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A Markov Pixon Information Approach for
Low-Level Image Description

Xavier Descombes and Frithjof Kruggel

Abstract—The problem of extracting information from an image which corresponds to early stage processing in vision is addressed.
We propose a new approach (the MPI approach) which simultaneously provides a restored image, a segmented image and a map
which reflects the local scale for representing the information. Embedded in a Bayesian framework, this approach is based on an
information prior, a pixon model and two Markovian priors. This model based approach is oriented to detect and analyze small
parabolic patches in a noisy environment. The number of clusters and their parameters are not required for the segmentation
process. The MPI approach is applied to the analysis of Statistical Parametric Maps obtained from fMRI experiments.

Index Terms—Information, Pixon, Markov Random Fields, image restoration, fMRI analysis.
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1 INTRODUCTION

 CRUCIAL step before interpreting a scene from an im-
age consists in extracting the underlying information.

This step is referred to as the early stage in vision and usu-
ally denoted as low-level processing. The main areas in this
domain concern image segmentation, image restoration and
primitive extraction. The aim of this process is to obtain a
synthetic description of the image. The first level of infor-
mation concerns the detection and the localization of the
objects. The second level is a description of the shape of
these objects. To achieve this description we have some
noisy and/or blurred data and some contextual a priori
information. These issues refer to well-known areas of im-
age processing. The extraction of objects is first performed
by reducing the number of gray levels to simplify the de-
scription of the scene and is referred to as classification or
clustering. Adding a priori knowledge leads to segmenta-
tion. The object shapes description refers to the problem of
image restoration.

In this paper, we propose a new approach to solve these
three problems simultaneously. We consider a stochastic
model embedded in a Bayesian framework. We describe the
scene from data (original image) by three maps referred to
as the restored image, the segmented image and the pixon
map. The pixon concept has been introduced by Piña and
Puetter in [1] to restore astronomy images, and further been
refined in [2], [3]. The term pixon refers to pixel information.
Piña and Puetter model the restored image by the local
convolution of a pseudo-image, whose entropy is maxi-

mized, by the pixon map. The size of the pixels is given by
the resolution of the data. However, to locally describe an
image the required resolution is not spatially homogeneous.
The background and regions do not require a fine resolu-
tion whereas the description of edges and fine objects re-
quires to use all the information given by the data resolu-
tion. The pixons are geometric features of varying size. The
size of a pixon defines locally the scale of the underlying
information. Herein, we define the pseudo-image as the
segmentation of the scene. In the classical pixon approach,
the aim of the entropy term is to regularize the pseudo-
image. In our context, the entropy is used to reduce the
number of gray levels in the description (i.e. to define the
classes of the segmentation). Therefore, we minimize the
entropy of the segmented image histogram. The regulari-
zation is performed by adding a Markovian prior. The seg-
mented image provides a rough analysis of the scene using
a piecewise constant description. By convolving the seg-
mented image with the pixon map, we obtain a fine de-
scription of edges and fine structures. Herein, we consider
the restoration of small parabolic patches in a noisy envi-
ronment. Therefore, the pixon basis consists of a set of pa-
rabolas. We propose to estimate the pixon map and the
segmented image by modeling them with Markov random
fields (MRFs).

The construction of the model involves three steps. We
first address the classification problem to obtain the seg-
mented image. However, we do not assume to know the
number of classes in the segmented image. This is a major
advantage with respect to other algorithms reported in the
literature. We introduce an information prior on the seg-
mented image (also referred to as the entropy prior) to per-
form the classification by extracting a reduced number of
gray levels (the labels) describing the scene. The most sig-
nificant gray levels are selected by the information prior
and represent the different classes. The pixels are classified
by minimizing a distance with respect to these classes in the
same procedure. The information concept was introduced
by Shannon in 1948 [4] to quantify the information in a
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string of symbols. The methods which maximize this in-
formation are referred to as maximum entropy (ME) meth-
ods. This concept has been used in image processing [5]
either for restoration tasks [6] or for automatic thresholding
[7]. For automatic thresholding the information function,
defined as the sum of the two cluster entropies, is maxi-
mized. In a restoration framework, the entropy of the image
is maximized resulting in a regularized solution (smooth
image). In that context, the aim of entropy is to get rid of
the noise. In our context, we use the entropy as a prior for
the segmented image histogram. We ignore the number of
classes so that the state space (set of possible values for the
pixels) of the segmented image is the whole gray-level set.
To get a segmentation, we have to reduce this set. The his-
togram of a segmented image is composed of a few peaks
corresponding to the different classes. Therefore, the en-
tropy of a segmented image histogram is low. In the pro-
posed approach, we minimize the entropy associated with
the segmented image. The corresponding model, which
only provides a classification, is referred to as the I model
(Information model).

The segmentation allows us to extract the objects but
gives a crude description of these objects. To refine this de-
scription, we introduce the pixon description and simulta-
neously estimate the segmentation and the pixon map us-
ing an iterative algorithm based on a simulated annealing
scheme. The restored image is then defined deterministi-
cally from the segmented image and the pixon map by local
convolutions.

In the final step, we propose to improve the restoration
as well as the segmentation using contextual knowledge.
We consider contextual information both on the segmented
image and on the pixon map to obtain regularized maps
and model this information by Markov Random Fields.
This leads to Markov Pixon Information (MPI) model. The
previous optimization algorithm is extended to this more
general model.

MRFs introduced in the engineering sciences by Besag
[8] are widely used as a prior in image segmentation and
image restoration because of their ability to add regulariz-
ing properties using contextual information [9], [10], [11].
The application of MRFs allows us to yield homogeneous
regions when used as a segmentation prior or to smooth
regions when used as a restoration prior by modeling local
interactions between neighboring pixels. We first consider a
Potts model (also known as the Multi Level Logistic model
(MLL)) as a prior for the segmented image [9]. This model
is widely used for segmentation tasks [12], [13], [14]. In the
pixon map, we expect some fine structures delineating the
edges of objects. Therefore we select the Chien model as a
fine structures preserving model [15], [16]. This completes a
low-level description of the image which is referred to as
the Markov Pixon Information (MPI) model.

This paper is organized as follows. In Section 2, we in-
troduce successively the information prior and the pixon
based description leading to the PI model. MRFs are in-
troduced in Section 3, and the two Markov priors defining
the MPI model are derived. Section 4 is devoted to the
application which has motivated this work. We consider
the description of statistical maps obtained from func-

tional Magnetic Resonance Images (fMRIs). We obtain a
restoration of the statistical map and an analysis of the
activated areas. Finally, we draw conclusions from this
approach in Section 5.

2 THE PIXON-BASED APPROACH

In this section, we introduce the PI model. Denote by X the
data and, respectively, by R, S, and K the restored image,
the segmented image, and the pixon map. The random
variable associated with the pixons is their size. For brevity,
let us refer to the map of the pixon sizes as the pixon map.
Now we address the problem of modeling and maximizing
the following conditional probability:

P(R, S, K | X).                                     (1)

Using the Bayes rule and the definition of the conditional
probability, we obtain the following result:

P(R, S, K | X) � P(X | R, S, K)P(R, S, K)                      (2)

� P(X | R, S, K)P(R | S, K)P(S, K).       (3)

The construction of the proposed description is divided in
three steps. In the first step (I model), we do not consider
the pixon map, so the restored image is equal to the seg-
mented image. In that case, (3) is reduced to the following:

P(S | X) � P(X | S)P(S),                          (4)

where the first term in the right-hand side is referred to as
the data attachment term (or goodness of fit (GOF) term),
whereas the last term is referred to as the prior on the seg-
mented image. Thus, we have the classical segmentation
scheme interpreted as an inverse problem.

The second step introduces the pixon map. Equation (3)
is written as follows:

P(S, K | X) � P(X | S, K)P(S).                    (5)

2.1 The Information as a Prior for Image
Classification

The most commonly used definition of information was
introduced by Shannon in 1948 [4]. This quantity specifies
the average information contained in a string of symbols
transmitted over a communication line. The information
per symbol set is given by:

H A y y p pn i i
i

n

= = -
=
Ê0 2

1

, . . . , log< A3 8 ,                   (6)

where n is the total number of symbols and pi is the prob-
ability of occurrence of the ith symbol (pi = P(yk = i)). The
information is also referred to as Shannon entropy by anal-
ogy with statistical physics.

In information theory, several interesting properties of
the function H have been demonstrated. For our purpose,
we mention a result obtained by Khinchin [17]. Dealing
with information measures Khinchin showed that the de-
fined H is the only function which satisfies the three fol-
lowing properties:

1)�H is maximized for a uniform probability law (all the
pis are equal) and minimized for Dirac distributions
(all the pis but one are equal to 0).
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2)�Adding a new state j such that pj = 0 does not affect
the value of H.

3)�H(A, B) = H(A) + EA(H(B/A)), where E refers to as ex-
pectation, which is reduced to H(A, B) = H(A) + H(B)
if A and B are independent.

Because of these properties, this information function has
been widely used in a Bayesian context for image restora-
tion. Referred to as maximum entropy methods, the de-
rived algorithms use this information measure as a prior. In
this paper, the entropy is used as the prior on the histogram
image and is minimized. Consider that the samples y0, ..., yS

represent the pixels of the image, the set {1, ..., n} being the
gray-level set. The entropy (information) function of the
histogram is then defined as:

H A y y

p y i p y i
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S
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log log
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2 7 2 7 (7)

where Ni is the number of pixels having the gray value i.
The entropy of the histogram is then defined as in (6),

where the pis represent the histogram values. The three
properties found by Khinchin can be formulated as follows:

1)�The histogram entropy is minimized for a Dirac dis-
tribution corresponding to one single class in the
segmented image.

2)�Adding gray levels which do not occur in the image
does not change H.

3)�The information given by n-independent sensors is
equal to the sum of their individual information.

The first property will tend to reduce the number of gray
levels defining the histogram. The second property states
that the information criterion only depends on the pixel
values in the image and not on the gray-level set of the im-
age representation. Finally, the third property is useful in
case of multisensor data, as it allows us to check the inde-
pendency between sensors or to quantify the redundancy.
In image restoration, the entropy of the image itself is con-
sidered. To smooth the image, the image entropy is maxi-
mized. The histogram of the segmented image is defined by
the sum of Dirac distributions corresponding to each clus-
ter. This histogram is represented by intervals with value 0
separated by peaks. So we want to obtain a histogram
sharper than the histogram of the initial image. The first of
the three mentioned properties indicates to minimize the
entropy as we expect a strongly nonuniform law for the
segmented image.

In this paper, we first consider the classification of data
from a single sensor X in a Bayesian framework. Let L de-
note the lattice and S the segmented image. We assume a
Gaussian model for the noise and consider that the pixels in
X are independent conditionally on S so that the GOF is
defined as follows:

P X S
x s

l L

l l2 7 = -
-

³
º 1

2 22

2

2
ps s

exp .                 (8)

Note that the state space of the segmented image is the

whole gray-level set. The actual reduced number of classes
is obtained from the information prior. Therefore the stan-
dard deviation in the GOF term does not depend on classes
but refers to the noise in the whole image.

The energy associated with the information prior is
written as follows:

H p p
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where Ni is the number of pixel in state i (with gray level i),
and N is the total number of pixels in the segmented image.
In the I approach, the minimized energy is the sum of the
information prior and the GOF term:
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a2 7 ln ,               (10)

where s is the standard deviation of the data.

2.2 The PI Model
The minimum entropy provides a first description of the
image by reducing the number of gray levels and classify-
ing the pixels. However, this approach has two main limi-
tations. First, the information function does not take the
spatial correlations in the image into account. The contri-
bution of a given pixel to the prior depends only on its
gray-level value but not on the relation with its neighbors.
Second, the information entity is the pixel itself and is ho-
mogeneous on the whole image. Most images do not ex-
hibit a uniform spatial resolution. Parts of an image such as
the background contain very little information; parts con-
taining detailed objects require a high resolution. To obtain
a multiscale description of the image in order to represent a
spatially varying resolution, Piña and Puetter have intro-
duced the concept of pixon [1]. This approach has been suc-
cessfully developed in astronomy to restore telescope im-
ages [2], [3], [18].

A first approach consists in defining “hard” pixons. The
value of a hard pixon represents the mean brightness of a
given region, while the size of the region is spatially de-
pendent inducing a multiscale description. Such a pixon
represents a degree of freedom in describing the image in
this particular region. The degrees of freedom used to de-
scribe the image is then reduced in homogeneous regions.
However, in this approach the accuracy of the description
may actually be reduced. To achieve a multiscale descrip-
tion without loss of accuracy, Piña and Puetter have intro-
duced fuzzy pixons [1]. Here, the image is modeled by the
local convolutions of a pseudo-image and a pixon map. A
maximum entropy prior models the pseudo-image. In our
approach, the pseudo-image is replaced by the segmented
image, and we use a minimum entropy prior on the histo-
gram as stated above. The pixon model is written as follows:

R(rl, l ³ L) = (K © S)(rl, l ³ L),                     (11)

which is interpreted as follows:

" ³ © = � ��l L K S r K l l s dll l l
Vl

, ,0 52 7 2 7 ,               (12)

where Kl(l, l�) = Kl(l� - l) is the pixon in l and Vl is called the
base of Kl.
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There are a wide range of choices for the pixon shape
which have not yet been investigated. Following [3], we
consider radially symmetric pixons defined by truncated
paraboloids:
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where Cl is a normalizing factor such that iKli = 1.
Therefore, a pixon is completely defined by its size d

which corresponds to the random variables of the pixon
map. In practice, as we deal with discrete data, the different
admissible sizes belong to the set {0, 1, ..., dmax}. The pixon
basis contains dmax + 1 shapes.

To describe an image, we estimate three maps (images):

1)� the restored image R,
2)� the segmented image S,
3)� the pixon map K.

The pixon map reflects the local resolution of features in
the image. For instance, the values of dl tends to be low
on edges, whereas homogeneous regions are represented
by a higher pixon size. Second, a spatially varying reso-
lution of noise, which can spoil the segmentation, is em-
bedded into the pixon map. As for the I model, the in-
formation prior is introduced in the segmented image
model to reduce the number of gray levels in this map.

First, we estimate the segmented image and the pixon
map. The restored image is then obtained using the local
convolution described in (11). We embed our estimation
problem into a Bayesian scheme. In this paper, we consider
the data to be noisy but not blurred, so we have the fol-
lowing model:

X = R + h = K © S + h,                            (14)

where h represents an additive Gaussian noise.
In the PI model, no prior model is given on the pixon-

map. This implicitly induces a uniform law for P(K) (i.e., on
each pixel the a priori distribution of the pixon size is uni-
form on {0, 1, ..., dmax}). P(S) is defined as for the I model.

P(X|K, S) represents the GOF term and is given by:
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We use the information given in (9) as a prior for the
pseudo-image. The solution we search for consists in the
configuration (K, S), which minimizes the following energy:

E x K l l s l dl
N
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NPI l l
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where Ni is the number of pixel in state i (with gray level i),
and N is the total number of pixels in the segmented image.

2.3 Optimization Schemes
To find the global minimum of the energy EPI, we have to
reach the Maximum A Posteriori (MAP) criterion for the
conditional probability P(K, S|X). We have to estimate two
images. Moreover, the information prior is a global con-
straint, and the pixon map introduces some interactions
into the GOF term. This leads to a complex energy function
containing local minima. Therefore the MAP criterion re-
quires a sophisticated optimization algorithm. To overcome
this problem, suboptimal algorithms are proposed in [2]
and [3]. A first approximation is made by introducing the
following iterative scheme:

1)�Optimize P(K(n), S|X) with respect to S, where K(n) is
the current estimate of K.

2)�Optimize P(K, S(n)|X) with respect to K, where S(n) is
the current estimate of S.

3)� If the algorithm has not converged, increment n and
go to step 1, otherwise stop.

A second approximation is made for each of the two first
steps. The MAP criterion is not reached, but suboptimal
optimization algorithms are used. In [2], the entropy
prior is not taken into account in step 1. The optimiza-
tion then leads to the Maximum Likelihood estimators. It
is reported in [3] that the entropy does not significantly
affect the results in practice when using astronomy data.
Therefore, even when this term is considered, a conju-
gate gradient converging towards a local minimum is
used. In our approach, we consider noisy data and the
histogram entropy is minimized. The entropy prior is of
great importance in selecting relevant gray levels to de-
scribe the image without noise. Therefore we propose to
use a stochastic algorithm to reach the MAP criterion in
step 1. We have implemented a simulated annealing al-
gorithm whose convergence to the MAP criterion has
been proved in [9]. In [2] and [3], the second step is per-
formed by selecting at each point the pixon which mini-
mizes the energy. The best pixon is calculated for each
point, and then the pixon map is updated. In this ap-
proach, the results tend to be overresolved: Pixons tend
to have small sizes in the first iterations. Thus, a lower
bound for the pixon size is imposed during the first it-
erations, which decreases successively.

We have implemented two algorithms to perform the
restoration. The first one follows the previous scheme ex-
cept that simulated annealing is introduced in the first step
to reach the MAP criterion for the segmented image opti-
mization. A second algorithm optimizes P(K, S|X) with
respect to both K and S by sampling from the product space
. � 6. This algorithm is based on a simulated annealing
scheme, which theoretically reaches the global energy
minimum and leads to the MAP criterion of the complete
model.
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3 PIXON MAP AND SEGMENTED IMAGE
REGULARIZATION USING MARKOV MODELS

Using the PI model, we achieve a multiscale description of
the image by using an adaptive resolution in this descrip-
tion. However, we did not consider noise reduction in the
segmented image and in the pixon map. In this section, we
consider an additional prior to take the contextual informa-
tion in images into account. The main idea is to obtain
regularized configurations for both the segmented image
and the pixon map. This kind of prior knowledge is widely
used for image segmentation and is well modeled by
Markov Random Fields [10], [12], [19]. In this section, we
derive two MRFs which are introduced in the PI model as
priors for both the segmented image and the pixon map.

For simplicity, we assume that S and K are mutually in-
dependent. Equation (3) is written as follows:

P(S, K|X) � P(X|S, K)P(S)P(K).                      (18)

In this section, we define the two Markovian priors and
derive an optimization scheme for the general MPI model.

3.1 Basic Definitions
Markov Random Fields have been introduced in image proc-
essing by Besag in 1974 [8]. In 1984, Geman and Geman
showed an application in binary image restoration while
proving the convergence of the simulated annealing used to
optimize the model [9]. An MRF is a probabilistic model de-
fined by local conditional probabilities.

Consider a set of sites L = {l} (the lattice of the image)
and a state space L (set of gray values). An image is repre-
sented by an element, denoted SL = {sl, l ³ L}, of the con-
figuration space W = LL. Consider a random field P defined
on W. P is said to be a Markov Random Field if:

"l ³ L, "sl ³ L,       P(sl, l ³ L) > 0,               (19)

                                      "l ³ L, "sl, sm ³ L,
                    P(sl|sm, m ³ L - {l}) = P(sl|sm, m ³ 1l),         (20)

where 1l is a finite subset of L called the neighborhood of l,
and, {1l, l ³ L} is the neighborhood system satisfying the
two following properties:

l ´ 1l,                                         (21)

l ³ 1m Ã m ³ 1l.                                (22)

The Hammersley-Clifford theorem establishes that an MRF
can be written as a Gibbs Field:

"S ³ =

- = - ³
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��
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��³

Ê
L L

L c l
c
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Z U Z V l c

W S

S

,

exp exp ,

2 7

2 7 2 71 1
s

&
(23)

where U is the energy function, & is the set of cliques and
Vc is the potential associated with the clique c, Z being the
normalization constant also named the partition function
in statistical physics. Therefore, to define a Markovian
prior, we have to define a set of cliques and their associ-
ated potential.

3.2 The Segmented Image Prior
The aim of the Markovian prior for the segmented image is
to get a realization composed of homogeneous regions. The
information prior reduces the complexity in the gray-level
set. Indeed, the compromise between the GOF and the en-
tropy term leads to a description of the segmented image
with a reduced number of gray levels, which can be inter-
preted as a rough description (or a classification) of the im-
age. In the PI model, no constraint about spatial homoge-
neity is imposed. Therefore we can obtain some noisy con-
figuration or strongly spatially mixed classes (see Fig. 1). To
avoid such configurations, we propose to add a Markovian
prior in the segmented image model. We apply the Potts
model, which is widely used in image segmentation [10],
[13], [19].

We consider the pairwise cliques defined by the eight
connectivity:

& = {{l = (i, j), m = (i + 1, j)}, {l = (i, j), m = (i, j + 1)},
     {l = (i, j), m = (i - 1, j + 1)}, {l = (i, j), m = (i + 1, j + 1)}}. (24)

The Potts potential associated with a clique c = {l, m} is
written as follows:

Vc(s(l), s(m)) = bds(l)�s(m),                            (25)

where dA is equal to 1 if condition A is satisfied and 0
otherwise.

The prior on the segmented image, including the en-
tropy term, is written as follows:

(a)                                                    (b)

Fig. 1. Avoided configurations using MRFs. (a) Noisy configuration. (b) Two spatially mixed classes.
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where Z is the partition function (normalization constant).

3.3 The Pixon Map Prior
The pixon map offers a multiscale description of the image
which corresponds to the local spatial resolution of the im-
age. We expect to get spatial homogeneity from the map
representing the pixon size. However, we want the pixon
map to represent fine structures. The boundary of objects
(fine structures) will correspond to low values for the pixon
size whereas the interior of homogeneous objects will tend
to higher values. We propose to apply the Chien model as a
prior for the pixon map. This model, which has been pro-
posed in [15], has the property to preserve fine structures
and lines in the resulting configurations. Herein we only
briefly define this model, further details can be found in
[16] and [20].

The Chien model has been originally defined as a bi-
nary model. The set of cliques is composed by the 3 � 3
pixel square inducing a neighborhood of 5 � 5 for each
pixel. For each clique, we have 29 = 512 different binary
configurations. These configurations are ordered into
classes considering that two configurations, which can be
obtained from each other by a rotation or/and by ex-
changing black and white pixels belong to the same class.
We obtained 51 classes denoted C(i), i ³ {1, ..., 51}, which
are represented in Fig. 4. Setting the potential of the uni-
form configuration to 0, we have at this step 50 parame-
ters, denoted Vc(i). To reduce the number of parameters,
we consider several local configurations. We first define a
penalty equal to e for each unit of edge for boundaries in
any direction. Writing the local energy of an edge, we ob-
tain linear equations depending on the different potentials
involved in an edge description (see Fig. 2; for instance,
we have, for a vertical boundary: Vc(13) + Vc(13) = e). We
also define a penalty equal to l for each unit of line (see

Fig. 2. Equations associated with the edge constraints for the Chien model (each sum of potentials is equal to e).

Fig. 3. Equations associated with the line constraints for the Chien model (each sum of potentials is equal to l).
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Fig. 3). We solve the derived system of linear equations
and obtain a value for potentials depending on e and l.
The remaining potentials correspond to configurations
referred to as noise and are set to n. The value of the po-
tentials are given in Fig. 4. Therefore, the Chien model is
characterized by three parameters:

1)� e denotes the elementary cost of edges,
2)� l denotes the elementary cost of lines,
3)�n denotes the cost of noise.

The energy associated with the binary Chien model is
written as follows:

U K V ib
c

b

c K

1 5 1 50 5 0 5=
³
Ê
&

,                             (27)

where

CK = {{(i - 1, j - 1), (i - 1, i), (i - 1, j + 1), (i, j - 1), (i, j), (i, j + 1),

(i + 1, j - 1), (i + 1, j),   (i + 1, j + 1)}, l = (i, j) ³ L}

and V ic
b1 50 5  is defined accordingly to Fig. 4.

Fig. 4. Binary configurations and their associated potential in the Chien model.
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From the binary model, an m-ary model is derived. Con-
sider an m-ary configuration i on a clique c. For each state d
(possible value for the ds), denote by id the binary configu-
ration defined by setting all the pixels in c equal to d to 1
and the other pixels to 0. The m-ary potential associated
with the m-ary configuration i is then written as the sum of
the corresponding potentials in the binary model:

V i V ic c
b

d
d

0 5 2 71 5= Ê .                                (28)

An example of this construction is shown in Fig. 5. For
this configuration containing three labels, the potential is
defined as follows:

V = V(b)(29) + V(b)(10) + V(b)(13) = 0.98e + n.             (29)

3.4 The MPI Model and Optimization
In the MPI model (Markov Pixon Information), we intro-
duce three priors in a pixon-based approach. The infor-
mation prior is introduced for the segmented image as
described for the PI model. We propose to add two
Markov priors both for the segmented image and the
pixon map. We also use a Gaussian model for the GOF. To
summarize, the global energy is written as follows:

E E X K S E S E S E KMPI GOF I M M= + + +, ,2 7 0 5 0 5 0 50 5 0 51 2 ,        (30)

where:
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In the MPI model, we consider some spatial interactions
both on the pixon map and on the segmented image. In the
first algorithm derived for the PI model, the optimization of
the pixon-map consists in selecting independently the best
pixon size on each pixel. This leads to poor results, as we
have introduced some interactions in the pixon map. There-
fore, we have to use simulated annealing for both the seg-
mented image and the pixon map. We use the second ver-
sion of the algorithm which directly samples the product
space 6 � .. If we include the Markovian priors during the
first iterations, small clusters are favored on the segmented
image and on the pixon map which represent very deep
local minima. The Metropolis dynamic used in the pro-
posed simulated scheme is based on single pixel changes.

So the information prior can not suppress a whole cluster
within this dynamic in practice and does not reduce the
number of gray levels in the segmented image. Indeed, the
information is a global constraint as it is defined by the con-
figuration on the whole image whereas Markov random
fields are defined by the sum of local constraints involving
a few number of pixels. Therefore, the dynamic associated
with the information prior is much slower than the one as-
sociated with the Markovian priors. To solve this problem,
we first compute some iterations of the simulated annealing
optimizing the PI model. The Markovian priors involved in
the MPI model are integrated during the optimization when
the information prior has already reduced the number of
values in the segmented image. In practice, we compute
4,000 iterations of the simulated annealing. During the first
3,000 iterations, the Markovian priors are not taken into ac-
count in the energy function. The cooling schedule is given
by a geometric law: T(n + 1) = 0.95 T(n), with the initial tem-
perature T(0) = 1,000. The program requires two minutes on
a standard workstation for a 128 � 128 parametric map.

4 ANALYSIS OF STATISTICAL MAPS

The application which has motivated this work is the
analysis of statistical parametric maps from fMRI studies.
The fMRI data consist in time series of 2D slices (or 3D
volumes). In this paper, we have considered 2D slices for
simplicity of notations (and computation time considera-
tions). The different slices in the time domain correspond
to different acquisitions of the same slice in the human
brain during two or more stimulus conditions. In cate-
gorical experiments, the protocol consists in several peri-
ods of A acquisitions during a baseline time (no stimula-
tion) followed by B acquisitions under a stimulus condi-
tion. The aim of fMRI analysis is to compare the distribu-
tions of the gray level in a given voxel and to detect voxels
for which the distributions during baseline and stimulated
periods differ significantly. These voxels are referred to as
activated voxels.

4.1 fMRI Analysis
The most widely used approach to analyze fMRI consists in
three steps [21], [22], [23], [24], [25]:

1)�optional signal restoration (filtering, ...),
2)� computation of a statistical map,
3)� thresholding, using correction for multiple comparison.

A recent review of fMRI analysis can be found in [26]. Con-
sider an fMRI time series denoted by F = (f(l, t)), where l ³ L
refers to the spatial coordinates and t ³ T refers to the time
coordinate. We also consider herein that initial data have
been filtered or restored if necessary. Denote TA the subset
of T corresponding to condition A shifted by the time corre-
sponding the hemodynamic response delay and TB the sub-
set of T corresponding to condition B with the same shift. A
statistical parametric map (SPM) corresponds to an image
for which the value in a given voxel is given by a statistical
test comparing the voxel distribution during TA and the
voxel distribution during TB:

"l ³ L, SPM(l) = test(dA(l), dB(l)),                   (35)

Fig. 5. Construction of an m-ary model from the binary Chien model.
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where:

dA(l) = {f(l, t), t ³ TA} and dB(l) = {f(l, t), t ³ TB}.       (36)

Commonly used statistical tests are the parametric t-test
and Pearson correlation or the nonparametric Kolmogorov-
Smirnov test. An example of an SPM obtained with a t-test
is shown in Fig. 6. To detect activated voxels, thresholding
is usually performed. The threshold is defined using a p-
value, which takes into account the spatial extent of the
detected areas, to discard false alarms [22], [27]. However,
misdetections (false-negative alarms) are not considered in
these approaches. Extended but flat areas (lower than the
chosen threshold) can also represent an underlying activa-
tion. Moreover, defining a threshold seems quite arbitrary
when considering the histogram in Fig. 6. Therefore, alter-
native approaches are studied to analyze fMRI [28]. Herein
we propose to describe the SPM using the MPI approach.
First, the restored image will remove noise (both creating
false alarms and misdetections) and increase the signal to
noise ratio. Second, the segmented image leads to a de-
scription of areas containing information (representing a
signal different from the background) and areas referred to
as background. Therefore, we avoid the threshold in the
SPM analysis but analyze the information in the SPM using
well defined modes in the restored image.

4.2 Results Using the MPI Approach
In this subsection, we study the results obtained, respec-
tively, with the I model, the PI model, and the MPI model.
Fig. 7a shows a SPM obtained using a t-test on a Flash MRI
sequence from an experiment studying language. Before
computing the t-test, data sets are preprocessed to correct
baseline fluctuations and movement artifacts [29]. Fig. 7b,
Fig. 7c, and Fig. 7d represent the restored images obtained
with, respectively, the I model, the PI model, and the MPI
model. Fig. 7e, Fig. 7f, and Fig. 7g are the corresponding
pixon maps, and Fig. 7h, Fig. 7i, and Fig. 7j the segmented
images. Note that for the I model, the pixon map is not de-
fined (see Fig. 7e), so that the restored and segmented im-
ages are identical (Fig. 7b and Fig. 7h). The gray-level scale
represents the intensity for the restored images. For the
pixon maps and the segmented images, the gray levels only

define the labels (respectively, the pixon sizes and the
classes). The description obtained with the I model is re-
duced to a classification of the image. This classification is
automatic as it does not require the number of classes nor
any initial value for these clusters. The result is then inter-
preted as an automatic multilevel thresholding. The PI
model allows us to reconstruct the image in accordance
with the classification. Comparing Fig. 7b and Fig. 7c, we
can notice that the I-approach description is quite crude, as
each object has a constant value and hard boundaries. We
can also remark by comparing the segmented images from
the I model (Fig. 7h) and from the PI model (Fig. 7i) that the
two classes represented in gray, detected in the I approach,
originate from two different resolutions of noise rather than
from real information in the original image. These two
classes are found in the pixon map (Fig. 7f) but not in Fig.
7i. However, the pixon map and the segmented image ob-
tained with the PI model are quite noisy, resulting in a sub-
optimal restored image. The two classes representing the
background are still present in Fig. 7c. Using MRFs allows
us to regularize both the pixon map (see Fig. 7g) and the
segmented image (see Fig. 7j). The areas containing some
information (activated areas) are detected on the segmented
image, whereas the different resolutions of the noise are
represented on the pixon map. The minimum size for
pixons (black pixels) is obtained either for fine objects (acti-
vated areas, in our case) or for local outliers in the noise.

Consider now the histograms of the restored images.
Again, the data are preprocessed to correct for movement
artifacts and baseline fluctuations. Fig. 8 represents the
histograms (red curves) of the restored images obtained
with the I model, the PI model, and the MPI model. These
histograms are composed of well-separated modes de-
scribing the content of the image (compare with the histo-
gram of the original image in black). We have selected the
modes representing the highest values which correspond to
the activated pixels in our application. In the I approach,
the modes are reduced to intervals of width 1. All the in-
formation is then contained in the three images corre-
sponding to peaks 1, 2, and 3. The PI model brings a more
detailed information in the restored map but pixels in a
given mode are very similar to those obtained with the I

Fig. 6. Statistical Parametric Map (t-test) and its histogram.
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model. With the MPI model, the different maps corre-
sponding to the modes are more regularized. We obtained a
classification of the activated voxels with respect to their
intensity. The “continuous” description is detailed on the
restored image.

The proposed approach has also been validated with
fMRI series obtained by echo planar imaging (EPI), which
features a high temporal resolution. An example is shown
in Fig. 9. For a conventional analysis, row a contains re-
sults from SPM obtained by a t-test, row b the SPM after
thresholding (th = 2.5) and assessment of significance by
using the spatial extent [22], overlaid onto an anatomical
scan. For comparison, row c contains the MPI-restored
image, row d the same SPM, thresholded by th = 1.0, and
in row e, overlaid onto an anatomical scan. While both
methods show essentially the same information, it is in-
teresting to find that in the left side of the image (which
corresponds to the left brain hemisphere), there is a gen-
eral, low-level activation spread over the temporal lobe

and the insula. Because the threshold can be lowered with
MPI restoration, low-level activation is much better re-
tained: Activation in the basal ganglia (thalamus, puta-
men, and caudatum) as well as in the anterior insula is
much more clearly segmented. These findings are well
explicable in the context of the experiments: Subjects had
to perform a grammatical judgment on aurally presented
sentences. It is clear that in this language-related task, the
left hemisphere is generally involved, whereas in the right
hemisphere only activations in the primary auditory corti-
ces (and superficial veins) are found. The thalamic activa-
tion is especially clearly depicted in the left hemisphere,
which is not apparent in comparison with the thresholded
SPM. In retrospect, one may find the thalamic activation
in the unrestored SPM but would hardly judge this as sig-
nificant. This finding was replicated in 12 other subjects
performing the same task. Thus, the MPI approach is able
to recover more information from the SPM.

Fig. 7. (a) Initial SPM. (b)-(d) Restored images. (e)-(g) Pixon map and (h)-(j) segmented images, using the I model (b), (e), and (h); the PI model
(c), (f), and (g); and the MPI model (d), (g), (j).
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5 CONCLUSION

In this paper, we have addressed the problem of low level
description of images. The main goal of our approach is to
perform a restoration and a segmentation of an image within
the same algorithm which leads to an analysis of the infor-
mation contained in the image corresponding to early vision.
The obtained segmentation allows us to analyze the restored
image. The proposed approach is embedded in a Bayesian
framework which is a powerful tool to integrate a priori
knowledge. The proposed algorithm produces a restored
image, a segmented image, and a pixon map, reflecting the
resolution of the underlying data. A first prior consists of
minimizing the entropy associated with the segmented im-
age histogram. We thus obtain a classification process
which does not require the number of clusters. Markovian
prior models are introduced to model both the segmented
image and the pixon map in order to obtain regularized
solutions. This new approach has been validated by ana-
lyzing statistical parametric maps obtained from fMRI
studies.

The segmentation and the restoration are computed in
the same step. The pixon map improves the segmentation
by considering the local resolution of the data. This ap-

proach is unsupervised with respect to the number of clus-
ters and their parameters. The parameters involved are the
weights of the different priors and the parameters associ-
ated with the two MRFs. We do not address the parameter
estimation problem in this paper. Our experience shows
that these parameters are robust for a given application.
Indeed, once fixed for a data set, the same values provide
satisfactory results for the different experiments. We have
validated this approach on two different kinds of data
(Flash and EPI fMRI sequences) and obtained results for the
same parameter values (s2 = 1,000, al = 1, b = 0.001, e =
0.0004, l = 0.0008, n = 0.0008). The Markovian parameters
can be estimated using the method proposed in [10] for the
Potts model and the method proposed in [16] for the Chien
model. We are currently studying cross-validation tech-
niques to estimate the hyper-parameters [30]. Finally, an
Expectation Maximization (EM) scheme can be considered
to get a completely unsupervised algorithm.

One point related to fMRI analysis concerns the signifi-
cance value of the detected areas. Using spatial extend
analysis and correction for multiple comparison, a p-value
is usually derived in the usual thresholding approach. The
smallest connected components are removed according to

Fig. 8. SPM analysis using the I (top row), PI (middle row), and MPI (bottom row) models: histograms of the restored image (red lines) and original
image (black lines), pixels belonging to the peak p1, pixels belonging to the peak p2, and pixels belonging to the peak p3.
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this p-value leading to a false alarm rate lower than 0.05.
However, this approach has various shortcomings. First,
the formula which defines the p-value makes assumptions
which are only asymptotically valid for high thresholds.
While this provides reasonable results for positron emission
tomography (PET) data, Monte Carlo simulations for fMRI
data show considerable deviations from these assumptions.
Second, this approach considers false positive alarms but
not false negative alarms. Finally, the formula depends on
the volume of the studied data set.

The proposed MPI model targets the analysis of SPMs
obtained from functional cerebral images. However, the
MPI principle offers wider perspectives. MPI algorithms
can be derived for other kinds of data using different pixon
shapes. We have proposed to use symmetric parabolic
shapes to recover activation patches in fMRI studies. These
shapes are also adapted to restore astronomy data but seem
restrictive for more complex images. How to find the best
pixon basis for a given application is an open issue.

A second field which can benefit from the MPI approach
is the segmentation. For segmentation tasks, the pixon
model can be removed. The MI approach provides an un-
supervised segmentation algorithm. The information prior
allows us to automatically determine the number of clus-
ters. The clustering problem (finding the number of classes
and their localization in the histogram) and the regulariza-
tion problem are addressed within the same model.
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