mm towards the ne
k. A small 
ut is also performed parallel to thesagittal plane, 3mm below CP with the width of 40mm 
onne
ting the twoprevious planes. However, this last 
ut was not ne
essary for most of the 
asesbut useful for brains with extreme atrophies.2.4 White matter lesion dete
tionTo dete
t the small white matter lesions, we use the region growing methodstarting from the holes inside the segmented white matter. The growing pro
essabsorbs the low gray level points in its 
urrent boundary thus 
overing the lesion.The external 
isterns are used as a mask to prevent the algorithm from growinginto the gray matter or outside the brain. The peripheral 
ontrast is then usedto �nd the highest gradient boundary for ea
h lesion.An example of the gray level and peripheral 
ontrast for two di�erent lesionsis shown in Figure 3. The peripheral 
ontrast starts at a 
enter point and redu
esto a minimum value at index numbers 35 and 50. It then gradually approa
hesthe zero level and in
reases sharply at the �nal stages of the growing pro
esswhen most of boundary points are ex
luded based on 
riterion (1). This peakis related to very high gray level points (spikes) whi
h will be absorbed at theend of pro
ess. The pro
ess is terminated when the number of boundary pointsare very low. The global minimum is used to segment the WM lesions. Limitsfor a minimum size of 5 voxels and a peripheral 
ontrast of �6 are imposed toex
lude false positive dete
tions, whi
h 
orrespond to small and faint regions atresolution limits of the MR s
anner.
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Fig. 3. Gray level and peripheral 
ontrast mappings for two di�erent white matterlesions.3 ResultsWe used 41 T1-weighted MR images obtained by s
anning persons su�ering frombrain atrophy (possible Alzheimer's disease), white matter disease, and la
unarinfar
ts. The images were obtained by a 1:5 Tesla 
lini
al MR s
anner at theuniversity hospital Leipzig during a routine study of patients. All datasets werealigned with the stereota
ti
al 
oordinate system before segmentation and theirspatial resolution was interpolated to an isotropi
al resolution of 1mm.The two starting points required for the segmentation algorithm were 
hoseninside the s
alp and a bright part of the brain. Segmented tissues after the post-pro
essing step are shown in Figure 4. WM lesions are shown in white overlayedon the original MR image (top row). Inner 
isterns are shown in bla
k, outer
isterns in gray (middle row) with respe
t to the segmented brain in white.The results were assessed by a spe
ialist in the �eld using visual inspe
tionof 
ross-se
tions and 3D renderings of the segmented brains. Brain segmenta-tion was very reliable and well in agreement with the spe
ialist. White mattersegmentation proved to be more diÆ
ult, partly due to the \routine" qualityof the data, and partly due to the marked 
orti
al atrophy in some 
ases. Thisproblem also 
aused diÆ
ulty in dete
tion of the relevant turning point fromthe peripheral 
ontrast. The CSF and ventri
les were segmented quite reliably.In some 
ases, the heuristi
 pla
ement of the 
utting planes 
lipped parts of the3rd ventri
le. However, the error indu
ed hereby was less than 3% of the totalventri
le volume in all 
ases.



Fig. 4. Di�erent stru
tures segmented by our algorithm from a 
ase of mixeddementia. First row: Original image. Se
ond row:White matter (bright gray),Gray matter (dark gray), internal 
isterns (bla
k), external 
isterns (white).Third row: White matter lesions (white) overlayed on the original image.The validation of the white matter lesions is very diÆ
ult due to similarityand jun
tions of the lesions with gray matter. The performan
e as evaluated onthe images were very well in agreement with an independently performed visualinspe
tion by a spe
ialist. Table 1 presents the size and number of white matterlesions for 3 normal subje
ts and 7 patients.In 
omparison to normal subje
ts, all patients showed a redu
tion of the GMand the WM 
ompartment (see Table 1), i.e. a global brain atrophy. In the �rst
ase, this atrophy led to a substantial in
rease of the inner 
isterns, while in allother 
ases, only the outer 
isterns were enlarged. A rough 1:1 ratio of the GM:



Diagnosis Age Sex brain EC IC WM GM LS LNml % ml % ml % ml % ml % ml noMixed Dementia 81 m 1331 72 328 17:8 180 9:8 802 44 529 29 11.7 70Mixed Dementia 82 f 1044 74 341 24:1 28 1:9 606 43 437 30 10.3 45M. Alzheimer 84 m 1245 68 543 29:7 43 2:4 711 39 533 29 6.1 126WM Disease 77 f 1036 70 395 26:8 44 3:0 518 35 517 35 8.8 63WM Disease 75 m 1104 69 416 26:1 72 4:6 552 35 552 35 6.7 60WM Disease 77 f 1298 74 437 24:9 22 1:2 649 37 649 37 9.5 90WM Disease 77 f 1061 70 429 28:2 28 1:8 532 35 530 35 14.1 126Control 32 m 1347 82 277 16:9 14 0:8 660 40 687 42 0 0Control 25 m 1418 81 309 17:7 14 0:8 699 40 719 41 0 0Control 24 m 1527 83 294 16:0 19 1:0 763 41 764 41 0 0Table 1. Measures of intra
ranial 
ompartments extra
ted from our segmentationalgorithm for 7 pathologi
al and 3 normal subje
ts. Volumes of the 
ompartments aregiven in 
m3 and in per
entage of the intra
ranial volume (CSF+brain) are tabulatedfor the brain, internal 
isterns (IC), external 
isterns (EC), white matter (WM), graymatter (GM), white matter lesion size (LS) and also the number of white matter lesions(LN).WM 
ompartment, whi
h was found for the 
ontrols, was maintained for 
ases4-7, indi
ating a global atrophy. For 
ases 1-3, a substantial atrophy of the GM
ompartment was dete
ted.We summarized our �ndings in Table 2 for patients su�ering from Alzheimer'sdisease, a global brain atrophy in 
onjun
tion with a fo
us on the GM 
ompart-ment was found, and the external 
isterns were enlarged. Patients su�ering froma WM disease retained the GM:WM ratio found in 
ontrols, although the brainvolume was redu
ed. Both �ndings may overlap. It is still under study why insome 
ases only the inner 
isterns are enlarged.The main strength of the algorithm is that it needs only two starting pointsto segment the stru
tures. The starting points were 
hosen automati
ally relativeto CA and CP. A

eptable results were a
hieved on 36 out of 41 images withoutmanual intervention. The starting points for other images were 
hosen manually.4 Con
lusionWe have proposed a new algorithm for segmentation of white matter lesions fromT1-weighted volumetri
 images of the head. The algorithm applies a region grow-ing algorithm to segment di�erent tissues (WM, GM, CSF) based on 
hanges inthe dis
ontinuity measure during the growing pro
ess. Inner and outer 
isternsare separated by introdu
ing 
utting planes. Finally, small holes in the whitematter are used as starting points to segment WM lesions. The external 
isternswere used to prevent the region growing pro
ess from in
luding gray matter inthe lesions.



Diagnosis Brain EC IC GM:WMVolume Comp. Comp. RatioM. Alzheimer # " = #Mixed Dementia # " =, " #WM Disease # " = =Table 2. Atrophy patterns for the subgroups of the patients.The performan
e of the te
hnique applied for white matter lesion segmenta-tion from 41 datasets obtained by 1:5-Tesla s
anner are very en
ouraging.A
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