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Abstract

This paper addresses the problem of generating three-
dimensional (3D) finite element (FE) meshes from medical
voxel datasets. With our background in cognitive neuro-
science, we deal with brain MR tomograms of up to2563

voxels which contain a multitude of incompletely definable,
complex-shaped objects. We describe an algorithm that al-
lows the fast and stable creation of very large 3D meshes
with well-defined geometric properties. The task of generat-
ing anisotropic meshes consisting of up to one million tetra-
hedra is fulfilled within minutes on a standard workstation.
As the angles of the tetrahedra have a direct influence on
the stability of the finite element analysis, special care has
been taken to assess the element quality. Our algorithm is
based on the idea of an image-based spatial decomposition
of the problem domain yielding smaller subproblems that
can efficiently be handled. Our primary purpose is to set up
mechanical and electro-magnetical finite element models of
the brain. However, our FE meshes could also be useful in
other types of finite element analyses or as deformable vol-
ume models for shape descriptions and shape comparisons.

1. Introduction

The finite element (FE) method for the numerical solu-
tion of partial differential equations (PDEs) has a large field
of applications in its classical domain, the engineering sci-
ences [19, 7]. Recently, this method gained interest in the
medical field. The finite element method is used for

� locating electro-magnetical sources of the brain [31],

� modelling irradiation in tumor therapy [24],

� simulating the mechanical system answer of the head
under impact [18, 11] and

� for surgery planning and the prediction of human facial
shape after craniofacial surgery [16].

Figure 1. From MRI data to finite elements: By the
means of image processing a segmented image is ob-
tained which can be used as starting point for the
mesh generation process.

Usually FE models for medical problems are based on to-
mographic examinations from magnetic resonance (MR) or
X-ray scanners. A proper segmentation of the medical im-
ages yields objects (i.e. bone, brain, ventricles) as homo-
geneous regions, to which tissue properties (i.e. electrical
conductivity or mechanical elasticity) are assigned. Then,
a finite element description of those objects has to be in-
troduced by a mesh generation procedure (see Figure 1).
By considering the connectivity of the elements and their



tissue properties, an equation system is set up and solved
by appropriate numerical techniques. The solution of an
FE calculation yields a physical property depending on the
underlying PDE. The spatial diplacements or the electrical
potentials at the mesh nodes are typical results of a finite
element analysis.

The problem of 3D mesh generation is a current re-
search topic within the field of computational geometry. All
the solutions proposed can be roughly subdivided into two
classes.

The most common approach to create a 3D mesh starts
with a boundary representation of a polyhedral object [2, 14,
15, 21, 22]. During the mesh generation, so-called ”Steiner
points” are placed within the interior of the object. It has
been shown that in three and higher order dimensions it is
generally impossible to tesselate a polyhedral object with-
out introducing Steiner points [30]. A Delaunay tesselation
is then applied to generate the finite elements [6, 3]. Often a
post-processing step is required to either remove degenerate
elements or reconfigure the mesh, so that the elements sat-
isfy predefined quality criteria (for definition, see [20, 10]).

A second approach is based on a recursive spatial decom-
position in the geometrical domain, in which a 3D region is
subdivided into cubes or octants [28, 29, 33, 25, 23, 32].
This subdivision may result in an isotropic or anisotropic
mesh, imposed by object boundaries or resolution limits as
stopping criteria [26, 27].

Object descriptions for both types of algorithms are hard
to generate from medical datasets, so the application of
these mesh generators poses a number of problems:

� Tomographic examinations yield voxel datasets, which
first have to be segmented into objects.

� Imperfections in the imaging process (non-linear be-
haviour of the scanner, motion artifacts, partial-volume
effect, noise, etc.) will lead to segmentation errors and
likewise to an incompletely defined object.

� Segmentation errors lead to incompletely defined or
roughly approximated object boundaries.

� Shapes of anatomical objects are generally complex
and highly non-convex. This will (i) complicate
geometry-based algorithms and (ii) result in a large
number of elements generated.

� Multiple objects of different tissue types are present in
a tomogram and must be handled simultaneously.

From several commercial and non-commercial mesh gener-
ators available to us none was able to successfully build a
tetrahedral mesh from a MR tomogram of the brain. The
following drawbacks arise with the approaches mentioned
above:

� Boundary-oriented approaches require a polyhedral
definition of an object that serves as input for the mesh
generator. Since typically hundreds of connected com-
ponents are found in a segmented brain tomogram,
which results in a complex mesh generation procedure.

� Given the highly complex structures in the brain, a few
of the larger objects exhibit104 � 105 boundary ver-
tices, which lead to numerical stability problems in the
Delaunay tesselation algorithms.

� On incompletely defined boundaries, the subdivision
approach generates a huge number of small elements
or even fails completely.

� The subdivision approach has considerable require-
ments in terms of memory and computational re-
sources.

Because of these disadvantages the cited approaches are not
suitable for the generation of FE meshes based on medi-
cal datasets. The algorithm we describe in this article will
take advantage of the discretization of space inherent in a
tomogram. A well-defined subsetM of the setA of all
image lattice points will represent the nodes of the whole
FE mesh. By processing subsets ofM we decompose the
problem into small subproblems that can efficiently be han-
dled. The precise mathematical definitions will be given in
the following chapter and the above idea will be described
in more detail in chapter 3, where we will present our al-
gorithm and discuss its behaviour and properties. Chapter
4 shows FE meshes of neuroanatomical structures produced
with our algorithm and focuses on possible applications and
further developments of our new technique.

2 Mathematical Definitions

Three-dimensional medical images can be thought of as
a set of addresses with each address being labeled with a
defined gray value. The set of addresses which is often re-
ferred to as the image lattice can formally be written as:

A = f(s; r; c) j 0 � s < nslices;

0 � r < nrows;

0 � c < ncolumnsg; (1)

wherenslices, nrows, ncolumnsdenote the number of slices,
rows and columns of the 3D image. Every address can be
interpreted as a point in the Euclidean space (depicted as
black circles in Figure 2). These points may likewise be re-
ferred to as nodal points or nodes. The assignment of labels
to the elements ofA can be formulated as a mapping

fimage : A ! G; (2)
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Figure 2. This image explains the terms image
lattice, voxel representation and cell that are used
throughout the text.

whereG for MRI images is normally chosen asG = f0, 1,
..., 255g. Within this framework a voxel v can be defined
as a an element of the setA with a label l2 G given by
(2). Voxels are in almost any case visualized as intensity
coded cubes defined in the Euclidean space (see Figure 2).
If we apply a functionfsegment to the set of voxelsV that
classifies its elements v depending on their intensity l and
then assign a unique label u to every member of a class we
obtain a segmented image L. Mathematically written, the
voxels of the original image are subject of the mapping

fsegment : V ! U ; (3)

whereU = f0, 1, ...,umax g denotes the set of all assigned
labels u.

An important role in our algorithm plays the concept of a
mathematical entity that we will call acell in the remainder
of this paper. We define a cell c as a cubus whose corner
points are a subset ofA, i.e. a cell is delimited by eight
image lattice points. A cell may also have image lattice
points on its faces and edges. The set of image lattice points
belonging to the ith cell will be denoted asNi and the j-th
member ofNi will be referred to as the cellular nodenji .
The set of all cells is calledC and its number of members w
will be dependent on the image structure and the degree of
mesh anisotropy chosen by the user.C is defined as

C = fN1 [N2 [ ::: [Nwg: (4)

The edge length e of a cell must satisfy the constraints0 <
e < 256. A simple eight-noded cell will be called a brick in
the following. Now we can mathematically describe the set
of nodesM that constitute a mesh:

M = C \ A (5)

The elements ofM are numbered with the labelsk1 to kn
with n = card(M).

Finally we want to give a formal description of amesh:
A mesh is represented by the combination of a setM

with a set of elementsE . A member ofE is described by
several integral numbers, in the case of a tetrahedron five
numbers suffice:

kl kh kv kw m (6)

The first four numbers are the labels of the elements of
M that define the corner points of a tetrahedron. The last
number is a unique label m assigned to the element during
the mesh generation process that can be interpreted as a ma-
terial number.

3 The Algorithm

3.1 Introduction

The basic idea of our new algorithm is to simplify the
task of meshing by introducing cells of different size into
the MRI dataset and then handle the cells according to the
number of cellular nodesnji . Without loss of generality we
will assume a 3D segmented MRI dataset L as input for our
mesh generator. Voxels with the label u=0 will be inter-
preted as image background and the creation of background
elements is suppressed. In our problem domain, the labels
u 6= 0 correspond to different objects (i.e. white matter,
bone, ventricles) and/or regions with specific material prop-
erties (i.e. electrical conductivity, stiffness). Our algorithm
can be subdivided into three steps:

1. Isotropic subdivision of the input image into bricks.

2. Collection of bricks to build up cells.

3. Cellular mesh generation phase.

3.2 Subsampling and collection

Figure 3 visualizes the result of every step for a seg-
mented skull-brain dataset with an isotropic resolution of
1 mm. In this example the original image is first decom-
posed into bricks (for definition see preceding chapter). To
preserve relatively fine skull structures the user-specified
subsampling factoremin defining the edge length of the
bricks must not be too high. Typically we choose a value
of 2 (mm). Each of these bricks has already been assigned
its specific ”material” label. As the i-th brick is defined by
eight cellular nodesnji (j=1, ..., 8) we can define its label by
(i) converting the brick nodes into voxels by the means of
the mapping function (eq. 2) and (ii) finding its class label
u with of the help of the segmentation function (eq. 3). The
most frequently found label within a brick will become its
material label m. In the case of two labels being equally
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Figure 3. This image shows the three phases of our
algorithm. In a first step the phantom (I) represent-
ing the skull-brain system is subdivided into bricks of
identical edge length (II). The result of the subsam-
pling phase is an anisotropic decomposition of the im-
age into cells (III). This cell image serves as starting
point for the mesh generation (image IV).

frequent a random function decides to which class the brick
under consideration belongs. The creation of bricks with
material labels of zero is suppressed.

The subsampling is followed by the collection step. By
recursively traversing the subsampled image, bricks of iden-
tical material label are collected to form cells with larger
edge lengths. A cell inherits the material label of its bricks.
The maximal edge lengthemax of all cells is given by
a user-specified parameter, the so-called collection factor.
The quotient of the collection factor and the subsampling
factor will be referred to as the anisotropy factor. In the
shown example this factor was set to be eight. One can
clearly see in image III that cells of different edge lengths
have been produced. Within the homogeneous region cells
with emax = 16 have been created whilst in the complex-
shaped skull region most of the cells have the edge length
emin = 2. In the transition region between brain and skull
cells withemin < e< emax have been formed. As we know
from chapter 2, the i-th cell is represented by a setNi. We
find the number of cellular nodes (i.e. card(Ni)) by look-
ing at the neighbours of the cell of interest. An examina-
tion of the gray-marked cellcgray in image III reveals that
card(Ngray) = 39, i.e. 39 cellular nodesnjgray are necessary
to maintain the neighbourhood relationships. The cardinals
of the sets (Ni) range from 8 to 150 ( i=1, ... card(C) ). As
mentioned above our algorithm locally processes these sets

according to their number of elements. We will discuss this
point in detail with the help of a simple mathematical phan-
tom. Before doing this it should be noted that the subsam-
pled as well as the collected image could be interpreted as
FE meshes if the cells are considered as finite elements. For
calculations with an anisotropic mesh (see image III) a more
complicated formulation of the finite element method has to
be implemented. We are not pursuing this case within this
article. The result of the last step, the mesh generation, is
depicted as image IV. In the complex-shaped region we see
a much higher resolution as in the homogeneous one. This
is reasonable when using FEM for mechanical applications
as stress and deformations are more variable at boundary
regions and geometrically complicated areas.

3.3 Generation of anisotropic tetrahedral
meshes

Figure 4 shows a simple mathematical phantom consist-
ing of 128 x 128 x 32 voxels (card(A) = 524288). The value
of the anisotropy factor was chosen to be two. During the
collection phase the algorithm detects the small structure
and creates cells of appropriate edge lengths in this region
(see image in the right upper corner of Figure 4). Execpt for
three (marked with a ”D”), all cells are bricks. The bricks
are processed by a geometrical subdividion into five tetra-
hedra according to Figure 5. The remaining cell setsNi are
containing either 13 or 9 elements. These ”complex” cells
are tesselated by a Delaunay algorithm. To produce tetrahe-
dra with faces compatible with those of neighbouring cells,
we selected an incremental tesselation algorithm. We have
found the Clarkson algorithm [4] to be modifiable for our
purpose. Since card(Ni) for i=1, ... card(Ci) is relatively
small, tesselation is numerically stable and fast. With the
determination of the intersectionM (card(M) = 69) and
of the elements ofE (card(E) = 147) the generation of the
phantom mesh is accomplished. The material number m
of a certain tetrahedron is determined by the label m of its
”mother cell”. Figure 8 shows an outline of an implementa-
tion of our algorithm.

3.3.1 Quality of tetrahedra

For the sake of stability of any FE simulation carried out
with tetrahedral elements the tetrahedra should satisfy cer-
tain quality criteria. As a rule of thumb, angles below 10
degrees are more likely to cause stability problems when
solving the equation system. For the tetrahedra that are re-
sult of a brick decomposition (see Figure 5) this requirement
is fulfilled in any case. We only find 3 different angles (all
greater than 10 degrees) and 3 different edge lengths. In the
”Delaunay case” the situation is more difficult. The creation
of degenerate tetrahedra (all its nodal points being coplanar)
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Figure 4. This set of images explains the behaviour
of the algorithm in the presence of a small structure.
The image in the upper right shows the result of the
subsampling phase. Cells with larger edge lengths
have been built in the homogeneous region and those
with smaller edges in the area of the structure. De-
pendent on the number of nodes the bricks are either
Delaunay-triangulated (marked with a ”D”) or sim-
ply subdivided into five tetrahedra (see Figure 5). The
results of the triangulation are depicted in the lower
row.

Figure 5. Subdivision of a brick into five tetrahedra.

has to be suppressed by fixing the order by which thenji are
handed to the Delaunay algorithm. As all cellular nodes
are lying on a convex polyhedron (a cube) all angles in the
cells are greater than 10 degrees if we limit the anisotropy
factor to the value eight. It it obvious that the anisotropy
factor influences the angles of the tetrahedra. In the worst

case the smallest edge of a tetrahedron has the valueemin

and largest is of the sizeemax. If the ratio of these values
(i.e. the anisotropy factor) is chosen too high very small
angles might occur. To avoid the construction of such ”mi-
nor quality” tetrahedra a Steiner point could be introduced
in the center of a cell. This possibility has not yet been im-
plemented because for our applications an anisotropy factor
of eight has proven to be sufficiently high to remarkably re-
duce the number of nodes (see Table 1).

3.3.2 Numbering of mesh nodes

An additional positive feature of our mesh generator is the
”natural” numbering of the nodes. The way the nodes are
numbered determines the bandwidth of the FE matrices. As
a large bandwidth of an FE matrix may result in numerical
instabilities during the FE analysis, meshes often have to
be postprocessed by renumbering algorithms [8, 5]. These
algorithms aim at minimizing the difference D between the
largest and the smallest node numbers in an element. The
relation between D and the bandwidth BW of an FE matrix
is given by the formula

BW = max
e

[D(e)] + 1: (7)

Time- and memory-consuming renumbering of nodes is un-
necessary for meshes produced by our algorithm. As our
mesh generator creates the elements during a row-by-row
and slice-by-slice traversal through the MRI dataset, the
maximum differenceDmax is equal to the number of nodes
that are produced for generating the FE elements of a single
MR slice.

4 Results and Outlook

The algorithm has been implemented in the C++ lan-
guage as a module in the BRIAN environment [17]. The
algorithm has been tested with a number of MR datasets
which were preprocessed in the following way:

� Acquisition of a T1-weighted MR brain dataset, GRE
sequence, 128 slices, in-plane resolution of 0.91mm,
interslice distance 1.4mm.

� Trilinear interpolation to an isotropic resolution of
1mm.

� (Optional) noise filtering with a Lee filter.

� K-means classification using 5 classes.

Individual objects (e.g. the white matter, ventricles,
etc.) were extracted by thresholding the k-means classifi-
cation, labeling connected components, and selecting a spe-
cific object by its label. Figure 7 shows a mesh of a seg-
mented anatomical object, the ventricles. To gain quanti-
tative knowledge about the properties of our algorithm, we



generated meshes from a labeled 192x192x200 MR brain
dataset containing five different labels in 12 objects. Tab. 1
lists a compilation of the results obtained by choosing dif-
ferent spatial resolutions and varying anisotropy factors.

The test cases prove the evident relation between card(E)
and and the anisotropy factoremax=emin. Obviously, the
number of created nodes also depends on the size of the
homogeneous regions in the input image. Because we do
not expect homogeneous regions in our datasets to be much
larger than163 voxels, it is not useful to setemax to greater
values than 16. Experiments withemin=1 have not been
carried out, because the fivefold subdivision of such cells
should yield elements smaller than the spatial resolution of
the MRI scanner. For our datasets we have found anisotropy
factors of four and eight to be most useful. As listed in
Tab. 1, this setting cuts down the number of nodes (which
determines the memory requirements) by up to 80 % rela-
tive to the number of the corresponding isotropic case. Ex-
pectedly, the node reduction effect becomes smaller with
increasingemin and with decreasingemax.

Figure 6. A mesh of the human brain (41000 mesh
nodes and 188000 elements). The regular subdivi-
sion of the bricks is visible especially at the bound-
ary. Some Delaunay tesselated cells can be seen in
the region of the brain stem.

The execution times to generate these meshes are also
listed in Table 1. Highly resolved meshes are created within
less than four minutes, coarser meshes do not even take
more than a few seconds. Figure 6 shows a brain mesh con-

sisiting of about 41000 nodes as a typical output of our mesh
generator. Before we are going to discuss possible further
developments of the algorithm we would like to compile the
characteristics of our mesh generator:

Figure 7. A mesh of a neuroanatomical object. The
large inner cavities, the ventricles, are depicted as a
tetrahedral mesh consisiting of 1579 nodes and 3006
elements.

� It is fast: producing a mesh consisting of around
100000 tetrahedra takes half a minute.

� Tetrahedra produced have a high quality with regard to
FE analyses.

� The Delaunay triangulation is stable for node numbers
of 10 to 150.

� Node renumbering is not necessary.

Though the mesh generator is fully applicable in its current
state, further improvements can be thought of.

� The implementation of local refinement strategies
could be desirable when using our mesh generator
for calculations aiming at locating electro-magnetical
sources of the brain.

� The extraction of object boundaries could be useful for
visualization purposes.

In this paper we have described an algorithm to generate
3D meshes from MR tomograms. These meshes are tar-
geted towards applications in the finite element method of
solving PDEs. Previous approaches required the formation
of boundaries and well-defined polyhedral objects, which
are hard to generate from medical image datasets. More-
over, we have found stability problems of these algorithms
when applied to the highly non-convex objects in the brain.



By spatial decomposition of the voxel dataset into cells, we
could derive a fast and numerically stable algorithm for the
generation of anisotropic tetrahedral grids. By collecting
homogeneous regions in larger cells (and thus building an
anisotropic grid) we were able to cut down the number of
mesh nodes by up to 80 %.

Using this mesh generator, we were able to set up finite
element models with the generic scanner resolution of 1mm,
which were solved on our parallel computer in a few min-
utes [1, 9]. By limiting the spatial resolution to 2mm, these
models fit into the memory of conventional workstations.

Our primary goal is to study the consequences of fo-
cal brain damages by mechanical FE models [13, 12] and
the source localization of neural brain activity by electro-
magnetical FE models. However, other types of PDEs may
be handled the same way: growth processes in the brain,
atlas transformations, or irradiation in tumor therapy.

Finally, FE analysis is becoming a tool in the biomedical
engineering and the computational neurosciences.
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emin 2 4 8 2 2 2 4 4 8
emax 2 4 8 4 8 16 8 16 16

card(E) 863540 108250 13475 244325 188673 186954 45510 42228 8639
card(M) 185914 24944 3531 53989 41029 40095 10574 9516 2196
NR [%] - - - 71 78 79 58 62 38

t [s] 211 31 10 190 185 181 35 32 10

Table 1. Compilation of the number of elements and nodes produced by our algorithm for the generation of meshes
with different anisotropy factors.emin denotes the subsampling factor,emax stands for the collection factor, NR
represents the percentage by which the number of nodes is reduced compared with the corresponding isotropic case
and t is the total execution time on an SGI 02 workstation.

ANISOTROPIC TETRAHEDRAL MESH GENERATOR f

SUBSAMPLING PHASEf
formation of bricks with edge length emin

labeling of bricks with most frequent voxel label l
g

COLLECTION PHASE(determination of C) f
merging of bricks to form cells with a maximal edge length emax

description of cells by a set Ni

labeling of cells with brick label m
g

MESH GENERATION PHASE(determination of M and E) f
creation of tetrahedra
for i = 1 to i = card( C) f

if( card( Ni) = 8) f
creation of tetrahedral elements as shown in Figure 5
assignment of material label mi to the five tetrahedra

g
else f

ordering of nodes to avoid creation of degenerate tetrahedra
Delaunay tesselation of the set Ni

assignment of material label mi to the produced tetrahedra
g

g
creation of mesh node list
determination of the intersection M

g

g

Figure 8. Outline of our algorithm for the generation of anisotropic tetrahedral meshes.


