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Abstract

We address the problem of unsupervised clustering
using a Bayesian framework. The entropy is consid-
ered to define a prior and enables us to overcome the
problem of defining a priori the number of clusters and
an initialization of their centers. A deterministic al-
gorithm derived from the standard k-means algorithm
is proposed and compared with simulated annealing al-
gorithms. The robustness of the proposed method is
shown on a magnetic resonance (MR) images database
containing 65 volumetric (3D) images.

1. Introduction

Unsupervised clustering methods such as popular
ones. k-means, fuzzy c-means and the maximum like-
lihood with expectation maximization require an ini-
tialization of the number of clusters and of the clus-
ter centers. Various measures [1, 3, 7] were proposed
to find out the number of clusters automatically in a
dataset. All of them are based on the datistical char-
acteristics of clusters (variance, a priori probabilities
and the difference of cluster centers) and are data de-
pendent. Some criteria issued from the information
theory have been proposed. The Minimum description
length criterion evaluates a compromise between the
likelihood of the classification and the complexity of
the model [5]. The prior concerning the complexity of
the model is not really adapted to image modeling and
the theoretical values for the hyper-parameter do not
provide satisfactory results. Empirical values for the
hyper-parameter are also data dependent.
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Herein we propose to embed the clustering problem
into a Bayesian framework to automatically detect the
number of clusters. The prior of the proposed model is
derived from the entropy. Some automatic threshold-
ing methods have been proposed using entropy either
by maximizing the information between two clusters
derived from Renyi’s entropy [6] or by minimizing the
cross entropy [8]. We consider the clustering problem
where we have to reduce the complexity of the grey
level description. We therefore minimize the entropy
associated with the clustering histogram. To this prior
a Gaussian likelihood term is added.

2. The Information model

Denote an image by X = {xi, . . .. zj,...zn} Where
the subscripts j refer to coordinates of the lattice L
and the z; to as the grey values. A clustering is de-
fined by a partitioning the grey level set C = {C;,i =
1,..,k}. A partition of the image corresponds to a
cluster of the image (classification) defined by the re-
gion S;={j€ L|z;€C;}. Therefore, a clustering can
be obtained either by partitioning the grey level set or
by partitioning the image itself.

Usual clustering algorithms search for the partition
which minimizes a distance between the data and the
classification. However, the number of clusters is fixed
in the optimization function and is therefore required.
In this paper, we propose to add a prior on the mini-
mized function to include the number of clusters as a
variable in the minimized function and to estimate it.

Denote by Y ={wy1,.... yn} the classified image. A



classified image is obtained by maximizing:

P(y|x) = ZEX)PE) (*’;’(’%’ ¥)

where P(X|Y) is the likelihood and P(Y) is the prior
model. We assume that the data are independent con-
ditionaly to Y:

In the proposed approach we consider that the num-
ber of clusters is unknown. Therefore we first consider
one cluster for each grey level. To reduce this number
of clusters we have to sharpen the histogram associ-
ated with the clustering. We propose to minimize the
entropy of the classified image histogram. The max-
imum of the entropy is achieved for uniform images
and the entropy decreases as the number of levels with
probability O increases. Therefore, when adding the
likelihood term to an entropy prior we reach a compro-
mise between the likelihood of the classification and
the simplicity of the description (a few number of clus-
ters). We define the prior as an exponentially shaped

probability:

where p; = #5;/N is the prior probability of cluster ¢,
K is the number of grey levels (a priori clusters).

The I-model (Information model) [2] is defined by
the posterior probability:
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where ag refers to as the hyper-parameter.

3. K-means algorithm

We generalize the k-means algorithm to minimize
the energy associated with the I-model. We assume
that the z; are Gaussian distributed with mean values
yi,t=1,..., K and constant variation for clusters:
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From equations (5,6) we have:
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When ag =0, U is the energy of k-means (KM) clus-
tering algorithm. So the standard KM algorithm is a
particular case of the k-means (KME) which uses the
entropy and minimizes the energy from equation (7).

The KME clustering algorithm alows us to avoid
the initialization of the number of clusters and cluster
centers. We start the iterative procedure with the num-
ber of clusters equal to the number of grey values in an
image and with the cluster means equal to correspond-
ing grey values. Initial vaues for a priori probabilities
of clusters are computed from the image histogram.
During iterations some clusters vanish (p; = 0) due
to the entropy term. The finad number of clusters de-
pends on the ag vaue. For small values of ag we get a
lot of clusters whereas for large values we get very few
clusters. We propose a heuristic estimate for ap by
assuming an equilibrium between the entropy and the
likelihood in equation (7): ag=~AN/2lnp;, where
p; = IIM, M is the expected number of clusters. So
the ag is normalized to the data. The proportional-
ity constant A is used to control the number of the
clusters. For A = 1, a reasonable clustering can be
achieved for most of the images. Smaller value of A
result in a finer clustering, larger value - coarser clus-
tering. This iterative clustering procedure is very fast
as it works on the image histogram.

4. Results: KME versus KM

Visual evaluation of the results of clustering was
performed on 65 high-resolution volumetric MR brain
datasets. One slice of the sample image is presented
in Figure I(top). This image was clustered with KM
into 3 clusters, with KME (A = 1.5), and with KM
into 6 clusters. When comparing with the hand seg-
mentation, KM with 3 clusters underestimates white
matter (WM) because of the intensity inhomogeneities
in an image (left). KME produces 6 clusters. 2 for
cerebrospinal fluid, 1 for grey matter and 3 for WM
(right). So it respects intensity inhomogeneities in an
3D image. A similar result is achieved with KM and a
known number of clusters equal to 6. Tests on the 65
images showed that KME is a robust procedure as we
use the same value for A = 1.5 whereas the number of
clusters found varies from 4 to 7.

5. Reaching the MAP criterion

We propose two versions of the simulated annealing
(SA) to optimize the energy equation (5) either in the
grey level or in the image lattice space. The simulated
annealing is a widely spread algorithm used to min-
imize cost functions (or energies) when deterministic



algorithms (Gradient descent, Conjugate gradient,...)
fail because of local minima. The convergence of this
stochastic algorithm to the MAP criterion is proven in
case of Markov Random Fields in [4].

Figure 1. Sample MR image: T slice (top), KM
with 3 clusters (left), KME with A = 1.5 (right).

6. Results: SA versus KME

The results are summarized in table 1 for a sample
image from our data base. The first remark concern-
ing the energy is that the SA performing on the grey
level space leads to worse results than the KME algo-
rithm - despite of the theoretical result concerning the
convergence of the SA to the global minimum of the
energy. The SA on the grey level space tends to pro-
vide too many clusters. A visual inspection shows that
the extra-clusters contain few pixels.

Using a SA on the lattice space allows us to use a
pixel-wise updating scheme. The obtained results are
very close to those obtained with the KME algorithm
and the run dependency is negligible. However, the re-
sults are not better when comparing the energy than
those obtained with the deterministic KME algorithm
and the required CPU time is much greater. Never-
theless, this algorithm is still interesting as it allows
us to incorporate other priors such as Markov Random
Fields (MRFs).

7. Conclusion

We have compared a deterministic algorithm derived
from the k-means algorithm (KME) and two simulated
annealing defined on the grey level space and on the
lattice space. Despite the theoretical properties of the
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Algorithm Energy | # clusters
KME 1.37 6
SA histogram 1 1.47 11
SA histogram 2 1.48 14
SA histogram 3 1.40 9
SA lattice 1 1.38 5
SA lattice 2 1.37 5
SA lattice 3 1.39 6

Table 1. Comparison of KME and the two SA
on sample MR image.

simulated annealing, we obtain better results with the
KME algorithm than with the SA defined on the grey
level space. The SA defined on the lattice space pro-
vides results very close to those obtained with the KME
algorithm but requires more CPU time. However, this
SA algorithm provides a general framework for adding
other priors such as MRFs to get regularizing prop-
erties. This last point is currently under study. Our
investigations concern the optimization of the energy
composed on a global prior (the entropy term) and a
local prior defined by the MRF.

References

[1} S.-T. Bow. Pattern Recognition and Image Preprocess-

ing. Marcel Dekker, New York, 1992.
[2] X. Descombes and F. Kruggel. A markov pixon infor-
mation approach for low level image description. IEEE
Trans. on Pattern Analysis and Machine Intelligence,
1997. (under review).
I. Gath and A. Geva. Unsupervised optimal fuzzy clus-
tering. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 11(7):773-781, 1989.
S. Geman and D. Geman. Stochastic relaxation, Gibbs
distribution, and the Bayesian restoration of images.
IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, 6(6):721-741, 1984.
Z. Liang, R. Jaszczak, and R. Coleman. Parameter es-
timation of finite mixtures using the EM algorithm and
information criteria with application to medical image
processing. IEEE Trans. on Nuclear Science, 39:1126-
1133, 1992.
P. Sahoo, C. Wilkins, and J. Yeager. Threshold se-
lection using Renyi% entropy. Pattern Recognition,
30(1):71-84, 1997.
X. Xie and G. Beni. A validity measure for fuzzy clus-
tering. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 13(8):841-847, 1991.
Y. Zimmer, R. Tepper, and S. Akselrod. A two-
dimensional extension of minimum cross entropy
thresholding for the segmentation of ultrasound images.
Ultrasound in Med. and Biol.,22(9):1183-1190, 1996.

(3]

[4]

(8]



