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Abstract: The standard Gaussian function is proposed for the hemodynamic modulation function (HDMF)
of functional magnetic resonance imaging (fMRI) time-series. Unlike previously proposed parametric
models, the Gaussian model accounts independently for the delay and dispersion of the hemodynamic
responses and provides a more flexible and mathematically convenient model. A suboptimal noniterative
scheme to estimate the hemodynamic parameters is presented. The ability of the Gaussian function to
represent the HDMF of brain activation is compared with Poisson and Gamma models. The proposed
model seems valid because the lag and dispersion values of hemodynamic responses rendered by the
Gaussian model are in the ranges of their previously reported values in recent optical and fMR imaging
studies.

An extension of multiple regression analysis to incorporate the HDMF is presented. The detected
activity patterns exhibit improvements with hemodynamic correction. The proposed model and efficient
parameter estimation scheme facilitated the investigation of variability of hemodynamic parameters of
human brain activation. The hemodynamic parameters estimated over different brain regions and across
different stimuli showed significant differences. Measurement of hemodynamic parameters over the brain
during sensory or cognitive stimulation may reveal vital information on physiological events accompany-
ing neuronal activation and functional variability of the human brain, and should lead to the investigation
of more accurate and complex models. Hum. Brain Mapping 6:283–300, 1998. r 1998Wiley-Liss,Inc.
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INTRODUCTION

Functional magnetic resonance imaging (fMRI) meth-
ods have been successfully employed to localize dy-
namic brain processes in various stimulation tasks
[Bandettini et al., 1993, 1994; Belliveau et al., 1991;

Blamire et al., 1992; Engel et al., 1994; Kwong et al.,
1992; McCarthy et al., 1993; Turner et al., 1993]. The
most popular of these methods exploit the differences
in the magnetic susceptibilities of oxygenated hemoglo-
bin (HbO2) and deoxygenated hemoglobin (HbR) to
track the blood-flow-related phenomena of neuronal
activations, which is referred to as blood-oxygen-level-
dependent (BOLD) contrast [Bandettini et al., 1994;
Duyn et al., 1994; Menon et al., 1993, 1995; Ogawa et
al., 1992, 1993]. HbR concentration changes concomi-
tant with synaptic activities modulate local micro-
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scopic B0 field gradients in the vicinity of blood cells
and veins [Bandettini et al., 1994], altering the signal
intensities of T2- and T*2-weighted MR sequences.

There are still controversies as to the vascular and
tissue origin of the fMRI intensity changes observed at
various field strengths. A transient shortening of T*2
within milliseconds after the onset of stimulus, which
is attributed to the rapid increase in O2 consumption
upon onset of neural firing, has been reported [Ernst
and Henning, 1994; Menon et al., 1994]. This is fol-
lowed by an increase of fMRI signal due to slower
hemodynamic response, which overcompensates the
initial hypooxygenation and oversupplies the active
region, leading to an increase in HbO2 concentration
with respect to the baseline value. In vivo optical
imaging of intrinsic signals [Frostig et al., 1990] re-
vealed a transient increase of blood flow within the
first 1,000 msec of neuronal activity, and recent MR
imaging experiments demonstrated a maximal rise in
oxyhemoglobin, 5–8 sec after the onset of neuronal
activity [Bandettini et al., 1993; Lee et al., 1995]. The
above observations evince that the hemodynamic re-
sponses due to synaptic activities are delayed and
dispersed in time, and transient at the onset and offset
of the stimulus condition.

Our interpretation and application of fMRI tech-
niques are based on the observation that the BOLD
effect correlates with local energy consumption, which
in turn correlates with neuronal firing [Raichle et al.,
1976; Fox and Raiche, 1986; Fox et al., 1988; Jueptner
and Weiller, 1995]. The mechanism of coupling of
neuronal activations to the vascular system is still
unknown and produces significant blurring and delay
to the original neuronal responses over time, indicat-
ing a low-pass filtering operation. Hemodynamic
events have time scales of a few seconds, whereas
neuronal events have time constants of milliseconds.
Without knowing the proper mechanism of coupling
between neuronal responses and hemodynamics, ex-
act modeling of the complex function of vascular
coupling is currently impossible.

Recent linear convolution models where vascular
coupling is considered as a functional convolution
provide a reasonable approximation [Friston et al.,
1994; Villringer and Dirnagl, 1995; Lange and Zeger,
1997; Cohen, 1997]. Following this linear approach, we
will investigate the standard Gaussian function [Mai-
sog et al., 1995] as the point spread function of vascular
coupling of neuronal activations or the hemodynamic
modulating function (HDMF). HDMFs are characterized
by two parameters, namely lag and dispersion, where
lag represents the time delay between the hemody-
namic response and ensuing neural activations, and

dispersion represents the temporal smoothness or
autocorrelation of hemodynamic response. The Pois-
son function was the first to be proposed as the HDMF
of the brain [Friston et al., 1994], and the first to render
global values of lag and dispersion of 7.67 sec in a
visual stimulation experiment. A disadvantage of the
Poisson HDMF is its discrete nature and the represen-
tation of delay and dispersion with a single parameter.
The Gamma function has been proposed recently
[Lange and Zeger, 1997; Cohen, 1997]; however, the lag
and dispersion provided by the Gamma function are
not independent (see Appendix). Another major ob-
stacle for the practical use of the Gamma model is the
need for nonlinear iterative optimization schemes to
estimate its parameters. Though the data-driven non-
parametric approaches have shown their capabilities
to handle transients, the Gamma function has been
superior in modeling lag and dispersion aspects of
hemodynamic responses [Nielsen et al., 1997]. In what
follows, our focus will be restricted only to parametric
models of HDMF.

The primary aim of this paper was to introduce the
standard Gaussian model as a more natural, flexible,
and mathematically tractable HDMF, especially when
a space-variant and stimulation-dependent approach
is taken. The Gaussian model is validated by compar-
ing the lag and dispersion values reported in the
optical intrinsic imaging literature and recent fMRI
experiments. The ability of the Gaussian model to
represent HDMF of human brain activation will be
compared with Poisson and Gamma models. In fact, at
large lag and dispersion values, both Poisson and
Gamma models approximate the Gaussian model. It
will be shown how knowledge of the HDMF is utilized
to improve the analysis of fMRI data with univariate
multiple regression analysis.

Frequency-domain observations of fMRI time-series
in the motor cortex [Bandettini et al., 1993] and
occipital cortex [Bullmore et al., 1996] have demon-
strated peak neural activities at the first and second
harmonics of the fundamental frequency of the stimu-
lus conditions. Here we utilize all sufficiently powerful
harmonics of the frequency of the time-series to devise
a suboptimal and noniterative scheme to estimate the
hemodynamic parameters. This scheme provides an
efficient and fast method of evaluating hemodynamic
parameters at every brain voxel, facilitating the investi-
gation of their variability over different brain regions
and different stimuli. Previously, the same parameters
were used for hemodynamic responses over the entire
brain and for all types of stimulations [Friston et al.,
1994b; Worsley and Friston, 1995], mainly because of
the lack of an efficient and pragmatic scheme to
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evaluate these parameters at every brain voxel. The
fMRI experiments with visual-stimulation, word-
discrimination, and sentence-processing tasks demon-
strate the need for a space-variant and stimulation-
dependent model for the HDMF of the brain.
Knowledge of the hemodynamic parameters at a brain
site may provide vital information on local metabolic
events, synaptic activities, and blood flow ensuing
upon neuronal activation. For instance, the different
delays in hemodynamic responses have been used to
distinguish veins and capillaries in activated tissue
areas and beyond [Singh et al., 1995; Lee et al., 1995].

The idea of the HDMF is phenomenological and
provides an approximation and approach to investi-
gate vascular coupling of brain activation and associ-
ated neuronal events. A candidate for HDMF should
have enough degrees of freedom to fit the actual
hemodynamic response, and its parameters should
highlight salient aspects of related biological events.
We favor the Gaussian model because of its two
degrees of freedom to independently represent lag and
dispersion and its mathematical convenience. The
reason reported for the selection of the Gamma family
for HDMF was the existence of continuous Fourier
transforms of their derivatives [Lange and Zeger,
1997]. However, due to insufficient knowledge of the
exact process of hemodynamic coupling and therefore
the absence of a gold standard for human brain
activation, it is not possible to accurately judge the
superiority of a particular model. Nevertheless, these
models have the potential to investigate and quantitate
hemodynamic and neuronal events in response to
sensory and cognitive stimulation [see Rajapakse and
Kruggel, 1997].

The organization of this paper is as follows. The next
section introduces the Gaussian HDMF to model
hemodynamic responses, and is followed by the fre-
quency-domain analysis to estimate its parameters. We
then explain the analysis of fMRI time-series and the
adjustments necessary for the univariate multiple re-
gression analysis to cope with the spatial and temporal
correlations. Results of fMRI experiments follow. Fi-
nally, our approach, its limitations, and our results are
discussed.

A MODEL FOR CEREBRAL HEMODYNAMIC
RESPONSE

Intensities of fMRI image voxels obtained using a
T*2-weighted sequence in a sensory or cognitive stimu-
lation represent changes in local concentrations of
HbR, which are referred to as hemodynamic responses at
brain voxels. To sustain neuronal firing in response to

sensory or cognitive stimuli, metabolic events concur
with increased local energy consumption. Due to the
finite size of the image voxels, the hemodynamic
responses represent the average changes of HbR con-
centration within the space occupied by the correspond-
ing brain voxels. By neuronal activity, we mean the
energy consumption within a brain voxel which is
physiologically coupled to local hemodynamics. The
image resolution in fMRI permits detecting hemody-
namic contributions from both capillaries and veins
which carry deoxygenated blood in response to some
neuronal activity [Fahm et al., 1994].

If the hemodynamic response at a brain site at time t
due to neuronal activity v(t) is denoted by w(t), the
coupling between the neuronal activity and hemody-
namic response of our model is given by

w(t) 5 gv(t) # h(t) 1 h(t) (1)

where g denotes the gain of the vascular coupling, h(t)
represents the HDMF, and h(t) is the noise in the
hemodynamic response. The convolution operation
denoted by ‘‘#’’ is referred to as hemodynamic modula-
tion. A unit impulse of neuronal activity produces
hemodynamic response equal to the gain g. The
hemodynamic noise is assumed to be random and
h(t) , N(0, sh

2) where sh
2 is the variance of the noise.

The major assumptions of our model for fMRI
time-series are that 1) the input stimulus pattern
appears without distortion as the synaptic input to the
brain voxel, and 2) the hemodynamic responses at
brain voxels are completely recoded at the fMRI image
voxels. That is, if y(t) denotes the time-series signal and
x(t) the sensory or cognitive stimulation, we presume
x(t) ~ v(t) and y(t) ~ w(t). By substituting these in Eq.
(1), we obtain:

y(t) 5 ax(t) # h(t) 1 e(t) (2)

where a denotes the gain of the fMR imaging process
and e(t) represents the noise in the time-series with
e(t) , N(0, s2). The gain a was introduced to separately
account for the scaling of signals, and this necessitates
the integral of the h(t) over time to be unity:

e
2`

`
h(t) dt 5 1. (3)

This condition is mandatory for the probability
density functions and, in fact, all three parametric
models, Poisson, Gamma, and Gaussian, are widely-
used density functions in the theory of probability.
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Below, we define two parameters, namely, lag and
dispersion of a given HDMF h(t):

lag D e
2`

`
th(t) dt (4)

dispersion D e
2`

`
(t 2 lag)2h(t) dt. (5)

The lag and dispersion are the first moment and
second central moment of the HDMF, respectively. If
the condition in Eq. (3) is not mandatory, these param-
eters need to be defined as their normalized moments.
It can be easily shown that a function, when convolved
with h(t), will be delayed with an amount equal to lag
and smoothed with a scale equal to the square root of
dispersion. In hemodynamic responses, lag represents
the delay in the excess blood supply to the activated
sites following the onset of neuronal firing, which
depends on blood pressure, blood regulation, etc., and
dispersion represents the amount of autocorrelation
present in the hemodynamic responses, which de-
pends on the differential rates of neuronal firing and
blood flow, and the events across the blood-brain
barrier. Interestingly, the two parameters of mean and
variance of the Gaussian function are equal to the lag
and dispersion of the HDMF. Ironically, the lag and
dispersion values provided by Poisson and Gamma
models are related to each other (see Appendix).

In our model, h(t) 5 G(t; µ, s) where:

G(t; µ, s) 5
1

Î2ps2
e 2 (t 2 µ)2/2s2. (6)

µ and s2 are the lag and dispersion, respectively. The
space of the HDMFs offered by the Gaussian model is
5G(t; µ, s), µeR, s2eR16, where an element of this func-
tional space produces a Gaussian form of autocorrela-
tion in the neuronal responses. Figure 1 shows the
plots of HDMFs of Poisson, Gamma, and Gaussian
models and their frequency spectra (the parameters of
these plots correspond to the largest activated region
in the representative slice in the visual-stimulation
experiment shown in Figure 2.

Our model defined by Eqs. (2) and (6) is linear, and
the complexity of the convolution operation is conve-
niently handled by the frequency-domain analysis. By
taking the Fourier transform of Eq. (2), one can write:

Y(v) 5 aH(v)X(v) 1 E(v) (7)

where F(v) represents the Fourier transform of the
function f(t). Except for the Poisson function, which

does not have an analytical expression for the Fourier
transform, the parameters of both Gamma and Gauss-
ian models are estimated using the frequency-domain
analysis.

ESTIMATION OF HEMODYNAMIC
PARAMETERS

In the above analysis, the fMRI time-series and
stimulus conditions were considered to be continuous-

Figure 1.
Parametric models of hemodynamic modulation functions (HDMFs)
a: Time-domain plots. b: Their frequency spectra. Parameters for
the plots were those obtained from the largest activation region in
a representative slice in a visual-stimulation experiment; param-
eters for Poisson model l 5 3.0 sec, for Gamma model u1 5 0.46
and u2 5 0.15, and Gaussian model µ 5 4.50 s and s2 5 4.721 s2.
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time functions. Although the brain responses are con-
tinuous-time functions, the fMRI time-series are dis-
crete-time functions defined over a finite duration of
time, and henceforth our analysis will be in discrete-
time domain. We suppose that the input sensory and
cognitive stimulations are periodic and presented at
regular intervals synchronized to the fMRI image
scans. Let us denote the scanning interval by D and the
ith stimulation sample in the time-series by yi. Then
yi 5 y(Di) where i 5 1, 2, . . . , n. The total number of
samples in the time-series, or of scans in the fMRI
image, is n. Let us denote the input stimulation by
vector x 5 (x1, x2, . . . , xn)T, and the time-series output
by vector y 5 (y1, y2, . . . , yn)T.

Consider an input stimulus having T samples per
period with N stimulation cycles. For such a stimulus,
the discrete Fourier transform (DFT) corresponding to
Eq. (7) is given by

Y(vl ) 5 aH(vl )X(vl ) 1 E(vl ) l 5 0 . . . T 2 1 (8)

where F(vl) 5 Si50
T21 fT(t)e2ivll and vl 5 2pl/T. vl repre-

sents the lth harmonic of the fundamental frequency
vl 5 2p/T of the time-series. The fT(t) represents the
average period of the periodic function f(t) with a
period T. Because the experimental design determines
X(vl), the set of equations defined by Eq. (8) can be
utilized to determine the optimal parameters of the
HDMF, h(t). The standard approach is to attempt to
find the x2-fitting or weighted least-square estimation
which minimizes the cost function x2 [Press et al., 1994]:

x2 5 o
t51

T21

(Y(vl )

2 aH(vl )X(vl ))*(Y(vl ) 2 aH(vl )X(vl ))/sl
2 (9)

where * denotes the complex conjugate and sl
2 the

variance of the noise at the lth harmonic frequency. The
above cost function is usually a nonlinear function of
hemodynamic parameters, which requires the use of
iterative and numerical optimization techniques to
determine optimal parameters [Press et al., 1994].
Finding the x2-fitting is further complicated by the
involvement of the complex quantities in Eq. (9). A
major pitfall of this iterative and rigorous approach is
the instability caused by attempting to fit the time-
series of nonactivated voxels to the model, because the
time-series parameters need to be evaluated before the
identification of activated and nonactivated voxels. To
avoid this problem, we propose a noniterative subopti-
mal scheme for the parameter estimation of the Gauss-
ian HDMF in the rest of this section.

Neglecting noise E(vl ), substituting H(vl ) 5

e2vl
2
s2/2e 2 jvlµ [Papoulis, 1991] for the Gaussian

HDMF, and equating magnitudes of frequency re-
sponses of both sides of Eq. (8), one can obtain:

2 log (a) 2 vl
2sl

2 5 Ll (10)

where Ll 5 log ( 0Y(vl) 0 2/ 0X(vl) 0 2). By equating phase
angles of both sides of Eq. (8), one can write:

2µvl 5 fl (11)

where fl 5 tan21 (Y(vl)/X(vl)) and l 5 0, 1, . . . , T 2 1.
For each harmonic frequency vl, we have two

equations consisting of three parameters in the set
5a, µ, s26. Because we have a large number of equations
to evaluate three parameters, optimal parameters are
obtained using the least square estimations of Eqs. (10)
and (11). To compensate for the errors and instability
caused by our assumption on noise, only the harmon-

Figure 2.
Significant activations on a single axial slice obtained in a visual-
stimulation experiment using univariate multiple regression analy-
sis. a: Without hemodynamic correction (z $ 3.0). b–d: With
hemodynamic correction (z $ 3.5), using (b) Poisson, (c) Gamma,
and (d) Gaussian models.
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ics which have sufficient power in the input stimulus
are considered for the least square estimation. If V
denotes the set of harmonics which have power above
the minimum power P, V 5 5l; 0X(vl) 0 2 . P,
l 5 0, 1, . . . , T 2 16. Then, the following equations for
least-square estimation can be easily obtained:

â 5 exp 5(S3S4 2 S5S2)/2(S1S4 2 S2S2)6 (12)

µ̂ 5 S6/S2 (13)

ŝ2 5 (S3S2 2 S5S2)/(S1S4 2 S2S2) (14)

where S1 5 SleV, S2 5 SleV sl
2, S3 5 SleV Ll

2, S4 5 SleV vl
4,

S5 5 SleV Llvl
2, and S6 5 SleV f1vl. The estimates of the

parameters 5â, µ̂, ŝ26 do not necessarily minimize the
x2 cost function and provide a suboptimal solution in
the least-squares sense. The noise difference is evalu-
ated as the difference of the actual and modeled
time-series.

ANALYSIS OF FMRI TIME-SERIES

In this section, we demonstrate how knowledge of
the HDMF facilitates the evaluation of significant
activations in response to a sensory or cognitive
experiment. Although the discussion is confined to the
univariate multiple regression, it is applicable to other
statistical tests used in fMRI analysis as well.

With our notation, Eq. (2) in discrete-time domain
becomes:

yi 5 a o
l51

n

hi(i2l)xl 1 ei i 5 1, 2, . . . , n (15)

where hij 5 (1/Î2ps2)e2(i2j2µ)2/2s2 and ei is the noise
for the ith sample of the time-series. Using matrix
notation, the above equation may be succinctly written
as

y 5 aHx 1 e (16)

where H 5 5hij6nxn is referred to as the modulation matrix
and e 5 (e1, e2, . . . , en)T.

The above equation for a single stimulus condition
may be extended to experiments where a number of
stimuli are simultaneously involved, assuming that
their effects in producing the time-series are linear.
For an experiment with a design matrix [x1, x2 , . . .
xq, xq11, . . ., xq1p], where x1, x2 , . . ., xq represent q
stimulus conditions and xq11, xq12 , . . ., xq1p represent
p dummies [Friston et al., 1995a], Eq. (16) can be

written as a standard regression equation:

y 5 Xb 1 e (17)

where X 5 [H1x1, H2x2, . . ., Hqxq, xq11, . . ., xq1p] repre-
sents the set of hemodynamically modulated sensory
stimuli, and b 5 (b1, b2, . . . , bq1p)T represents the
regression coefficients relating each stimulus condition
to the time-series. Hk denotes the modulation matrix
for the kth stimulus condition xk. Note that the dummy
covariates were not modulated in the modified design
matrix and that the gain of the model for each stimulus
is now represented by the regression coefficients.

In order to find the values of regression coefficients,
it is not possible to use inverse matrices for demodula-
tion because of their ill-conditioned nature and sensi-
tivity to the choice of HDMF. Therefore, a different
approach is taken here by modulating only the stimu-
lus condition xk when evaluating for the effect of the
kth stimulus and finding the significance of the particu-
lar regression coefficient in predicting the time-series
data, i.e., in order to check the effect of the stimulus
condition xk, Eq. (17) is written as

y 5 Xkb 1 e (18)

where Xk 5 [x1 . . . xk21 Hkxkx k11 . . . xp1q] and k # q. In
other words, the stimulation condition xk is subjected
to the same modulation as experienced by the time-
series, which is referred to as the hemodynamic correc-
tion of the time-series. Here the hemodynamic correc-
tion implies shifting of the input stimulus by a value
equal to the lag and subjecting to temporal smoothing
with a scale given by the square root of dispersion.
Using Eq. (18), the significance of each condition in the
design matrix in producing the time-series y is evalu-
ated.

To test a single bk for significance or the hypothesis
H0: bk 5 0, we arrange bk last in b such that b 5 (bk, bk)
and consider a reduced model without the condition
xk, i.e.,

y 5 X*kbk 1 ek (19)

where X*k 5 [x1 . . . xk21 xk11 . . . xp1q] is the design
matrix and ek is the noise vector for the reduced model.
The following F-statistic measures the significance of
the kth stimulus condition of producing y [Rencher,
1995]:

Fk 5 dk

(b̂TXk
Ty 2 b̂k

TX*kTy)

(yTy 2 b̂TXk
Ty)

(20)
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where dk denotes degrees of freedom and b̂ 5
(Xk

TXk)21 ? Xk
Ty is the least-square estimate of the regres-

sion coefficients of the complete model. The estimate
for the reduced model b̂k is similarly obtained.

The data vector y in Eq. (17) represents a time-series
which is smooth or autocorrelated in time, violating a
major assumption of independence among data
samples in regression analysis. The effective degrees of
freedom associated with the correlated data are smaller
than those associated with uncorrelated data, and the
presence of autocorrelations increases the probability
of spurious or high correlation coefficients by chance.
The correlations among data points are compensated
for by adjusting the degrees of freedom of the data. We
use an approximate result for the effective degrees of
freedom derived considering the error terms in the
frequency-domain [Friston et al., 1995b]. If g is the
error between the actual and estimated values of the
time-series, then

g 5 y 2 Xkb̂. (21)

If G(vi) is the spectral density of the process g obtained
using a discrete Fourier transform when vi 5 2pi/
(n 2 rank(Xk)), the approximate value for the effective
degrees of freedom dk is given by

dk 5
(Si G(vi ))2

Si G2(vi )
. (22)

Using Eq. (20), an F-statistical score indicating the
significance of a stimulus in predicting the time-series is
computed. An fMRI image consists of a set of time-series
taken at contiguous spatial sites. If yj represents the
time-series at the jth spatial location or voxel site, the
fMRI image is given by the matrix Y 5 [y1, y2 , . . ., ym]
where m denotes the total number of voxel sites. By
following the above analysis, for each time-series yj

and stimulus condition xk, an F-statistical score Fjk may
be computed. The set fk 5 5Fk1, Fk2 . . . Fkm6 represents
an F-statistical map for the kth stimulus condition, and
is obtained using all the time-series in the fMRI image.

Defining a threshold for the statistical map to detect
significant activations at a given probability level or
P-value is not straightforward, because corrections for
multiple independent statistical comparisons, and ad-
justments for spatial correlations due to correlated
neural activities, need to be made. Because the activa-
tions appear as contiguous groups of image elements
or make clusters of activated sites, this threshold has
been related to the size of the activated regions. The
minimum size of the regions of significant activations

above a given threshold for z-statistical maps has been
derived using the theory of Gaussian random fields
[Friston et al., 1994a]. F-statistical maps obtained in the
analysis are transformed to z-statistical maps using the
transformation F(F) 5 C(z) where F(·) is the
F-distribution function and C(·) is the cumulative
standard Gaussian function. With an experimentally
determined threshold and a predetermined P-value,
significantly activated regions from z-statistical maps
for each stimulus condition are obtained. Subse-
quently, the significant activations are color-coded and
registered onto the corresponding anatomical scans for
display. The routines for processing fMRI images using
the techniques described in this section were written in
C11 and incorporated to the BRIAN image analysis
system [Kruggel and Lohmann, 1996].

EXPERIMENTS AND RESULTS

FMR images presented in this section were obtained
on a 3.0 Tesla Medspec 30/100 scanner (Bruker Medi-
zintechnik GmbH, Ettlingen, Germany) at the MRI
Center of the Max-Planck-Institute of Cognitive Neuro-
science. Images were obtained in visual-stimulation
and word-recognition experiments using a FLASH
protocol, and sentence-processing experiments were
performed with an echo-planar imaging (EPI) proto-
col. All experiments were performed by German-
speaking normal volunteers between age 20–30 years.
The particular experiments were selected because of
their pertinence to the ongoing research at the insti-
tute. In FLASH experiments, each slice was obtained
separately by repeated application of the stimulation,
while all the slices in the EPI experiments were
obtained during a single presentation of the stimulation.

Experiments with FLASH protocols

While a subject was performing the experiment, 3–6
two-dimensional T*2-weighted images, each with 64
scans, were acquired using a gradient-echo FLASH
sequence (TR 5 80.5 msec; TE 5 40 msec; ma-
trix 5 128 3 64; The image matrices were zero-filled to
obtain 128 3 128 images with a spatial resolution of
1.953 3 1.953 mm; slice thickness 5 5-mm and 2-mm
gap). The corresponding two-dimensional anatomical
slices were also acquired with a T1-weighted IR RARE
sequence (TI 5 900 msec; TR 5 40 msec; TE 5 3,900
msec; matrix 5 512 3 512) in the same experiment
session. In all experiments, ON and OFF stimuli were
presented at a rate of 5.162 sec/sample. Each stimula-
tion period had four successive stimulation ON states
followed by four stimulation OFF states. The stimula-
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tions were repeated for eight cycles (total experiment
time 5 5.5 min), and experiments were carried out at
different sessions with different subjects.

Visual-stimulation task

An 8-Hz alternating checkerboard pattern with a
central fixation point was projected on a LCD system,
and subjects were asked to fixate on the point during
stimulations. Images were acquired at three axial
levels of the brain at the visual cortex.

Word-discrimination task

During the stimulation period, subjects heard a random
series of words and pronounceable nonwords (1.5 words
per sec, 1:6 nonwords vs. words). Subjects were asked
to count the nonwords per stimulation period (gener-
ally 6–7). Images at three sagittal levels were taken
through the center of the temporal lobe on each side.

Experiments with EPI protocols

Four T*2-weighted axial images (image matrix
128 3 64; slice thickness 5 5 mm; gap 5 2 mm; echo
time TE 5 40 msec; TR 5 2.0 sec; flip angle 5 40°)
were acquired using a gradient echo, EPI protocol. The
corresponding anatomical images were acquired as in
FLASH experiments in the same session. Each stimu-
lus period had three successive stimulus ON states and
nine stimulus OFF states during stimulation presenta-
tion at 2 sec sample. An 18 sec intertrial interval
completed a 24-sec run, for a total of 76 runs.

Sentence-processing task

Single sentences which were correct or syntactically
violated were binaurally presented to the subjects in a
pseudorandomized order. Subjects were requested to
respond by pressing a left button for a correct or a right
button for an incorrect sentence.

Data processing

The fMRI scans were corrected for possible subject
movements by estimating the movement parameters
by comparing each scan in the fMR image to a
reference scan and realigning the scans using the para-
meters [Friston et al., 1996]. Movement-corrected im-
ages were filtered using a Gaussian filter with a stand-
ard deviation of 1 pixel and a spatial extent of 7 pixels
in diameter (i.e., FWHM of 4.47 mm). The filtered images
were analyzed using univariate multiple regression
with hemodynamic correction, assuming a stimulation-
dependent and space-variant Gaussian HDMF. The
drift in the image intensities of the scans was consid-
ered as a linear dummy covariate. Significant activa-
tions were detected by thresholding the z-statistical maps
and testing for significant regions at P 5 0.05. The detected
activities for each stimulus were mapped onto the corre-
sponding anatomical slice for visual display. For EPI
protocols, the lag values were corrected for the time delays
between the stimulus presentation and the actual scanning
of the slices [Van de Moortele et al., 1997], which were 0.52
sec, 1.11 sec, 0.67 sec, and 1.26 sec from the first to the
fourth slice, respectively.

Comparison of different HDMFs

Twenty FLASH data sets in our database were
analyzed without making any adjustment for the lag
and dispersion of the hemodynamic responses. Then
they were analyzed after applying the hemodynamic
correction separately with Poisson, Gamma, and Gauss-
ian HDMFs. The parameters of the Poisson model
were obtained using the modified-FJT method [So-
rensen and Wang, 1997], and the parameters of the
Gamma model were obtained by x2-fitting using the
Levenberg-Marquardt method [Press et al., 1994]. The
one-pass algorithm presented above was used to deter-
mine the Gaussian model parameters.

For all the data sets compared, the adjustments for
hemodynamic response resulted in visually better
activations in the predicted areas of the brain with less
spurious noise. The detected significant activations of
a representative slice in a visual-stimulation experi-
ment are shown in Figure 2, which is color-coded

TABLE I. Characteristics of largest activated region on a
selected slice in a visual-stimulation experiment obtained
without hemodynamic correction (regression) and with
hemodynamic correction using Poisson, Gamma, and

Gaussian HDMFs*

Model Regression Poisson Gamma Gaussian

Location (68, 92) (67, 93) (67, 93) (67, 94)
Size 48.00 44.00 39.00 43.00
z-score 3.46 4.45 4.34 5.00
Gain 0.03 0.05 0.05 0.05
Lag (s) 3.35 3.18 4.50
Dispersion (s2) 3.35 20.87 4.72
Square error 0.05 0.05 0.06 0.05
(S/N)z-map (dB) 16.68 18.23 17.92 19.53

* Location is given relative to the left topmost point of the image, size
is given as number of voxels, and square error is the sum of the
square error computed between the actual time-series and the fitted
time courses by the model.
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according to the z-statistic. Significant activations were
detected by thresholding z-maps at a threshold of 3.0
for regression analysis without hemodynamic correc-
tion, and 3.5 for the hemodynamically corrected analy-
sis. Note that the hemodynamic correction reflected an
increase in the average z-scores of the activated regions
without generating spurious activities. The characteris-
tics obtained by averaging over all the voxels in the
largest activated region are shown in Table I. To
compare the improvement of z-maps with the introduc-
tion of hemodynamic correction, the S/N ratio for the

z-maps in dB is defined as follows:

(S/N)z-map 5 10 log 5 znoise
2

zactivations
2 6 (23)

where znoise
2 is the variance of the z-statistics of the

nonactivated voxels, which is presumed to be superim-
posed on the average z-score of the activated voxels
zactivations. Theoretically, the hemodynamic correction
increases the z-scores of the activated voxels, but its

Figure 3.
Model fits obtained from time-series for the largest activation region in a visual-stimulation
experiment using FLASH protocol at a sampling rate of 5.126 sec sample. a: Without hemodynamic
correction. b–d: With hemodynamic correction, using (b) Poisson, (c) Gamma, and (d) Gaussian models.
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Figure 4.
Parameter maps computed over a representative slice obtained during a visual-stimulation
experiment. Maps of (a) gain, (b) lag, (c) dispersion, and (d) noise where the intensity at a voxel
represents values of the parameters.
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effectiveness depends on its ability to avoid false
alarms in the correction process. Hence, the above S/N
ratio gives a quantitative measure for the improve-
ment achieved in the hemodynamic correction.

Figure 3 shows the fMRI time courses obtained by
averaging the time-series over the voxels of the largest
activation blob and the fitted model waveforms using
each HDMF. Note the drift in our data, which was
corrected by using a linear dummy variable in the
regression analysis. The actual time courses seen in the
plots for the different models are different because the
sizes of the detected regions slightly differ in some
cases. Poisson and Gamma functions gave similar fits,
while Gaussian functions gave a symmetrical fit at the
rise and fall of stimulations.

Maps of gain, lag, dispersion, and noise values
obtained in the particular slice in the visual-stimula-
tion experiment are shown in Figure 4, where the
intensities of the voxels represent the values of each
parameter. The parameters of the largest region and
the nonactivated voxels with their standard deviations
are given in Table II. (The hemodynamic parameters
for nonactivated voxels do not have any meaning, but
result as a by-product of the analysis.) The differences
of the hemodynamic parameters measured over the
activated and nonactivated voxels were compared
using t-tests. The significances or P-values of their
differences of lag and dispersion at the two sites are
also shown.

Data obtained in six EPI experiments were analyzed
similarly as above, and improvements in the activity
patterns were seen with hemodynamic correction for
all data sets. The results of hemodynamic correction
applied to all four slices of a representative experiment
are shown in Figure 5. Note the improvement of the
activations or z-maps with hemodynamic correction.
Table III shows the characteristics of the largest acti-
vated region with and without hemodynamic correc-
tion and using multiple regression analysis for the
third slice of the sequence.

Space-dependence of hemodynamic parameters

In order to find the dependence of hemodynamic
parameters on various brain sites during a sensory
simulation, the images taken at six sagittal levels
(W1 . . . W6) in a representative word-discrimination
experiment were analyzed. Figure 6 shows the de-
tected activations of the corresponding slices with and
without hemodynamic correction, assuming a Gauss-
ian HDMF. The largest activation regions of six slices
were compared among one another with t-tests for any
discrepancies in lag and dispersion values. Signifi-
cance of the differences or P-values is shown in Table
IV. As seen in Table IV, the lag and dispersion values
computed over some regions showed significant differ-
ences, while others were statistically similar.

Intersubject variability of hemodynamic
parameters

To investigate the intersubject variability of the
hemodynamic parameters, three data sets (V1, V2, and
V3) at the same axial level, obtained while 3 different
subjects separately performed the same visual-stimula-
tion task, were analyzed. In all 3 cases, activations
appear in the visual cortex, as seen in Figure 7, both
with and without hemodynamic correction. The hemo-
dynamic parameters of the largest activated regions of
different subjects were compared using t-tests and
their significances are shown in Table V. The lag values
were significantly different between V1 and V3 and
between V2 and V3, whereas the dispersions were
statistically different between V1 and V2 and between
V1 and V3.

DISCUSSION

In the absence of proper understanding of the
coupling between cerebral neuronal activity and asso-
ciated hemodynamics, the linear convolution models

TABLE II. Comparison of hemodynamic parameters of the largest activated region
and nonactivated region in a visual-stimulation experiment, using the t-test*

Region

Gain Lag (s) Dispersion (s2) Noise

Mean SD Mean SD Mean SD Mean SD

Activated region 0.053 0.024 4.504 0.915 4.721 2.628 0.050 0.032
Nonactivated region 0.000 0.004 0.577 2.308 0.471 2.356 0.013 0.031
Significance (P-value) P , 0.001 P , 0.001 P , 0.001 P 5 0.169

* Significance of the comarison in the tests is given as P-values.
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Figure 5.
Significant activations detected in a sentence-processing task imaged with an EPI protocol (sampling
rate 2 sec/sample). Activities obtained (a) without hemodynamic correction (z $ 3.5) and with
hemodynamic correction (z $ 4.0) using (b) Poisson, (c) Gamma, and (d) Gaussian models.



present an approximate paradigm to study hemody-
namic responses of human brain activation. The Gauss-
ian HDMF presents a reasonable and flexible model to
represent the delay and temporal correlations seen in
fMRI time-series, and seems valid because the hemody-
namic parameters determined in our experiments are
closer to those previously reported [Frostig et al., 1990;
Bandettini et al., 1993; Friston et al., 1994b]. Both
Gamma and Poisson models are unable to account
independently for the lag and dispersion of fMRI
time-series because these parameters are linearly re-
lated. Our experiments with visual-stimulation, word-
discrimination, and sentence-processing tasks demon-
strated no clear relationship between the values of lag
and dispersion of the hemodynamic responses of the
activated regions. The two-parameter Gaussian model
offers more flexibility and mathematical convenience
to analyze hemodynamic responses in the brain than
the previously proposed Poisson and Gamma models.
However, the superiority of any model cannot be
definitively concluded with our study, and compari-
son of different models is only possible with chi-by-see
approach or by looking at the activities produced by
different models in the same experiment.

The different models provide different temporal
structures, and hence the values of hemodynamic
parameters given by different models are different. A
major disadvantage of the Gaussian function of HDMF
is its symmetrical and infinite tails, precluding it from
modeling asymmetries seen in the hemodynamic re-
sponse and its reliance on past hemodynamic activi-
ties. Unlike the Gaussian model, the Poisson and
Gamma models achieve the shape of HDMF by com-

promising between lag and dispersion values. The
shapes of the fitted time-series using Poisson and
Gamma functions are similar, whereas the Gaussian
provides symmetric patterns at the onset and offset of
the stimulus presentation. However, the asymmetry
seen at the onset and offset of stimuli may be attributed
to the different rise- and fall-times of neuronal activa-
tions [Rajapakse and Kruggel, 1997]. In the present
study, we do not address transient aspects such as
rise-time, fall-time, undershoot, and overshoot present
in the fMRI, because they are initiated at the neuronal
level and then modulated with HDMF. Nevertheless,
these events can alter the frequency responses of
time-series. This is a major limitation of all linear
convolution models of hemodynamic response. Our
experience with parametric models suggests that the
HDMF behaves more likely as a Gamma function for a
brief stimulus and as a Gaussian function for a pro-
longed stimulus. This may be because the negative tail
of the Gaussian function allows considerable error for
brief stimuli. However, there is no evidence to support
our conjecture.

An advantage of the frequency-domain analysis is
its ability to account for the noise in both time- and
frequency-domains. Because frequency responses are
computed on an average time-series cycle, the random
noise and other variations of intensity that appear over
the duration of the experiment are compensated for.
Because only the responses at the harmonics of the
fundamental frequency of time-series are considered
in parameter estimation, frequency of stimulations can
be designed to discount the artifactual changes contrib-
uted by other physiological processes such as heart-
beat or pulsations in the cerebro-spinal fluid. Further
investigation of the effects of these events and the
frequencies used in our experiments for the analysis
need to be done. The mathematical expressions used in
frequency-domain analysis assume continuous and
infinite time-series, which is practically prohibitive
because stimuli are presented at discrete times within a
finite period of time. The finite duration of fMRI
time-series reflects as a rippling effect, and the sam-
pling reflects as an aliasing effect in the frequency
spectra [Brigham, 1988], introducing errors into the
parameter estimations. These errors may be reduced
by using high sampling rates and longer time-series.
Another disadvantage of frequency-domain analysis is
that it is applicable only for periodic stimulations.
Frequency-domain analysis renders hemodynamic pa-
rameters for a Gaussian HDMF in a noniterative
manner while with the Gamma model, parameter
estimation leads to iterative and nonlinear optimiza-
tion schemes. For nonperiodic stimulations, the param-

TABLE III. Characteristics of largest activated region on
a selected slice in a sentence-processing task obtained

without hemodynamic correction (regression) and with
hemodynamic correction using Poisson, Gamma, and

Gaussian models*

Slice no. Regression Poisson Gamma Gaussian

Location (88, 38) (87, 39) (88, 39) (87, 39)
Size 58.00 88.00 45.00 41.00
z-score 5.72 7.38 5.51 5.80
Gain 0.01 0.21 0.01 0.01
Lag (s) 20.65 0.05 3.81
Dispersion (s2) 20.65 0.27 1.58
Square error 0.27 0.33 0.28 0.27
(S/N)z-map (dB) 18.56 20.68 18.85 19.36

* Location is given relative to the left topmost point of the image, the
size is given by the number of voxels, and the square error is the sum
of error squares computed between the actual time-series and the
fitted time course by the model.
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Figure 6.
Detected activities on six sagittal levels (W1 . . . W6) of a representative subject performing a
word-discriminating task. Using multiple regression (a) without hemodynamic correction (z $ 3.5)
and (b) with hemodynamic correction, assuming a Gaussian HDMF (z $ 4.0).



eters need to be computed for each cycle separately in
frequency-domain or via piecewise model-fitting in
the time-domain [Cohen, 1997], but both processes are
computationally expensive.

The proposed Gaussian model with the parameter
estimation scheme presented here facilitates the evalu-
ation of hemodynamic responses at every voxel site.
As demonstrated in our experiment, the concept of a
global HDMF over the entire brain is incorrect. The
hemodynamic response to neuronal activations is a
complex function depending on the neuronal and
vascular microarchitecture and the cognitive load in
the region, and modulated by physiological factors
such as pH, blood pressure, or metabolism. Because
most of these factors may not be considered constant
over the entire brain, we favored a space-variant
approach. Our fMRI experiments resulted in different
values of lag and dispersion for the activated regions
for visual-stimulation and word-discrimination tasks,
supporting our conjecture of a spatially-variant and
stimulation-dependent hemodynamic response func-
tion for the brain. Although our experiments were not
sufficient to make definitive conclusions about the
nature of the variation of hemodynamic parameters, it
became evident that they depended on a multitude of
factors such as brain site, stimulus condition and
frequency, or individual subject. Also, the comparison
of functional activities based on the same experiment
with different subjects is affected by the anatomical

variability of the human brain, especially at the sulcal
and gyral patterns, as seen in Figure 7. In other words,
the functional variability is confounded by the anatomi-
cal variability of the human brain.

An exact formulation for the degrees of freedom was
presented [Worsley and Friston, 1995] to compensate
for the temporal correlations present in fMRI time-
series. The idea of the smoothness matrix is not
applicable when hemodynamics depend both on spa-
tial location and on stimulation conditions. Therefore,
the hemodynamic modulation needs to be applied to
each stimulus separately. The threshold for the statisti-
cal maps to determine significant activation regions
was determined empirically, considering all the data
sets. There is no proper criterion for the selection of
this threshold, although major developments were
reported [Friston et al., 1994a] in this area with the
theory of random Gaussian fields. Although smooth-
ing in both time and space improves signal-to-noise
ratios of the images, it might introduce artificial tempo-
ral or spatial correlations to the images and result in
poor resolution of activation maps. In our approach,
the spatial and temporal effects are handled separately,
but a synergetic spatiotemporal approach may be
more elegant and fruitful.

Univariate multiple regression analysis has been
used earlier for statistical inference on significant
activations with global hemodynamic parameters [Fris-
ton et al., 1995a], and an extension was presented to

TABLE IV. Comparison of hemodynamic parameter-evaluated activities on six
sagittal levels (W1 . . . W6) on the same subject, assuming a Gaussian HDMF*

Lag

W1 W2 W3 W4 W5 W6

W1 1.000 0.000 0.099 0.070 0.000 0.056
W2 0.000 1.000 0.000 0.068 0.000 0.000
W3 0.099 0.000 1.000 0.008 0.173 0.182
W4 0.070 0.068 0.008 1.000 0.000 0.000
W5 0.000 0.000 0.173 0.000 1.000 0.000
W6 0.056 0.000 0.182 0.000 0.000 1.000

Dispersion

W1 W2 W3 W4 W5 W6

W1 1.000 0.026 0.806 0.000 0.004 0.853
W2 0.026 1.000 0.222 0.000 0.000 0.019
W3 0.806 0.222 1.000 0.000 0.055 0.744
W4 0.000 0.000 0.000 1.000 0.000 0.000
W5 0.004 0.000 0.055 0.000 1.000 0.005
W6 0.853 0.019 0.744 0.000 0.005 1.000

* Values indicated are the significance levels or P-values yielded in the comparison of the parameters of
the two regions, using t-tests.
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handle locally varying hemodynamic parameters. He-
modynamic correction for lag and dispersion of fMRI
time-series increased the sensitivity of our analysis,
with an increase of the S/N ratio over the statistical
maps. Incorporation of the hemodynamic correction
for the statistical analysis is especially important when
the frequency of the experimental stimulus is high
with respect to the lag and dispersion values. Even
though the experiments presented here had only a
single stimulus condition, the analysis is applicable to
experiments involving multiple stimuli and extendible
in order to consider interactions among stimuli. Also,
the methodology presented here is readily applicable
to three-dimensional fMRI scans.

In deriving our simplified model, we neglected a
number of important factors affecting the human brain

Figure 7.
Detected activities taken at the same axial level when 3 subjects (V1, V2, and V3) separately
performing the same visual-stimulation task (a) without hemodynamic correction (z $ 3.0) and (b)
with hemodynamic correction, using a Gaussian HDMF (z $ 3.5).

TABLE V. Comparison of hemodynamic parameters
evaluated over the largest activated region at the same

axial level on the different subjects (V1, V2, and V3)
separately performing the same visual task, assuming a

Gaussian HDMF*

Lag Dispersion

V1 V2 V3 V1 V2 V3

V1 1.000 0.824 0.001 1.000 0.009 0.003
V2 0.824 1.000 0.007 0.009 1.000 0.916
V3 0.001 0.007 1.000 0.003 0.916 1.000

* Values indicated are the significance levels or P-values obtained by
comparing the parameters of the two regions, using t-tests.
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activation, e.g., the delay due to synaptic propagation
of activity from sensory receptors to the brain voxels,
the effect of ongoing activities over the brain, espe-
cially high level activities such as perception [Cerf et
al., 1995] and their effect on experimental stimulus,
and the nonlinearities posed by the MR scanners. Also,
the psychological effects may not be significant in the
tasks presented here, but may be significant in experi-
ments involving multiple stimuli and higher cognitive
tasks. The present model may be a basis for more
complicated models to include other events that are
assumed to be negligible in deriving our model. (For
instance, our model may be extended adding another
convolution term p(t) to account for the ‘‘perception’’
effect, which couples the neuronal activity extending
Eq. (3): y(t) 5 ax(t) # h(t) 1 e(t).) The subjects were
presumed to have performed the experimental tasks
identically over all the repeated presentations of the
stimuli; nevertheless, the reaction times and behavior
may well be different for each period. This violates our
assumption of the stationarity of fMRI time-series and
our deterministic approach. An extension to consider
hemodynamic parameters as stochastic variables may
be useful.

Physiologically, finite values of lag and dispersion
for activated regions indicate that the change in blood-
oxygenation takes time to respond to a change in
neural firing at a slower pace than the changes of the
stimulus condition. These parameters were different
for activated and nonactivated sites and may be
related to the structure, morphology, vasculature, and
metabolism of the cortex and useful in characterizing
and categorizing the activated sites. Further investiga-
tion of these parameters throughout the cortex may
unravel salient aspects of its functional specificity.
However, it is necessary to further validate the Gauss-
ian and other models representing brain hemodynam-
ics before making conclusions about brain functions.
Until the process of vascular coupling of neuronal
activations is well-understood and an accurate and
well-parameterized model for functionally induced
MR signal changes is established, our model may serve
as a valuable tool for functional neuroimaging studies.
It may be useful as a prototype for more complex
models of HDMF to include other aspects of hemody-
namic responses, such as transient and habituation
effects during sensory or cognitive stimulation tasks.
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APPENDIX
Parametric models for Hemodynamic Modulation Function (HDMF)

Model HDMF Fourier transform (Lag, dispersal) Comments

Poisson P(i) 5 lie2l/i! (l, l)
ieN1; leR1

Lag 5 dispersion

Gamma G(t) 5 u2
u1tu121e2u2t/G(u1 ) (1 2 jwi/u2)2u1 1

u1

u2
,
u1

u2
22 u1, u2eR1

Lag 5 dispersion g2

Gaussian G(t) 5
1

Î2ps2 )
e2(t2µ)2/s

2
e2v2s2/2e2jvµ (µ, s2) µeR; s2eR1

r Rajapakse et al.r

r 300 r
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