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Abstract

When studying complex cognitive tasks using functional
magnetic resonance (fMR) imaging one often encounters
weak signal responses. These weak responses are corrupted
by noise and artifacts of various sources. Preprocessing of
the raw data before the application of test statistics helps to
extract the signal and thus can vastly improve signal detec-
tion. We discuss artifact sources and algorithms to handle
them. Experiments with simulated and real data underline
the usefulness of this preprocessing sequence.

1. Introduction

Many neuronal brain activations elicit an oxygen con-
sumption and give rise to a hemodynamic response of the
supplying vascular system. This response is measured as
the so-called BOLD (blood-oxygen-level-dependent) effect
in fMR imaging. In T2*-weighted images, this BOLD ef-
fect gives rise to an intensity change restricted to a certain
brain area and transient in time with respect to the stimula-
tion. However, effects are small and corrupted by noise and
artifacts, so that roughly 40-200 repetitions are necessary to
detect a statistically significant response.

This high repetition count is especially problematic with
complex cognitive tasks like memory or language experi-
ments. Because a test person needs several seconds to com-
plete a single trial, the total time to run an experiment eas-
ily adds up to a scanner time of 2 hours which - due to
the uncomfortable test situation - is hardly acceptable even
for healthy volunteers. With language experiments, such a
high number of similar stimuli featuring the same catego-
rial effects and difficulty is hard to find. Thus, one obvi-
ously wants to limit the number of repetitions with the help
of more sensitive signal detection methods. However, one
needs to track the signal-to-noise ratio to delimit the type I
error, which corresponds to false positively detected areas.

It is often interesting to compare the test performance
between different blocks which are placed several minutes

apart in the experimental design. Scanner instabilities lead
to baseline fluctuations with time and often make it impos-
sible to separate functional activation from baseline fluctu-
ations in a statistical analysis. This may be improved by
preprocessing the raw data in order to estimate and subtract
this baseline before applying any statistical procedure.

There is an increasing interest in the time course (i.e.
the shape) of the hemodynamic response and its modula-
tion with respect to different experimental conditions. At
the time being, there is no consensus about a physiologi-
cal model for the neurono-vascular coupling [29, 4, 24, 11]
which would allow to derive a spatio-temporal model func-
tion for the hemodynamic response [12, 19, 6, 25]. Thus,
the signal restoration corresponds to an ill-defined inverse
problem [28]. Instead of modeling a hypothetical signal,
we propose to restore the measured spatio-temporal signal.
Methods for image restoration are well studied [1, 15, 7, 8]
and may be applied in the context of functional neuroimag-
ing.

Research in the processing of fMR time series has con-
centrated so far on statistical problems (for a review, see
[18]) and tried to solve the deconvolution of artifacts and
baseline instabilities within a statistical framework [2]. The
most widely used method to improve the signal-to-noise ra-
tio is spatial smoothing [22], which obviously lowers the
spatial resolution. Prior to statistics, the correction of move-
ment artifacts has been suggested [13]. Various types of ar-
tifacts have been identified [21, 27]. Very recently, a ”blind
deconvolution” technique called ”independent component
analysis” (ICA), which has been developed for the recon-
struction of auditory signal sources, has been applied to
fMR data [20].

However, no framework for fMR data preprocessing has
been proposed, in which known influences on signal qual-
ity are handled by well-established image processing tech-
niques. In this paper, we discuss sources of artifacts in fMR
data and how they can be deconvolved. Special attention
has been paid to assess the quality of the reconstruction and
the parameter optimization with respect to constraints of the
experimental design.



Figure 1. Example slice from a fMR time se-
ries. The histogram of this image was scaled
by different factors to enhance various types
of artifacts: noise (upper row, left), ghost
images (right), signal voids and arc-like arti-
facts (lower row, left).

The remainder of this paper is organized as follows: in
section 2, we review known artifacts imparing the quality
of fMR data, in section 3, we discuss strategies for their
restoration, in section 4, experiences and results with sim-
ulated and real data are compiled. Finally, we discuss the
usefulness of this framework in the context of cognitive
fMR neuroimaging studies.

2. Artifact Classes

Several sources of artifacts (see Fig. 1) are identifyable:
(1) gross body movements during the experimental ses-
sion, (2) physiological movements (pulsations, swallowing,
abdominal movements, breathing), (3) regional sensitivity
losses (signal voids) due to susceptibility differences at tis-
sue borders (i.e. the transition bone-brain), (4) ghost im-
ages, (5) flow artifacts in the vicinity of large vessels, (6)
long-term instabilities of the scanner baseline, (7) noise.
An a posterioricorrection of these artifacts may be accom-
plished by:

� Aperiodical, small body movements (< 2� 4mm) are
corrected by registration of slices in the time series.

� Timesteps in which gross body movements during the
image acquisition phase occur (”blurred slices”) are
detected and excluded from further analysis.

� Baseline instabilities of the MR scanner are detectable
as slow fluctuations of the mean signal intensity in the
time series of a voxel. The baseline may be estimated
by low-pass filtering and then subtracted from the orig-
inal signal. The T2-weighted image is hereby sepa-
rated from the functional activation.

� Recent fMR studies mostly follow a single- or em-
bedded-single-trial design, which has - in contrast to
a block design - a high frequent stimulus periodicity.
Using matched bandpass filters, noise and periodic but
uncorrelated artifacts (breathing, pulsations) from the
functional signal can be separated.

Another option for the correction of gross body movements
is given by using navigator echoes or by correction in the k-
space [17]. Because such artifacts are encountered in well
below 1% of the timesteps their exclusion is not considered
a relevant restriction. Regional sensitivity losses and ghost
images are handled more efficiently by optimizing the fMR
protocols and are not treated in the context of this paper, al-
though in practice, they contribute significantly to data dis-
tortions. Furthermore, we do not discuss spatial distortions
found with some fMR techniques (most important inecho
planar imaging) which are attributable to their sensitivity to
inhomogeneities of theB1 magnetic field.

3. Algorithms

We propose the preprocessing of raw fMR data by a se-
quence of 4 steps: (1) artifact detection, (2) movement cor-
rection, (3) baseline correction, and (4) signal restoration.

We consider a set of sitesS � T = f(s = (i; j); t)g
defined by the time samples for each voxel in the context
of fMR signals (s represents the spatial coordinates andt
the temporal coordinate) and a state space� (possible val-
ues for the samples). A fMR temporal signal is then an
element of the configuration space
 = �S�T denoted
Y = fys(t); t 2 T; s 2 Sg.

Currently, our fMR protocols only allow the acquisition
of a set of image slices at a given timestep, i.e. the spa-
tial resolution is much higher within a plane than between
planes. There is also a small gap between planes in which
no signal is recorded. So we consider slices to be inde-
pendent and treat two-dimensional spatial models only. All
algorithms discussed here are easily extendible to three spa-
tial dimensions. In our models the third dimension corre-
sponds to time. To simplify notations, let us denote an im-
age sliceI(t0) at timestept0 by I(t0) = fys(t0); s 2 Sg
and a time seriesT (s) at voxel s = (i; j) by T (s) =
fys(t); t 2 Tg.



3.1. Artifact Detection

A time series of slices is segmented into a mean fore-
ground (brain) and mean background by a k-means classi-
fication and subsequent morphological closing. Then for
each slice, we compute the mean signal intensity and its
variance in the foreground and background region. These
four datums are collected and classified for a given slice
over the whole time series. Slices at timesteps with gross
body movements appear as ”blurred images” in the se-
quence and thus exhibit a lower ratio between foreground
and background intensity. Magnetization artifacts oc-
cur during the non-equilibrium conditions during sequence
startup and are detected as high intensity outliers. The ra-
tio of foreground variance and background variance yields
an information about the amount of pulsation artifacts and
the contribution of ghost images, more than it reflects the
contribution of noise in the data. Outliers are marked for
exclusion in the statistical evaluation. These ratios are a
crude indicator for the raw data quality and can be reported
to the user.

3.2. Motion Correction

Small physiological movements (< 2 � 4mm) are cor-
rected by registration of the slices in the time series. Gen-
erally, an image sliceI(t) is registered onto a reference
I(t0) by application of an affine transformationA: Ia(t) =
A(I(t)). We define a cost functionC := C(Ia(t); I(t0)),
which reflects the likelihood between transformed slice and
reference. The likelihood is maximized by modifying the
transformation parametersA := argmax C((Ia(t); I(t0)).
In this context, we set up a affine transformation consisting
of a two translational and a single rotational parameters.
The cost function is given by the image cross-correlation
[13]:

C =

PS
(ys(t) � ys(t0))qPS ys(t)2 �

PS ys(t0)2
; (1)

which is maximized using the Simplex algorithm [23].

3.3. Baseline Estimation

In fMR datasets, slow time-dependent intensity fluctua-
tions are found at any given foreground voxel (see Fig. 4,
top left). These fluctuations are dependent on the voxel lo-
cation (i.e. on the tissue properties), the scanner properties
(i.e. linearity, long-term stability), and perhaps also due to
physiological variations. These fluctuations often make up
to 10% of the signal and thus can easily hide functional ac-
tivations. We suggest to estimate the baseline and subtract
it from the input signal. Here, one has to be cautious not

to model signal changes attributable to functional activa-
tion. We restrict to the baseline estimation in the time se-
ries only: a spatio-temporal filter needs to track of anatom-
ical edges (i.e. the transition CSF-cortex) and thus requires
edge-preserving properties in the spatial domain. With lim-
ited testing, we have found no advantage of using spatial
information here.

Several options from classical time series analysis are
available for baseline estimation: (1) moving average (MA)
filters, (2) finite impulse response (FIR) filters, and (3)
autoregressive-moving average (ARMA) models. The MA
filter estimates the state of a voxel at timet0 from the mean
in a window of2N + 1 time points aroundt0:

yfs (t0) =

NX
r=�N

ys(t0 + r)=(2N+1); �N � r � N: (2)

The FIR lowpass filter is given by the following equation
[26]:

yfs (t0) =
NX

r=�N

�rwrys(t0 + r); �N � r � N; (3)

where�r = sin(r�)
r�

denote the2N + 1 lowpass filter co-
efficients for the cut-off frequency�, andwr the 2N + 1
coefficients of a Hamming window:

wr = 0:54 + 0:46 cos(
�r

N
); �N � r � N: (4)

In the ARMA model, we consider the baseline to be a real-
isation of the process

yfs (t) =

pX
r=1

�rys(t� r) +

qX
r=1

�r�(t� r) + �(t); (5)

where�r are thep, resp. �r the q parameters of the
ARMA(p, q) process [30], and�(t) � N(0; �2).

The output of the filter is subtracted from the input sig-
nal which effectively results in highpass filtering and like-
wise separates the anatomical information from the func-
tional activation.

3.4. Signal Restoration

At this point in the preprocessing, the signal is composed
of (1) the functional activation, (2) uncorrelated signal vari-
ations (pulsations, breathing), and (3) noise. In a spectrum
of the time series, the functional response due to a stimulus
corresponds to a peak in the low-frequency range with all
of our current experimental designs (see Fig. 5, top right).
Thus, we have studied simple FIR lowpass filters to select a
spectral band which only includes the first one or two har-
monics of the stimulus frequency. However, such a lowpass



filter requires adaption to the stimulation frequency for a
given experimental design. In addition, since the spectral
properties of a hemodynamic response are not known, it is
a priori unclear how many harmonics are to be included in
the pass band.

Because the anatomical edges are now absent, we may
take advantage of any spatial information to restore the
functional signal. The aim of restoration is to add some con-
straints of homogeneity and smoothness on the solution. A
common approach in functional imaging is to use aspatial
lowpass filter to improve the signal-to-noise ratio. Lowpass
filters smooth the data without taking the properties of the
underlying signal into account. So high frequency compo-
nents are lost, i.e. edges in the image are blurred. Using a
Markov random field (MRF) as a prior in a Bayesian frame-
work improves the restoration of fine structures and along
edges. We do not formally introduce MRFs here [5], but
restrict to describe the specifics of the model applied in this
context only [9, 10].

We consider that the dataX consists of the underlying
signalY , corrupted by additive noise�. Reformulating this
ill-posed inverse problem in a Bayesian framework, we have
to maximize thea posterioriprobabilityP (Y jX):

P (Y jX) =
P (X jY )P (Y )

P (X)
/ P (X jY )P (Y ); (6)

whereP (X jY ) refers to the likelihood (or data attachment)
andP (Y ) to the prior model.P (X jY ) is defined by the
noise model whereasP (Y ) is defined by the proposed edge
preserving MRF. A Gibbs field formulation of the prior
probability is given by:

P (Y ) =
1

Z
exp[�U(Y )]

=
1

Z
exp[�

X
c2C

Vc(ys(t); (s; t) 2 c)]; (7)

whereU is the energy function,C is a finite subset of voxels
(a clique),Vc is the potential associated with the cliquec
andZ a normalization constant.

We consider a 3D spatio-temporal MRF model, where
two dimensions correspond to the spatial dimensions of a
fMR slice and the third dimension refers to the temporal
domain. The 4 next neighbors define the spatial cliqueS
and and the two nearest neighbors in the temporal domain
define the temporal cliqueT . The choice of the potential
functionV is crucial to avoid blurring of edges, which in
this model correspond to transitions between activated and
non-activated areas in the spatial domain, resp. activated
and baseline periods in the temporal domain. We have se-
lected a�-model on pairwise interactions, which presents a
good behavior for edge recovery [16]:

�(y) =
��

1 + (jyj=�)
2 : (8)

This function depends on two parameters,� and �. The
� parameter defines for which intensity difference between
two neighboring voxels we consider to have most proba-
bly an edge. The difference between activated and non-
activated areas is the same in the spatial and temporal do-
main, so�temp = �spat. The� parameter reflects to the cost
of an edge in the potential function. We attribute the same
interaction strength to cliques in the spatial and the temporal
domain. Since the are twice more neighbors in the spatial
domain, we consider stronger interactions for the temporal
potentials:�temp = 2�spat = �, i.e.

VT (yi;j(t); yi;j(t+ 1)) =
�2�

1 + (yi;j(t)� yi;j(t+ 1))2=�2
;

VS(yi;j(t); yi;j+1(t)) =
��

1 + (yi;j(t)� yi;j+1(t))2=�2
; (9)

whereVT denotes the temporal interaction potential and
VS the spatial interaction potential between two voxels.
We also consider a�-model for the data attachment term
P (X jY ) and a potentialVD:

P (X jY ) =
1

Z
exp[�VD(y(i;j)(t))]; (10)

VD(y(i;j)(t)) =
��D

1 + (y(i;j)(t)� x(i;j)(t)))2=�2
; (11)

which attaches the restored signalY to the measured data
X . Using eqn. 6, 7 and 10, thea posteriori probability
P (Y jX) is written as follows:

P (Y jX) / P (X jY )P (Y )

/
Y
(i;j);t

p(x(i;j)(t)jy(i;j)(t)) exp[�U(Y )]

/ exp[�
X
(i;j);t

log p(x(i;j)(t)jy(i;j)(t))] exp[�U(Y )]

/ exp[�UX(Y )] (12)

where the energyUX is defined using the potentials defined
in eqn. 9 and 11:

UX(Y ) =
X
(i;j);t

VL(y(i;j)(t)) +
X
c2T

X
(i;j)

VT (c) +

X
c2S

X
t

VS(c) (13)

The global energy is defined up to an additive constant, so
we can impose�D = 1 without loss of generality. Thus, the
proposed model depends only on the parameters� and�.

To find the configuration which minimizes the global
energy corresponding to the MAP criterion, we apply a
simulated annealing scheme [3]. In a parameter study of
this scheme, we have selected a starting temperature of
T = 20000, a temperature decrease of� = 0:97, and500
iterations.
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Artifact Detection in Slices of a fMR Timeseries

Figure 2. Artifact detection in slices of a fMR
time series. Top row: quotient of foreground
and background intensity; bottom row: quo-
tient of foreground and background variance.
Stars denote slices marked as statistical out-
liers.

3.5. Detection of Activated Areas

Data preprocessing is followed by a statistical analysis to
detect signal changes that are correlated significantly with
the experimental design. Usually, we compute the Pearson
correlation coefficient with a box-car-waveform [6], which
is shifted by 6s to take the lag of the hemodynamic response
into account. The correlation coefficient is renormalized
and converted into a z-statistic [23]. Activated areas are
then tested for their significance using the theory of excur-
sion sets in Gaussian random fields [14].

4. Results

In the context of a fMR study of auditory language com-
prehension we have acquired every 2s 4 slices of 128x64
voxel with a spatial resolution of 1.9x3.8x5mm and 2mm
gap. The presentation of a sentence needed approx. 6s (3
timesteps), followed by a pause of 18s (9 timesteps). 76 tri-
als (912 timesteps) were recorded during an approx. 30min
experiment. A single dataset was chosen to demonstrate the
use of the procedures discussed in this article. Similar eval-
uations have been performed on a large number of datasets
and different experimental designs.

4.1. Artifact Detection

Fig. 2 shows a typical output of the artifact detection
routine. The quotient of the foreground and background
intensity (top row) shows some spikes to lower values. At
these time points visual inspection mostly shows that these
slices are blurred due to gross movement artifacts.

4.2. Movement Correction

As explained earlier, we currently perform movement
correction in 2D only. Typical deviations for the time series
of an axial slice are in the order of�0:5 mm and somewhat
higher for the x (ear to ear) than for the y (front to back)
direction. However, the highest degree of freedom is found
in the nodding direction, which corresponds to a through-
plane movement here and is currently uncorrected.

4.3. Baseline Correction and Signal
Restoration

We selected the time series of a single voxel in a weakly
activated area in the left thalamus (native z-score 2.54). Re-
sults are compiled in Fig. 5, where on the left side the
time series, on the right side the spectrum is displayed.
The top row contains the native signal, the second row
the baseline-filtered signal (using a MA filter), the third
row the baseline-filtered signal (using a FIR lowpass fil-
ter), the bottom row the bandpass-filtered signal. The native
signal (top left) contains rather large baseline fluctuations
(� 700 intensity units), compared to a peak functional sig-
nal of about80 intensity units. By bandpass-filtering a clear
separation of individual trials from noise and artifacts is
achieved and reflected as a prominent peak in the spectrum
(at x = 76), an impressive increase in the signal-to-noise
ratio (SN) and the Pearson correlation coefficient (R) with
a box-car-waveform. It is important to design the baseline
filter not to diminish the first harmonic of the hemodynamic
response, which is reflected in similar SN ratios of the na-
tive and filtered signals. Emperically, we found an optimum
value of� (in eqn. 3) of 1.5 times the period length of the
intertrial interval (i.e. 18 timesteps in this example) using a
filter length ofN = 25 coefficients.

Surprisingly, ARMA(p, q) filters do not perform better
for the baseline estimation. As a performance measure, we
have computed the correlation coefficientR as a function of
the model coefficientsp andq. Local maxima are found at
ARMA(0, 18) which corresponds to a simple MA filter of
length 18, and at ARMA(9, 0), which corresponds to a 9 pa-
rameter autoregressive model. A simple explanation for this
finding is that ARMA models adapt to the time course too
closely and follow the functional activation in the estimated
baseline. Subtraction of this baseline thus diminishes (or
even destroys) functional activation in the filter output. Us-
ing Akaike’s information criterion to select the best model
we found an ARMA(2, 2) filter.

To test the signal recovery performance of these filters,
we run a second experiment. We randomly selected a non-
activated voxel from a different brain region, where we ex-
pect the same artifacts and noise level. Onto this time se-
ries, we modulated (1) a square wave (in the shape of the



Waveform square hdr sine

BL-MA 0.413 0.550 0.567
BL-LP 0.428 0.565 0.587
BP(�=4) 0.505 0.832 0.971
BP(�=3) 0.780 0.947 0.945
AR(9; 0) 0.536 0.738 0.773

Table 1. Recovery rates c for model functions
square wave, prototypical hemodynamic re-
sponse, and sine wave. The best signal
quality for the hemodynamic response is
achieved using a bandpass filter which in-
cludes the first harmonic ( � = 3).

box-car-waveform), (2) a sine wave, and (3) a prototypical
hemodynamic response function, which was gained by av-
eraging over all responses in time and space in this dataset.
We define the signal recoveryc of the model functionm(t)
from the preprocessed time seriesys(t) by:

c =

PN

t (ys(t)� (am(t) + b))2PN
t ys(t)

2
; (14)

where we maximizec by variation ofa andb. Thus,c = 1
denotes a perfect recovery, whilec = 0 corresponds to a
complete loss of the signal.

Data for the various preprocessing options are collected
in Tab. 1. Not surprisingly, a sine wave modulation yields
the best, and a square wave the worst recovery rates. The
prototypical hemodynamic response compares more with a
sine wave than with a square wave, indicating the only the
first harmonic is important to describe the signal shape. Sur-
prisingly we found recovery rates of only 0.55 for baseline-
filtered signals. This indicates that simple averaging the
signal (in time or space) does not successfully recover the
hemodynamic response. Again, bandpass-filtering yields an
impressive increase, with recovery rates for the hemody-
namic response of up to 0.95.

Next, we studied the performance of signal restoration
using the proposed MRF. A 10x10 voxel patch was selected
from the input dataset where no activation was detected and
the three model functions were modulated onto this patch,
convolved with a smooth 6x6 spatial kernel. We report
the recovery rates under different combinations of the MRF
restoration parameters� and� in Fig. 3. Higher values of�
improve the discrimination between noise and signal, on the
expense that small functional signals might be suppressed.
Higher values of� enhance the interaction between vox-
els. The map-like structure of this plot stems from the fact
that the simulated annealing is a stochastically driven pro-
cess and yields only a solution close to the global optimum.
However, consistenly high values for the recovery (in the
range of 0.90-0.97) are found for� > 0:3 and� > 20. In
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Figure 3. fMRI signal restoration by a edge-
preserving Markov random field: as a func-
tion of the restoration parameters � and �,
the signal recorvery for a sine wave (left), a
prototypical hemodynamic response, and a
square wave (right) are shown.

conjunction with the plots for the SN ratio and the correla-
tion (not shown) we have selected an optimum of� = 0:4
and� = 60. Thus, by application of an MRF for signal
restoration we yield approximately the same recovery rates
(and a similar SN ratio) like in a matched bandpass filter,
without having the need to infer any knowledge about the
experimental design in the restoration process. To com-
pare the edge-preserving properties of the MRF approach
in comparison with spatial Gaussian filtering, we computed
the performance measures SN ratio, z-score, and signal re-
covery for all voxels in the test patch which was modulated
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Figure 4. Edge preservation properties of
Gaussian filtering in the spatial domain (as a
function of �, left) in comparison with image
restoration by the proposed MRF (as a func-
tion of �, right). The upper trace corresponds
to the z-score correlation, the lower to the SN
correlation. For more explanation, please re-
fer to the text.

with either a square wave, the hemodynamic response, or a
sine wave. Then we computed the likelihood (i.e. the corre-
lation) of these measures with the spatial convolution kernel
applied in the modulation. An ideal procedure would pro-
duce a correlation of 1, and 0 would indicate a complete loss
(or distortion) of the modulation. Results for the hemody-
namic response are shown in Fig. 4, where the upper trace
corresponds to the z-score correlations, the lower trace to
the SN ratio correlations.

With an increasing� of the Gaussian filter, a slight in-
crease followed by a marked decrease of the correlation is
found. This corresponds well to the ”usual practice” of
applying a Gaussian filter with an optimal�-value of 0.6,
while higher values introduce considerable blur in the sta-
tistical parameter maps. The MRF yields consistently bet-
ter figures in all test measures and all types of signals (not
shown).

Fig. 6 (see last page of the paper) compiles the results
of the statistical analysis of this dataset. Immediately ev-
ident is the improvement in the z-statistics after bandpass
filtering: in the auditory cortex, z-scores up to 20 are found.
However, by filtering in the temporal domain only, varia-

tions between voxels occur. When using a MRF for signal
restoration, smooth but not blurred activations are found.

5. Discussion

We propose a preprocessing sequence for fMR data,
which consists of (1) artifact detection, (2) movement cor-
rection, (3) baseline correction, and (4) signal restoration
using an edge-preserving MRF. The advantages of this se-
quence are reflected in impressive increases of z-scores in
the test statistics and a better signal-to-noise ratio, which
corresponds to a lower rate of false positively detected ac-
tivations. To test the signal quality after preprocessing, we
modulated test signals onto raw fMR datasets and computed
their recovery. For a prototypical hemodynamic response
we were able to recover up to 95% of the original signal
shape, compared to 45% in the native (unprocessed) case.
In contrast to Gaussian filtering in the spatial domain, the
standard procedure to improve the signal-to-noise ratio of
functional MR data, our signal restoration method yields a
better signal recovery and introduces less blur in the spatial
domain.

However, our approach has some limitations: (1) time
steps marked as artifact-loaded during the first preprocess-
ing step are reconstructed from the neigbors to allow the
processing of time series in subsequent steps. This ad-hoc
method needs re-evaluation. (2) it remains unclear how
much the use of spatio-temporal interactions in the MRF
affects test statistics. Although as far as we know, the cur-
rently accepted application of Gaussian filtering in the spa-
tial domain, has not been studied in this context, an evalua-
tion using Monte Carlo simulations seems necessary. (3) the
MRF is computationally expensive. A typical MR experi-
ment needs 3-4h of restoration time, compared with 5min
for bandpass filtering. Thus, the use of the MRF might be
deferred until the final statistical evaluation.

Two important advantages of the preprocessing scheme
proposed here should also be emphasized: firstly, a reliable
baseline correction makes it possible to compare experi-
mental blocks which were recorded several minutes apart
or even in different scans. Secondly, a good signal restora-
tion renders complex schemes for hemodynamic modeling
less interesting. The vast improvement in signal quality and
a proven recovery of more than 90% of the original signal
shape allow a better comparison of the dependency between
the shape of the hemodynamic response and different cog-
nitive stimulation conditions.

These benefits from preprocessing of fMR data open new
perspectives for the design of fMR experiments in cognitive
research.
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Figure 5. Timeseries (left) und spectra (right) at a voxel with low activation. Top row: native signal,
2nd row: after baseline correction using an MA filter, 3rd row: after baseline correction using an LP
filter, bottom row: after BP filtering. Listed with the spectra are the signal-to-noise ratio (SN) and the
Pearson correlation (R) coefficient with the stimulus, modeled as a box-car-waveform.



Figure 6. Statistical analysis of a fMR experiment to study auditory language processing. Top row:
analysis of the native dataset, middle row: after bandpass filtering, bottow row: after image restora-
tion using an MRF. For the detection of activated regions we have computed the Pearson correlation
coefficient with a box-car-waveform (shifted by 6s), followed by z-transformation and assessment for
significance. The ”hot body” color scale ranges from z = 12 (!) to 24.


