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A New Concept for EEG/MEG Signal Analysis:
Detection of Interacting Spatial Modes
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Abstract: We propose a new concept for analyzing EEG/MEG data. The concept is based on a projection of
the spatiotemporal signal into the relevant phase space and the interpretation of the brain dynamics in
terms of dynamical systems theory. The projection is obtained by a simultaneous determination of spatial
modes and coefficients of differential equations. The resulting spatiotemporal model can be characterized
by stationary points and corresponding potential field maps. Brain information processing can be
interpreted by attraction and repulsion of spatial field distributions given by these stationary points. This
allows an objective and quantitative characterization of the brain dynamics. We outline this concept and
the underlying algorithm. Results of the application of this method to an event related potential (ERP)

study of auditory memory processes are discussed. Hum. Brain Mapping 6:137-149, 1998.
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INTRODUCTION

The analysis of electric and magnetic fields mea-
sured over the scalp surface is an important tool for
gaining new insights into processes underlying phe-
nomena such as cognitive processes, epileptic seizures,
and sleep cycles. Basically, two complementary ap-
proaches are in use for investigating EEG/MEG data
sets.

First, spatial analyses focus on the determination of
characteristic spatial distributions and their interpreta-
tion in terms of different brain functions. Principal
component analysis (PCA) [Donchin and Heffley, 1978]
aims at representing the signal by spatial field distribu-
tions and corresponding amplitudes. The spatial mi-
crostate analysis [Lehmann, 1987] focuses on identify-
ing quasistable field maps on the scalp surface and
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their correspondence to brain information processing
units. The extraction of cortical generators is the goal
of source analysis. The underlying neuroelectromag-
netic inverse problem possesses an infinite number
of possible solutions, and therefore different ap-
proaches have been developed to narrow the solution
space. A common approach to analyzing the neuro-
physiological signal is to model the source as current
dipoles and to fit their placement, orientation, and
strength to the data [Brenner et al., 1975; Scherg and
von Cramon, 1986; Mosher et al., 1992]. More recent
developments have focused on distributed solutions
and the determination of current densities as genera-
tors of the measured signals [Hamal&dinen and llmoni-
emi, 1984]. Other approaches suggest constraining the
solution space by integrating spatial information from
magnetic resonance imaging and positron emission
tomography and extracting temporal information from
EEG/MEG measurements [Dale and Sereno, 1993;
Heinze et al., 1994; Fox and Woldorf, 1994; Belliveau et
al., 1995].
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Secondly, temporal analyses aim at identifying charac-
teristic temporal sequences, with their interpretation
again by means of different brain functions. This has
led to characterizations in terms of ERP components as
N100, P300, etc. More recent developments have aimed
at characterizing time series by methods of dynamical
systems theory, such as the evaluation of correlation
dimensions and Lyapunov exponents [Babloyantz et
al., 1985; Cerf et al., 1996] and coherences [Rappels-
berger and Petsche, 1988; Schack and Krause, 1995].

These methods have been extensively used and
revised and have revealed many interesting and impor-
tant results.

However, there still remain uncertainties with these
approaches, which are partly due to the separate
(spatial or temporal) investigations neglecting the re-
spective other component of the spatiotemporal sig-
nals. A particular problem in identifying ERP compo-
nents and their corresponding dipole fits are due to the
uncertainty of finding the correct time intervals describ-
ing different “brain states.” PCA, which is usually
performed on the entire data set, leads to orthogonal
modes which are difficult to interpret if one considers
more than one mode. However, PCA modes can be
useful in getting an impression of the underlying
dynamics and can be a good starting point for model-
ing EEG/MEG signals [Jirsa et al., 1994; Kelso and
Fuchs, 1995], even if they are not necessarily the
optimal choice for representing the dynamics of the
signals.

The algorithm presented in Uhl et al. [1993, 1995]
was a first attempt to fill the gap of separate spatial and
temporal investigations by simultaneously fitting spa-
tial distributions and coefficients describing the dynam-
ics to given spatiotemporal signals. Our method was
applied to EEG data sets of epileptic seizures [Fried-
rich and Uhl, 1996; Uhl and Friedrich, 1996] and MEG
data of a motor-coordination task [Jirsa et al., 1995].
The mathematical and physical background of this
approach is based on the theory of synergetics [Haken,
1983, 1987], a general concept describing complex
self-organizing systems with emergent properties. The
connection of this abstract theory to brain dynamics is
reviewed elsewhere [Kelso, 1995; Nunez, 1995; Haken,
1996].

In this paper we outline the algorithm combining
spatial and temporal approaches and present an inter-
pretation of the obtained spatiotemporal model. This
reveals unambiguous spatial modes (spatial field distri-
butions) and corresponding time intervals describing
brain dynamics, and therefore allows a more objective
and quantitative interpretation of EEG/MEG data sets.
In the next section, the link between complex dynami-

cal systems and brain functioning is discussed. Our
method for detecting spatial modes and their dynam-
ics is presented thereafter (mathematical details are
included in the appendices). In Example: Auditory
ERP Study, our method will be applied to an example
of an event-related potential (ERP) study with audi-
tory stimuli, and the dynamics will be interpreted.
Finally, we summarize the presented algorithm and
the emerging impacts of such a concept.

COMPLEX DYNAMICAL SYSTEMS AND BRAIN
FUNCTIONING

Synergetics

The theory of synergetics [Haken, 1983, 1987] pro-
vides a general concept describing complex self-
organizing systems with emerging properties. The
basis of this theory is a system consisting of a large
number of nonlinearly interacting subsystems. Intro-
ducing a state vector Q with components Q; describing
the subsystem i, the evolution of the complex system
can be described by a differential equation

Q(t) = D[Q, ¢] + F(t) )

with a nonlinear vector function D, control parameters
of the complex system c, and time-dependent fluctuat-
ing forces F(t). In the vicinity of critical values of the set
of control parameters c, this high-dimensional com-
plex system can be approximated by a low-dimen-
sional set of order parameters, i.e., a low-dimensional
superposition of state vectors V; and time-dependent
amplitudes &;(t):

Q=X &MV, &)

The amplitudes &;(t) obey a set of differential equa-
tions, the so-called Langevin equations,

&=di[lg]l + fi(v) (3)

which can be derived analytically from the evolution
equations (Eqg. (1)).

For an elaborate presentation of this theory we refer
the reader to Haken [1983, 1987].

Links of the theory of complex systems to brain
dynamics and EEG/MEG signals

From a physical and neurophysiological point of
view, the brain represents a very complex system
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consisting of the order of 10" interacting neurons.
Therefore, concepts of the physical theory of complex
dynamical systems have been applied to brain dynam-
ics [Kelso, 1995; Nunez, 1995; Haken, 1996].

Since the evolution equations of the neurons and
their interaction are not exactly known, EEG/MEG
signals cannot rigorously be described by a bottom-up
approach as sketched above. However, first attempts
in this direction [Jirsa and Haken, 1996] have shown
promising results.

In this paper we will present a top-down approach,
i.e., an approach for obtaining from a measured EEG/
MEG signal a decomposition into state vectors and
time-dependent amplitudes and for obtaining the cor-
responding dynamics of the amplitudes. Our decompo-
sition will be performed on the level of potentials/
fields on the surface of the head: instead of conceiving
of Egs. (1-3) as equations of interacting neurons, one
could transform these equations (if they were known)
by Maxwell’s theory of electromagnetism to equations
describing dynamics of potentials/fields on the sur-
face of the head.

Eq. (2) then reads

q(t) = > X (Hv; (@)

where q(t) represents the measured EEG/MEG signal:
The vector components, g;(t), represent the time series
of channel i of the EEG/MEG data set. The modes v;
represent spatial field distributions on the surface of
the head. As an interaction of these modes we will
assume the following type of differential equation:

Xi = d [{Xj fl ()

i.e., we neglect in this paper fluctuating forces, corre-
sponding to the analysis of averaged EEG/MEG data
sets, assuming that the fluctuating forces cancel out in
the averaging process.

Below, we will present a method for obtaining the
modes v; and the vector function d;, describing the
dynamics of the amplitudes, and the first attempts to
interpret these dynamics in terms of processing units
in the brain.

Our approach to decomposing an EEG/MEG signal
(Eq. (4)) and describing the dynamics (Eq. (5)) is
closely related to answering the following questions
concerning brain functioning:

1. Which regions in the brain do interact? This is
answered on the level of field distributions on the
surface of the head by the modes v; or more

precisely by certain linear combinations of them
(so-called fixed points; see Interpretation of the
Obtained Model, below).

2. How do these regions interact? The answer to this
guestion is given by the dynamics (Eg. (5)) and an
interpretation of the dynamics (see Interpretation
of the Obtained Model, below).

The novelty of our approach is based on the follow-
ing: we constrain our search for spatial field distribu-
tions by searching modes which interact in terms of
differential equations. Thus, we take advantage of the
high temporal resolution, which is one of the major
advantages of EEG/MEG measurements, to draw
conclusions from interacting spatial field distributions.
So far, our method has only led to field distributions on
the surface of the head. Further work should incorpo-
rate spatial dipole fits into this framework of constrain-
ing the associated dynamics to differential equations.

To avoid notional misunderstandings, we want to
mention that spatiotemporal source localization tech-
niques aim at solving the neuroelectromagnetic in-
verse problem by fitting spatial parameters to the data
and describing the temporal evolution by amplitudes.
Our spatiotemporal approach aims at fitting spatial
and temporal parameters to the data set on the level of
potential fields on the scalp surface, to find characteris-
tics of underlying field distributions and their dynam-
ics.

DETECTION OF INTERACTING
SPATIAL MODES

Identification of spatial modes and their dynamics
Model of the dynamics
Close to instabilities, the function d;, describing the

interaction of the order parameters (Eq. (5)), can be
expressed by low-dimensional polynomials, i.e.,

N N N
X = di[x]] = E ax + 2 i jiXiXik
=1 j=1 k=j
N N N
+ 2> a; XXX, (6)
i=1 k= 1=k

The ansatz of a polynomial function is not stringent;
under certain experimental conditions, other classes of
functions can be considered, e.g., in the case of peri-
odic observables within a trial [Haken et al., 1985],
trigonometric basis functions can be considered.
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To obtain the spatiotemporal model of the signal,
i.e., the coefficients a;;, a;, and a;jy of Eq. (6) and the
spatial distributions v; of Eqg. (4), we define a cost
function, the global minimum of which represents the
best choice of these parameters.

Cost function

The cost function C consists of a least square error
function D of the dynamics given by Eqg. (6) and a
second term, p - V, which is introduced to avoid
ambiguities (see below):

C=D+p-V (7)

( — di[{xj}])2> ()
o ()
The appropriate number N of interacting spatial modes
has to be guessed initially and confirmed or rejected by
the obtained results (see Practical Strategy, below).

For p = 0 this cost function accords with the function
presented in Uhl et al. [1995]. A similar cost function is
used by Kwashiok [1996, 1997] to obtain a reduction of
complex dynamical systems given by partial differen-
tial equations based on a methodology first pointed
out by Hasselmann [1988].

The cost function aims at describing the dynamics in
terms of differential equations. Since the cost function
consists of a least-square-fit potential considering the
time derivative, it is not optimally adapted to finding a
differential equation which leads to the signal after
numerical integration. Approaches aiming in this direc-
tion have to consider the right choice of initial condi-
tions as well as coefficients describing the differential
equations [Baake et al., 1992]. Since the data sets we are
dealing with are averaged signals, but which still
contain noise, it is not our goal to model the signal by
numerical integration but to characterize the dynamics
by approximated differential equations.

The cost function (7) has quite a large number of
parameters to be fitted to the data sets:

D = D[x;(1), &, ik, Qijial- 9)
Next we will present how most of the parameters can
be eliminated by analytic evaluation of partial varia-
tions.

Biorthogonal modes and the term V

To obtain the amplitudes x;(t) from the signal q(t), a
set of vectors u; has to be introduced. A projection of

the signal onto these vectors yields the amplitudes:

Xi(t) = u; - q(t). (10)
Thus, the set of vectors u; represents the set of the
biorthogonal modes of v;:
By this projection procedure, temporal information of
all channels is considered, which has been shown
recently to quantify spatially extended dynamics more
reliably than single-channel methods [Lachaux, 1997].
To avoid ambiguities, such as
the second term of the cost function, p -V, consists of
the absolute values of the scalar products:

V=2 Uiy (12)
ij
weighted by a scalar p.
The cost function now reads
C = C[u;, &, &k, Qjjal- (13)

Elimination of parameters describing dynamics

Appendix A shows the variation of the cost function
C with respect to a;;, a;j, and ajj. As a result, these
parameters can be written as a function of u;:

iy Qjjio Aijit = Ay Qjjlor Ajjiar [Ui] (14)

and therefore the cost function C depends on u; only:

C = C[y;]. (15)

Normalization of modes and preprocessing of signal

For a further reduction of parameters, it is reason-
able to project the signal q(t) as a preprocessing step
into a subspace, e.g., a subspace spanned by the
principal component analysis (PCA) modes w; of the
averaged signals:

at) = [@M®hi-1. .« with G=w; q(®) (16)
and search for modes (; in that subspace. The number s
of vectors spanning the subspace should not be too
small to show all relevant dynamics and components
representing the signal.
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The scaling of the vectors {j; has to be fixed, which
can be done by requiring

(17)

This is more reasonable than requiring u? = c, since our
constraint (Eq. (17)) leads to cost functions dealing
with comparable amplitudes and therefore compa-
rable coefficients a;, a;j, and a; . This can be solved by
introducing generalized elliptic coordinates. The result-
ing nonlinear cost function C then depends on ¢!
with i = 1, ..., N representing the different spatial
modesi,andj=1,...,s — 1the different independent
angles (see Appendix B).

The global minimum of this resulting cost function
represents the best choice of spatial modes u; and
coefficients a;;, a;j, and a;;y with respect to the least
square fit defined by Eq. (7) describing the dynamics of
the signal.

Minimization

Because of the nonlinear dependence of the resulting
cost function on the angles ¢{!, numerical methods
have to be considered for further calculation. The cost
function depends on N - (s — 1) parameters, which is
typical for low-dimensional signals (N =2 — 5,
s =5 —10) of the order 10-50. A great variety of
algorithms for minimizing multidimensional cost func-
tions exist, such as gradient-based algorithms, simu-
lated annealing methods (e.g., Press et al. [1992]), and
genetic algorithms [Holland, 1987]. For that order of
dimensionality, genetic algorithms and simulated an-
nealing techniques are more robust than gradient-
based methods. We have found genetic algorithms in a
number of optimization problems to give fast and
reliable results [Kruggel and Lohmann, 1996]. How-
ever, any choice of optimization method is acceptable
if it is able to deal with local minima in a 10-50
dimensional solution space.

Connection of spatial modes v; with u;

To obtain the spatial modes v; from the biorthogonal
modes u;, Eq. (11) has to be inverted. However, the
inverse is nonunique if the number N of modes u; is
smaller than the number s of PCA modes used for
preprocessing. In Appendix C, a second cost function S
is introduced to obtain a unique solution

Vi = Vi[y] (18)

which is the best solution for representing the signal.

TABLE I. Strategy for finding right choice of number N of
spatial modes spanning phase space and weight factor p
of term p - Vin cost function C

N=1

Find global minimum Increase p Increase N

Check for identical
modes

no

Calculate spatial modes
& signal representation

Check for quality of
signal representation
S<S,

no

Interpretation
of dynamics

Practical strategy

We propose the strategy shown in Table I: a minimal
number N of modes for representing the signal is
guessed, and p is set to p = 0. The global minimum is
calculated and the result is checked with respect to
occurring identical biorthogonal modes u;. In the case
of occurrence, p is increased until the biorthogonal
modes differ. Then the spatial modes v; are calculated
and the signal representation is checked by the cost
function S (Appendix C). In the case of poor signal
representation, the number of involved modes is in-
creased until the representation is on an acceptable
level.

The final step now consists of interpreting the
obtained dynamics.

Interpretation of the obtained model

So far we have obtained a description of the signal in
terms of a representation

q() = > x(Hv,

(19)
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and a model for the underlying dynamical system

Xi = di[{xj . (20)

To gain more insight into the dynamics and to allow
an interpretation by means of interaction of processing
units, the dynamical system has to be analyzed.

Dynamical systems can be characterized by station-
ary points, so-called fixed points, which attract or repel
trajectories in the space of the amplitudes, i.e., the
phase space. The fixed points y; are the points in phase
space which do not evolve with time:

y; = 0. (21)

Thus, they can be obtained by solving the nonlinear set
of equations

difly;ll = 0. (22)

To obtain quantitative characteristics of these fixed
points, the trajectory in the vicinity of these stationary
points can be investigated by the so-called linear
stability analysis (e.g., Haken [1983]). More sophisti-
cated characteristics can be obtained by calculating
not only time-invariant points but also time-invar-
iant sets of points, such as limit cycles. These and
more complicated aspects of dynamical systems theory
are of course beyond the scope of this paper. We refer
the interested reader to Guckenheimer and Holmes
[1983].

However, we want to stress that already the charac-
terization of the obtained dynamical system in terms
of fixed points may be of great interest for an inter-
pretation of the underlying processing. The spatial
mode belonging to occurring attractive fixed points
may be identified as a field representation on the
scalp surface of processing units in the brain: a com-
mon definition of ERP/ERF components [Résler, 1982]
relies on positive or negative extrema of the time
series:

d
q(t) = extremal, i.e., aq(t) =0 (23)

due to extremal cortical activity represented by the
component.

Our definition of processing units in terms of fixed
points is similar. Considering the definition of fixed
points (Eq. (21)) and the definition of the amplitudes
(Eq. (10)), it is obvious that components correspond to

fixed points:
Caw-o | d d
— q =
dt O ayi(t) = U 'aQ(t) =0. (24
yi(t) = ui - q(t)

Fixed points are never reached by the trajectory, since
the trajectory would stay there forever, but it is
attracted and repelled by them. The discussion of fixed
points, as shown, includes the discussion of compo-
nents, but opens in addition a wide field of possible
quantitative characterizations of the dynamics (repre-
senting the shape of the components, its strength of
attraction and repulsion, etc.). This may also allow the
detection of components in data sets (such as single-
subject data) which are not detectable with the conven-
tional approach, since additional irrelevant peaks un-
correlated with the processing of the experimental task
may occur. Therefore, our method might lead to a more
reliable definition of a component.

Identifying these fixed points and observing the
trajectory in phase space being attracted in the course
of time by different fixed points lead to a description of
brain dynamics in terms of “successive” processing
states. This can be conceived of as an analogy to spatial
microstate analysis [Lehmann, 1987], but instead of
stepping from one state into the next, our analysis
leads to brain dynamics which are governed by chang-
ing attractions of different states.

This also leads to an impact on current dipole
analyses, which face the problem of finding the right
time interval of a commonly defined ERP/ERF compo-
nent: either dipoles can be fitted directly to the station-
ary field which belongs to the fixed point representing
a certain brain function, or else a time interval belong-
ing to the influence of a fixed point can be obtained by
studying the phase portrait, and the dipole fit can be
applied to this defined time interval. The length of the
time intervals belonging to the influence of the same
fixed point for different stimuli is not necessarily of the
same size and reflects different “durations” of the
“same” brain function in different tasks.

For further discussions of the impact of this concept,
refer to Conclusions, below.

EXAMPLE: AUDITORY ERP STUDY
Experiment

As an example for the application of our algorithm,
we chose an auditory ERP study of Opitz and Meck-
linger [1997]. That study was performed to examine
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the neuronal and functional characteristics of process-
ing deviancy and novelty in auditory stimuli. Three
different stimuli were presented to 20 volunteers:
standard (s), tone of 600 Hz; deviant (d), tone of 660
Hz; and novel (n), a novel sound selected from a class
of unique sounds.

The deviant tones had to be counted (attend condi-
tion). During the experiment, 128-channel EEG record-
ings were carried out. The data sets were averaged for
the different stimuli after artifact elimination, and
bandpass (1-20 Hz) filtering. Figure 1 shows the time
series (solid line) of electrode Fz for the three different
conditions (the patterns in different time intervals will
be discussed later). One observes a negative peak at
110 msec (the N100 component) in all three signals.
Deviant and novel stimuli both show a strong positive
peak between 250-400 msec (P300). Analysis of the
signals should investigate the differences in processing
deviant and novel stimuli in this time range. Below, we
will discuss results of our proposed spatiotemporal
analysis.

Spatiotemporal analysis

To allow a transparent comparison of the different
cases, we fitted simultaneously the same biorthogonal
modes u; to the different datasets. Following the
Practical Strategy (see above), we obtained N = 2 and
p = 0.1 as a good choice (thereby, the optimization
process needs less than 10 min computation time on a
conventional workstation). Figure 2 shows the spatial
modes v; and v, spanning the space of the relevant
dynamics, and Table 11 shows the approximate values
of the coefficients, describing the dynamics in terms of
Equation (6). With these two modes, signal representa-
tion was achieved by 80-90% with respect to the L, —
norm. This representation is sufficient to leave the
number of modes unchanged, given the fact that the
resulting two-dimensional phase space allows a clear
presentation of our concept, interpreting the dynam-
ics.

Figure 3 shows graphic representations of the ob-
tained dynamics (data sets of the standard condition,
deviant condition, and novel condition). The axes
represent the amplitudes of the corresponding spatial
modes v; (X;-axis corresponds to v;, X,-axis to v,). Each
point in that space represents a different spatial field
distribution: a linear combination of v, and v, weighted
by the corresponding x; and x, values:

g = XVy T XoVa. (25)

pot. [uV]
-4
) 2 m N —
a) o <A . . } ——
i 100 300 time [ms]
g s i
0
pot. [uV]
-4
b) _g MM\ AR
‘21 100 300 time [ms]
g s 1
10 NN p 3
pot [uV]
C) 0 |
‘21 100 time [ms]
6 o fp1”
13 MM fe 2
NN fp 3
S fp4

Figure 1.
Time series of electrode Fz (reference: nose tip) for standard (a),
deviant (b), and novel (c) conditions. The marked time intervals
correspond to regions influenced by the fixed points (fp).

The scale of the axes is in principle arbitrary due to
possible scaling of the modes:

q = (euxq)(Viday) + (aXz)(Vo/ ).
The value of « has been fixed by the constraint

(xi) = () = 107

(see Normalization of Modes and Preprocessing of
Signal, above). The solid thick line in Figure 3 repre-
sents the spatiotemporal signal in that space. (The
observed trajectories cross each other. From a theoreti-
cal point of view this is incorrect, since there exists a
unique solution for each initial condition of a dynami-
cal system. The intersections are due to the projection
into a two-dimensional subspace. A projection into a
three-dimensional subspace leads to nonintersecting
trajectories with a signal representation of 95-97%.
However, for a more transparent presentation of our
method, a two-dimensional projection was preferred,
as these two-dimensional phase portraits represent
approximations of the skeletons of the underlying
dynamics.) We have marked the line every 40 msec to
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ant. " max.
left right
post. min.
mode vy mode v
Figure 2.

Top row: Configuration of potential field maps and color coding.
Bottom row: Spatial modes v; and v, spanning phase space,
resulting from the minimization of the cost function of all three
conditions. The modes represent spatial field distributions, configu-
ration, and color coding as in the top row (vi: minimum = 2.4 pV,
maximum = 9.6 pV; vy minimum = —5.9 pV, maximum = 5.6
pv).

obtain a correspondence with the time series. The
obtained set of differential equations predicts for each
point in phase space the development of a trajectory in
that point. The direction of the vector field is indicated
by half-arrows in Figure 3, and the absolute value is
indicated by color (red represents a small value: the
trajectory remains longer in that region compared to
the blue areas, i.e., large value). Finally, we plotted
approximated fixed points (fp) calculated from the set
of differential equations.

An interpretation of the observed spatiotemporal
dynamics can be achieved from different perspectives.

Temporal interpretation

The following discussion of time intervals is also
illustrated in Figure 1, where the time intervals have
been included into the time series of the Fz-electrode.

In all three conditions (standard, deviant, and novel),
the trajectory is first repelled by fixed point 0 (fp 0) and
then influenced by fixed point 1 (fp 1, fp 1’, and fp 1").
The time range of the influence of fp 1 (fp 1', fp 1")
varies from 0-160 msec (novel condition) up to 0-240
msec (deviant condition). The influence of fp 1 and the
resulting trajectory is similar for all three conditions,
and reveals the N100 component. After 200 msec for
the standard condition, the trajectory is influenced by a
number of additional fixed points. Most likely they
correspond to artifacts and may be neglected, since the
signal in that time domain does not represent signifi-
cant changes.

In the cases of deviant and novel conditions, the
trajectories behave differently: they both show a strong
attraction by different fixed points, leading to P300
components. In the case of the deviant condition, the
trajectory after 240 msec leaves the region of fp 1 and is
strongly attracted by fp 3. This region is reached after
340 msec and the trajectory stays there up to 520 msec.
The trajectory of the novel condition shows a different
behavior: after 160 msec the trajectory is attracted by fp
2, reaches the region of that fixed point in the interval
230-270 msec, passes at 360 msec fp 3 of the deviant
condition, and is finally attracted by fp 4 at 480-520 msec.

Spatial interpretation

Figure 4 presents the spatial field distributions
corresponding to the occurring fixed points. The ampli-
tude of these distributions is given by the distance of
the fixed point to the origin. Therefore, the spatial
information given by fp 0 can be neglected, and the
amplitude is zero. Fp 1 and fp 1’ differ slightly but
show similar field distributions, corresponding to the
N100 field maps. Fp 1” of the novel condition differs
more, but taking the trajectory into account, one
observes that fp 1’ of the deviant condition also seems
to influence the novel case. Fp 2 and fp 3 differ clearly,
indicating that different brain regions may be active.
This confirms the findings of Opitz and Mecklinger
[1997], where dipole analyses suggested different ac-
tive cortical regions between 250-420 msec. The poten-
tial maps for this interval coincide with our findings of
potential maps corresponding to fp 2 and fp 3. Fp 3
represents a fixed point of the deviant condition, but is
also passed by the trajectory of the novel condition at
the same time as in the deviant case. This suggests that
in the novel condition as well, brain functions repre-
sented by fp 3 play a role in human brain information
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TABLE Il. Coefficients describing dynamics in terms of Eq. (6) obtained from the
minimization of the cost function

. Standard Deviant Novel
Condition,
mode i 1 2 1 2 1 2
aj; -32.3 36.2 2.00 —4.90 42.0 19.7
ais —-32.3 —-19.3 0.888 —2.22 —63.8 —29.0
ain —871.0 657.0 —-9.31 28.4 —85.7 —-19.7
a1 -1,320.0 -107.0 25.1 —278.0 240.0 115.0
a2 —194.0 275.0 —28.6 320.0 —278 —213.0
aim —3,010.0 2,310.0 90.0 18.3 41.0 9.65
a2 —7,820.0 1,100.0 —424.0 261.0 —280.0 —96.2
Q122 —3,300.0 3,670.0 663.0 —756.0 —145.0 99.3
a2 —856.0 291.0 —440.0 718.0 —-512.0 —210.0

processing, but are less important than in the deviant
case, an observation also noted by Mecklinger and
Muller [1996]. The final “processing unit” of the novel
case (fp 4) shows a distribution similar to that of fp 2.
However, the strength is decreased.

Summarizing these findings, Figure 4 shows spatial
field distributions ordered in the way of occurrence for
the different stimuli. After the N100 component (fp 1),
fp 3 in the deviant case becomes active; in the novel
case, a processing unit represented by fp 2 is first
activated before fp 3 and finally fp 4 are involved.

A final remark should be made about the presented
analysis of the example. The two modes shown in
Figure 2 span the subspace of the assumed relevant
dynamics. Any linear combination of the two modes
span the same space, i.e., an interpretation of the model
should not be based on these modes, but on character-
istics in that space, as we did by an interpretation of
the dynamics in terms of fixed points: The spatial field
distributions belonging to the fixed points are invar-
iant under linear coordinate transformations in the sub-
space.

CONCLUSIONS

We have presented an algorithm which allows a
projection of spatiotemporal EEG/MEG signals in a
relevant subspace (relevant in terms of both dynamics
and signal representation). The analysis of the dynam-
ics in that subspace (the phase space) allows an
objective and quantitative interpretation of the occur-
ring phenomena in terms of attracting and repelling
fixed points. This interaction of fixed points leads to an
observation of potential field maps corresponding to
different brain “states,” with changing influence on

information processing in the human brain. In contrast
to spatial microstates [Lehmann, 1987], these “states”
are not really occupied; rather, they are “centers of
attraction” with changing influence on brain dynam-
ics.

This new concept of the interpretation of EEG/MEG
signals enables new quantitative approaches to obtain-
ing a better understanding of information processing
in the human brain:

Fitting dipoles to EEG/MEG signals does not rely on
the choice of a time interval.

Interindividual differences can be investigated in
terms of different values of attraction of fixed points.
Averaging trials may be improved by classifying
individual trials into categories by their dynamics.

From our point of view, this leads to a new level of
EEG/MEG analysis, since the basis of the interpreta-
tion of signals can be shifted from data-driven approaches
(as in conventional analysis) to model-based approaches.

The presented method is limited to averaged sig-
nals, which show only small contributions in higher-
frequency domains. This is due to limitations of calcu-
lating the time derivative of the signal and the neglect
of fluctuating forces (compare Eq. (3) and Eqg. (5)). The
search for the global minimum of the nonlinear cost
function is numerically more elaborate than calculat-
ing PCA modes by solving the linear eigenvalue
problem of the correlation matrix. However, we gain a
spatiotemporal model of the signal. Therefore, the
main interpretation of the model is not to find differen-
tial equations which represent the signal after numeri-
cal integration, but to find a subspace which is dynami-
cally relevant, to find invariants in that subspace as
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given by the fixed points, and to find characteristics
and interpretations of these invariants.

The justification of our approach is based on the
theory of complex systems as described in Complex
Dynamical Systems and Brain Functioning, above. Our
first attempt at an interpretation of the dynamical
systems in terms of fixed points showed links to the
conventional identification of ERP/ERF components
and to spatial microstate analysis, as discussed in Interpre-
tation of the Obtained Model, above. Further investiga-

Figure 3.
Projection of spatiotemporal EEG signals in phase space (solid line)
with time markers in msec (yellow diamonds). Half-arrows and
coloring illustrate the obtained dynamical system and fixed points
(fp, red diamonds) representing attractive spatial field distributions
(standard (a), deviant (b), and novel (c) conditions).

tions of ERP/ERF studies with the presented algorithm
will lead to deeper insights into human brain information
processing. In combination with more sophisticated meth-
ods of source localization, this will improve our knowl-
edge of spatiotemporal brain dynamics.
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0-200 ms

0-

fp1”

0-

240 ms 320 - 520 ms
fp 3

160 ms 220 - 280 ms 350 - 370 ms 440 - 520 ms

Figure 4.
Spatial field distributions corresponding to fixed points (fp) of phase portrait (standard (a), deviant
(b), and novel (c) conditions). fp 1: minimum = —1.23 pV, maximum = 0.32 pV; fp 1": minimum =
—3.23 gV, maximum = —0.53 pV; fp 1”: minimum = —9.94 pV, maximum = —2.66 pV; fp 2:
minimum = 0.37 pV, maximum = 8.36 pV; fp 3: minimum = 1.89 pV, maximum = 7.54 pV; fp 4:
minimum = 0.15 pV, maximum = 4.24 uV (color coding and configuration as in top row of Fig. 2).
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APPENDIX A

Eg. (6) can be rewritten as

M
X; = E Qi o&i o (26)
a=1
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after introduction of abbreviations

{X]kal }jzl Nik=j,...N;I=K,..., N} (27)
The cost function D then reads
N X iai,agi,a)2>
D= Z‘I a;@) (28)
Variation with respect to a; yields
aC  aD M
v, = ey~ 00 2 Gk, = KE) (29
which can be solved by
a = Qb (30)
With (8)), = i (Qi)ap = Einkip) (03)p = Xi&ip)  (31)
Inserting this expression back into D leads to
N -1
D=N- ; b‘(g(‘ﬂb' (32)

Because of Eq. (27) and (10), this depends on the
biorthogonal modes u; only.

APPENDIX B

We utilize the constraint of a fixed contribution of a
mode to the signal

(xF) = (@)% =c (33)
with the signal §(t) in PCA projection:
S
a®) = 2w O 4 = -, (34)
i=1
Because of (nym;) = §; the constraint then reads:
S
=2 Elady=c (35)
i=0

which represents an s-dimensional ellipsoid. This can
be solved by generalized elliptic coordinates:

u® = r® cos p® (36)
-1
ul = rthcos ) [[sind® if j#1,5 (37)
k=1
s—1
ui(S) = r(S) H sin d)l(k) (38)
k=1
with
r = \c/(m?). (39)

APPENDIX C

The cost function S to obtain the modes v; from u; is
defined by the function:

< =S x|

((a(e)?)

q(t)

<(q(t) - q(t»vi)z

= : 40
(@) 40)

which is the natural cost function concerning an
optimal signal representation with respect to the least-
variance norm.

Variation of S with respect to v; yields

N
avJ ; XiX;)vj = (0x;) (41)
which can be inverted to
N
vilul = E M;Hax) = 2 Mt (@®@qu)  (42)
i=1
with M; = (xX) = u{g ® gu;, and ® representing a

dyadic product.
To proof Eq. (11), v; - uy is calculated:

Ug = ; M;ui(a ® gu; (43)
N
= 2 MMy = (44)
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