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In fMRI studies, Gaussian filtering is usually applied
to improve the detection of activated areas. Such
lowpass filtering enhances the signal to noise ratio.
However, undesirable secondary effects are a bias on
the signal shape and a blurring in the spatial domain.
Neighboring activated areas may be merged and the
high resolution of the fMRI data compromised. In the
temporal domain, activation and deactivation slopes
are also blurred. We propose an alternative to Gauss-
ian filtering by restoring the signal using a spatiotem-
poral Markov Random Field which preserves the shape
of the transitions. We define some interaction between
neighboring voxels which allows us to reduce the noise
while preserving the signal characteristics. An energy
function is defined as the sum of the interaction poten-
tials and is minimized using a simulated annealing
algorithm. The shape of the hemodynamic response is
preserved leading to a better characterization of its
properties. We demonstrate the use of this approach by
applying it to simulated data and to data obtained
from a typical fMRI study. r 1998 Academic Press

INTRODUCTION

Signal detection in the presence of random noise
plays a crucial role in functional imaging as it repre-
sents the first step of the experimental analysis. With
efficient signal detection techniques it is possible to
diminish the number of task repetitions and to better
describe low-level activations. Both points are of great
importance when studying cognitive processes by fMRI.
The analysis of fMRI data is usually achieved by
performing a voxelwise (parametric or nonparametric)
statistical test in the time-series to detect areas with
signal changes related to the experimental design. The
statistical measure (say, a z-score) is then compiled in a
statistical parameter map (SPM). Significantly acti-
vated areas are found by thresholding the SPM (Fris-
ton et al., 1994; Worsley and Friston, 1995; Xiong et al.,
1996). The threshold is established by testing the
null-hypothesis (H0-hypothesis). A P value which pre-

vents false alarms is set to a given value (usually 0.05)
and the threshold is derived by limiting the probability
of false alarms to P. In such a binary decision process
we can have four different outcomes: true positive
(P(1 0H1)), false positive (P(1 0H0)), true negative
(P(0 0H0)), false negative (P(0 0H1)). A spatial Gaussian
filter is often used in fMRI studies to reduce the noise
before computing the SPM and thus to prevent false
alarms. The introduced smoothness is then taken into
account when computing the P value (Friston et al.,
1995; Forman et al., 1995). However, the signal itself is
markedly affected by this lowpass filter, yielding blur-
ring and possible displacement of activated areas.
Moreover, signals of low amplitude are completely
removed. Thus, the detection of activation is improved
but the characteristics of the signal and the accuracy of
the activated areas localization are lost. We propose to
overcome this problem by restoring the data instead of
filtering them. The restoration process smooths the
noise but at the same time preserves the signal shape.

Restoration has been widely investigated in signal
and image processing (Andrews and Hunt, 1977). Here,
we focus only on the problem of noise reduction. Filter-
ing techniques and in particular the application of
adaptive filters have provided solutions to the restora-
tion problem. However, if noise reduction is considered
as an inverse problem, the regularization theory which
takes into account some a priori knowledge on the
solution has been demonstrated to be more powerful.
The Bayesian approach plays a key role in the regular-
ization theory for its ability to integrate both a data
attachment term (goodness of fit with respect to data)
and some general and flexible priors (probability distri-
bution modeling the expected signal/image). A popular
approach is to use Markov random fields (MRFs)
(Besag, 1974; Geman and Geman, 1984) to define the
prior. The a priori knowledge induced by MRFs is
general enough not to overly constrain the solution but
providing interesting regularizing properties. MRFs
were introduced in the engineering sciences by Besag
(1974). Since then, they have been widely used, espe-
cially in image processing, for various problems such as
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image segmentation (Derin and Elliott, 1987; Geiger
and Yuille, 1990), image restoration (Chellappa et al.,
1988; Geman and Reynolds, 1992; Charbonnier et al.,
1992), texture analysis (Descombes, 1995; Gimel’farb,
1996; Descombes, 1997) or movement estimation (Kon-
rad and Dubois, 1992; Heitz and Bouthemy, 1993).
Here we consider MRFs in the context of signal and
image restoration. The basic idea is to consider contex-
tual information by defining interactions between neigh-
boring voxels. The result of the restoration on a given
voxel depends not only on the data originating from
that voxel but also on the values of its neighbors. The
optimization scheme provides a global solution which
represents a major advantage in comparison to local
filtering. The decisive advantage in the restoration
process is that it preserves the transition shape (and
more generally discontinuities) of the underlying signal
to avoid blurring and distortions. Moreover, fine struc-
tures must be differentiated from noise to be preserved.
Using MRFs, a first approach involves defining a line
process on the dual lattice to inhibit interactions be-
tween voxels belonging to different objects (Geman and
Geman, 1984; Chalmond, 1988; Zerubia and Geiger,
1991; Charbonnier et al., 1992), however, at the cost of
an increase in complexity of the model. The second
approach, adopted in this paper, defines interactions to
avoid smoothing of edges and transitions too drastically
(Geman and Reynolds, 1992; Nikolova, 1996).

Our approach involves a 3D spatiotemporal model.
The two first dimensions correspond to the spatial
dimensions of an fMRI slice, whereas the third one
relates to time. We first provide a quantitative measure
of the restoration effect using synthetical signals (a
square wave, a sine wave, and a prototypical hemody-
namic response function). We then apply this restora-
tion model to functional magnetic resonance images
(fMRI) obtained by echoplanar imaging (EPI) and
compare the results with (i) data modified by a spatial
Gaussian filtering and (ii) data for which no preprocess-
ing step was undertaken.

The paper is organized as follows. Under Materials
and Methods we derive the basics of MRFs and the
Bayesian approach for image restoration and detail the
proposed model. Under Results and Discussion we
present the results obtained from a functional study.
We assess the quality of the approach by comparing
results using a correlation coefficient between the
temporal signal and a reference box-car. We also com-
pare the signal shape before and after restoration.
Finally, we draw conclusions.

MATERIALS AND METHODS

Background on Markov Random Fields

A MRF is a random field defined by local conditional
probabilities. Consider a set of sites S 3 T 5 5(s 5 (i, j),

t)6 defined by the time samples for each voxel in the
context of fMRI signals (s represents the spatial coordi-
nates and t the temporal coordinate) and a state space
L (possible values for the samples). A fMRI temporal
signal is then an element of the configuration space V 5
LS3T denoted Y 5 5 ys(t), t [ T, s [ S6. Consider a ran-
dom field P defined on V. P is said to be a MRF if and
only if:

;(s, t) [ S 3 T, P(ys(t)) . 0,

;(s, t) [ S 3 T, ;ys(t), ys8(t8) [ L,
(1)

P(ys(t) 0ys8(t8), (s8, t8) [ S 3 T 2 5s, t6)

5 P(ys(t) 0ys8(t8), (s8, t8) [ N (s,t)),
(2)

where N (s,t) is a finite subset of S 3 T called the
neighborhood of (s, t) such that:

(s, t) Ó N (s,t), (3)

(s8, t8) [ N (s,t) ⇒ (s, t) [ N (s8,t8). (4)

This property states that if the value of the voxels are
known in a neighborhood of (s, t), denoted N (s,t) (contain-
ing spatial and temporal neighbors), then we know the
probability law for ys(t) and this probability law does
not depend on the pixel values outside N(s,t). The
Hammersley–Clifford theorem establishes that a MRF
can be written as a Gibbs Field:

;Y [ V, P(Y ) 5
1

Z
exp 2U(Y )

5
1

Z
exp 2o

c[C
Vc(ys(t), (s, t) [ c),

(5)

where U is the energy function, C is the set of cliques (a
clique is a finite subset of sites), and Vc is the potential
associated with the clique c, Z being the normalization
constant also referred to as the partition function.
Therefore, a MRF is defined by a set of cliques and their
associated potentials. Gibbs Fields, especially the Ising
model, have been widely investigated in statistical
physics to model ferromagnetism phenomena. The
cliques define atoms which interact with each other,
whereas the potentials represent the strength of the
interactions between the spins of atoms. For instance,
the Ising model consists of interactions which tend to
give the same orientation to the spin of interacting
atoms, creating a magnetic field. In image processing,
atoms correspond to voxels and spins to the grey level
value.

Generally, fMRI data are given as a 4-dimensional
matrix, where 3 dimensions correspond to the space
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and one to the time. Because most of our fMRI data are
highly anisotropic with respect to the third spatial
dimension, we drop one spatial dimension and consider
in this paper a 3-dimensional MRF. There is no limita-
tion in formulating this restoration framework in 4D.

The Bayesian Framework for Restoration

We consider that the data X are corrupted by an
additional noise h:

X 5 Y 1 h, (6)

where Y represents the underlying signal.
To restore the signal we have to maximize the a

posteriori probability P(Y 0X ). Therefore we have an
inverse ill-posed problem. To invert the problem we
apply the Bayes rule which provides the following
result:

P(Y 0X ) 5
P(X 0Y )P(Y )

P(X )
~ P(X 0Y )P(Y ), (7)

where P(X 0Y ) refers to the likelihood (or data driven
term or goodness of fit) and P(Y ) to the prior model.
P(X 0Y ) is defined by the noise model, whereas P(Y ) is
defined by the proposed Markov random field.

To optimize our model we consider a Bayesian estima-
tion framework. Consider a probability distribution
P(v) on a universe (configuration space) denoted V. We
then define a cost function between two configurations
R(v, v8). Bayesian estimation involves minimizing the
Bayesian risk, namely finding the configuration which
minimizes the expectation of the cost function:

v̂ 5 arg min
v8

e
v

R(v, v8)P(v) dv. (8)

Solving a problem in the Bayesian framework is then
equivalent to defining:

● A distribution P(v) on the universe V

● A cost function R(v, v8)
● A minimization algorithm

Here, we optimize the distribution given by P(X 0Y ) ·
P(Y ) by reaching the maximum a posteriori (MAP)
criterion. The MAP criterion is obtained by minimizing
the cost function defined by:

RMAP(v, v8) 5 1 2 dv8 5 v, (9)

where d is the Kronecker symbol (dx 5 1 if x is true and
0 otherwise).

This criterion can be reached using the simulated
annealing (SA) algorithm (see Geman and Geman,
1984, for a proof of convergence).

The F-Models

In this subsection, we introduce the F-model, pro-
posed by Geman and McClure (1987) and studied
by Geman and Reynolds (1992), to define the prior
P(Y ).

The aim of the restoration prior is to add some
constraints of homogeneity and smoothness on the
solution. Lowpass filters smooth the data oblivious of
the underlying signal and for this reason result in some
loss of high frequency information. Using a MRF as a
prior in a Bayesian framework improves the restora-
tion of fine structures and transitions around edges.
However, the choice of the potentials is crucial to avoid
blurring. Our approach involves deriving potentials
which preserve transitions while reducing noise in
homogeneous areas. The main issues which guide the
choice of a prior are edge recovery, stability, bias over
large transition, and resolution (Nikolova, 1996). The
F-models studied in (Geman and Reynolds, 1992) sup-
port edge recovery without introducing any bias over
the large transitions. In this paper, we consider a
F-model to preserve the transitions between activated
and nonactivated areas in the spatial domain and
between activated periods and baseline periods in the
temporal domain.

The general formulation given in (Geman and Rey-
nolds, 1992) for the F-function is the following:

F(u) 5
2b

1 1 (0u 0/d )p
. (10)

The F-function depends on three parameters: b, d, and
p. The b parameter is a scaling factor on the Y-axis. It
represents the strength of the interaction. The two
remaining parameters define the shape of the F-func-
tion. The F-function has a minimum equal to 2b at 0.
At infinity, the X-axis is an asymptote. The value of the
parameter b corresponds to the cost of an edge, whereas
the behavior around the minimum defines the smooth-
ing into homogeneous regions. The d parameter allows
us to define the values of the differences between
neighboring voxels which have the highest probability
of being transitions. The p parameter defines the shape
of the transition between nonedge and edge values. As p
increases, the transition is sharper (see Fig. 2).

After having tested different values for p, we consider
only p 5 2, which has provided the best results. Indeed,
with p 5 2 the F-function behaves like a quadratic
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function near the origin and therefore the F-model can
be approximated by a Gaussian model for low devia-
tions while preserving the transitions because of the
asymptotic shape of the F-function. We analyze the
restoration for different values of the two remaining
parameters.

A Spatio-Temporal MRF

To define the model we consider a 4-connectivity in
the spatial domain and the nearest neighbors in the
temporal domain. Therefore a given pixel has six
neighbors (see Fig. 3). To preserve transitions between
activated and nonactivated areas (in the spatial do-
main) and transitions between baseline and activation
(in the temporal domain), we define F-models on pair-
wise interactions.

In the spatial domain we expect two kind of transi-
tions: (i) transitions between activated and nonacti-
vated areas and (ii) transitions between different ana-
tomical structures (grey and white matter, . . .). To be
insensitive to anatomical transitions we normalize the
data set subtracting the output of a moving average
filter in the temporal domain, thus assigning a zero
mean to the time course of each voxel. Then we expect
the same regularization in both the spatial and the
temporal domain. Since we have twice as many neigh-
bors in the spatial domain, we consider stronger inter-
actions for the temporal potentials: btemp 5 2bspat 5 b.
The height of the transitions is the same in spatial
and temporal domains as they represent the differ-
ence between activation and nonactivation. Therefore,
we take the same value for the d parameter in
both domains: dtemp 5 dspat 5 d. Finally, in some imag-
ing protocols, voxels are not isotropic, i.e., the size
on the I-axis (lines) and on the J-axis (columns)
differ. We compensate for this anistropy by reducing
the spatial interactions along the I-axis by the

FIG. 1. Convergence of the simulated annealing. U(X), energy
function; I, Initial configuration; D, Configuration obtained with a
deterministic algorithm; S, Configuration obtained with a simulated
annealing.

FIG. 2. Shape of the F-function for p 5 1 (a) and p 5 2 (b).

FIG. 3. Spatio-temporal neighborhood of the proposed model:
four spatial neighbors and two temporal neighbors.
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same ratio. Thus, the proposed model is written as
follows:

P(Y ) 5
1

Z
exp 2 3o

t
o
(i, j)

VT (yi, j(t), yi, j(t 1 1))

1 o
(i, j)

o
t

VI(yi, j(t), yi 1 1, j(t))

1 o
(i, j)

o
t

VJ(yi, j(t), yi, j 1 1(t))4,
(11)

where

VT (yi, j(t), yi11, j(t 1 1)) 5
22b

11(yi, j(t) 2 yi, j(t 1 1))2/d2
, (12)

VI(yi, j(t), yi 1 1, j(t)) 5
2Ab

1 1 (yi, j(t) 2 yi 1 1, j(t))2/d2
, (13)

VJ (yi, j(t), yi, j 1 1(t)) 5
2b

1 1 (yi, j(t) 2 yi, j 1 1(t))2/d2
, (14)

A denotes the voxel anisotropy ratio in the spatial
domain.

Therefore, the prior model depends on two param-
eters: b and d.

A Likelihood Taking Outliers into Account

To complete the model, we now define the likelihood
function. This term represents the noise model. We first
make an assumption concerning the conditional inde-
pendency of voxels, which is written as follows:

P(X 0Y ) 5 p
(i, j),t

p(x(i, j)(t) 0y(i, j)(t)). (15)

By this we assume that the noise is not correlated. This
assumption made for simplicity purpose, is only an
approximation in practice (Zarahn et al., 1997). How-
ever, the main information provided by the data on a
site s is given by the value of the voxel xs itself. The
interactions of the prior model the correlation between
adjacent voxels.

In the absence of any precise information about the
noise in fMRI data, a first approach is to consider a
Gaussian model. However, the Gaussian model under-
estimates outliers corresponding to scanner artifacts,
physiological artifacts, etc. . . To enhance the tail of the
distribution and to normalize the likelihood function
with respect to the prior model we also consider a

F-model for the likelihood function:

p(x(i, j)(t) 0y(i, j)(t)) 5
1

Z
exp 2VL(y(i, j)(t)), (16)

where

VL(y(i, j)(t)) 5
2bL

1 1 (y(i, j)(t) 2 x(i, j)(t)))2/d 2
. (17)

The Global Energy

The a posteriori probability is written as follows:

P(Y 0X ) ~ P(X 0Y )P(Y )

~ p
(i, j),t

p(x(i, j)(t) 0y(i, j)(t)) exp 2Up(Y )

P(Y 0X ) ~ exp 2 o
(i, j),t

2log p(x(i, j)(t) 0y(i, j)(t))

· exp 2Up(Y ) ~ exp 2U(Y )

(18)

where U is called the energy and is defined as follows:

U(Y )5 o
(i, j),t

VL(y(i, j)(t))

1 o
c 5 5t,t 1 16

o
(i, j)

VT (yi, j(t), yi, j(t 1 1))

1 o
c 5 5(i, j),(i 1 1, j)6

o
t

VI(yi, j(t), yi 1 1, j(t))

1 o
c 5 5(i, j),(i, j 1 1)6

o
t

VJ (yi, j(t), yi, j 1 1(t)).

(19)

The global minimum is defined up to a multiplicative
constant. Therefore we can impose bL 5 1 without loss
of generality. The proposed model depends on the two
remaining parameters, b and d.

Optimization

To find the configuration minimizing the global en-
ergy corresponding to the MAP criterion, we have
implemented a simulated annealing algorithm. The
energy function will inevitably possess some local
minima. Therefore, deterministic algorithms are highly
dependent on the initial configuration and in general do
not lead to the global minimum. The idea of simulated
annealing is to accept some transitions which increase
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the energy, i.e., which temporally provide a configura-
tion with a lower probability. This allows the process to
jump away from local minima of the energy. A tempera-
ture parameter is introduced which controls the jumps.
From a given configuration, configurations with a lower
probability are accessible with a certain probability
defined by the temperature parameter T (cf Fig. 1). The
temperature decreases during iterations to reduce the
amplitude of these jumps. Therefore, during iterations,
the algorithm provides in average configurations which
increase the probability. Geman and Geman (1984)
have proven the convergence of the simulated anneal-
ing algorithm to the global minimum (i.e., the configu-
ration which maximizes the a posteriori probability) in
case of MRFs. Moreover, the result does not depend on
the initialization. The algorithm is written as follows:

1. Compute a random initialization Y 0 5 (ys
0(t)), set

T 5 T0 and n 5 0
2. For each voxel (s, t) of the time series:

2a. Select a new value randomly: new
2b. Compute the local energy U( ys(t) 0N (s,t)

n ) for the
current value ys(t)5ys

n(t) and the new value ys(t) 5 new.
2c. If Unew ,5 Ucur then assign new to ys

n 1 1(t)
2d. Else assign new to ys

n 1 1(t) with probability
exp [Unew 2 Ucur]/T and keep the current value ys

n(t)
with probability 1 2 exp [Unew 2 Ucur]/T

3. If not converged decrease T, set n 5 n 1 1 and go
to 2

Note that the Markov property allows us to consider
only the local energy U( ys(t) 0N(s, t)). This reduces the
computation time and leads to a highly parallelizable
algorithm.

RESULTS AND DISCUSSION

Validation on Synthetical Data

The main advantage of the proposed approach is to
preserve the signal shape during the noise removal
operation. We also have to check that the prior knowl-
edge included in the MRF does not introduce artifacts
in the signal. We therefore consider different synthetic
waveforms and study their restoration.

We modulated three test functions (a full sine wave, a
half square wave, and a prototypical hemodynamic
response) onto a patch from a fMRI experiment, which
showed no significant response in a standard evalua-
tion. These artificial datasets were corrected for base-
line fluctuations (Kruggel et al., 1998), and either
filtered spatially using a Gaussian filter (gauss), fil-
tered by the proposed spatiotemporal Markov–Random
Field (mrf), or left unfiltered (native). We computed the
z-scores of the activation peak, as well as the recovery
rates for the three test functions. We define the signal
recovery c of the model function m(t) from the prepro-

cessed time series ys(t) by:

c 5

o
t

N

(ys(t) 2 (am(t) 1 b))2

o
t

N

ys(t)2

, (20)

where we maximize c by variation of a and b. Thus, c 5
1 denotes a perfect recovery, while c 5 0 corresponds to
a complete loss of the signal. The results are compiled
in the Tables 1 and 2.

For Gaussian filtering we used a sigma of 0.8, for
image restoration we selected b 5 0.6 and d 5 60.

Description of the Functional Experiment

Data for the evaluation of this algorithm were taken
from an fMRI study performed in our institute.

Task. During an 18-s period a standard tone ( f 5 600
Hz), a deviant tone ( f 5 660 Hz) or a unique novel
sound (a crashing car, a barking dog) were presented
binaurally via air conduction through plastic tubing
connected to insert ear plugs. Phases were presented in
a pseudo-randomized order. Subjects were requested to
count the deviant phases. A total of 215 timesteps were
recorded.

Imaging. Four T2-weighted axial images (image
matrix 128 3 64; slice thickness 5 5 mm; gap 5 2 mm;
echo time TE 5 40 ms; repetition time TR 5 2.0 s; flip
angle 5 40°) were acquired using a gradient echo, echo
planar imaging sequence (Bruker 3.0 Tesla MEDSPEC
System).

TABLE 1

Waveform Native Gauss mrf

Sine 0.456 0.581 0.872
Hemo 0.456 0.579 0.804
Square 0.458 0.556 0.631

Note. Recovery rates of test functions after preprocessing using
baseline correction only (native), Gaussian filtering in the spatial
domain, and image restoration.

TABLE 2

Waveform Native Gauss mrf

Sine 8.0 10.6 14.3
Hemo 12.9 14.7 19.1
Square 12.8 14.0 18.2

Note. Z scores of test functions after preprocessing using baseline
correction only (native), Gaussian filtering in the spatial domain, and
image restoration.
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Processing. Raw data were preprocessed for the
exclusion of artifact-containing slices, corrected for
subject motion, and filtered using this image restora-
tion scheme. Voxels activated during the task were
detected by the computation of a Pearson correlation
coefficient with a standard box-car function shifted the
characteristic lag between stimulus and fMRI response
of 6 s. Only the standard vs the novel phases were
evaluated. Correlation coefficients were converted into
z-scores, thresholded (z $ 2.75), color-coded, and over-
laid onto T1-weighted anatomical images acquired at
the same location.

To validate the restoration model we consider a
correlation coefficient (see Eq. 20). Herein, we compare
the results before, after restoration and with Gaussian
filtering. To address the analysis of different activated
areas, we also compare the signal shape by averaging
the time courses of voxels within a given activated area.

Results

When comparing the results of different fMRI prepro-
cessing techniques it is essential to recognize that there
is no ‘‘ground truth’’ by which the correctness of the
result or the improvement achieved by a filter can be
measured.

However, experience with results from functional
experiments, careful evaluation of the raw data, and
neuroanatomical arguments enables us to distinguish
between ‘‘real’’ cortical activations, activations in ve-

nous compartments, and false positives due to noise,
artifacts, etc. Activations of interest are expected to (i)
follow closely the cortical band, (ii) be found in brain
locations which are connected with the task, and (iii)
exhibit a certain shape (i.e., activation strength vs
activation extent). However, especially with low-level
activations, it is often difficult to make a distinction
between true and false positives. A preprocessing
scheme is aimed at enhancing signals that match
certain characteristics while suppressing noise.

Figure 4 shows the thresholded z-map (t 5 2.75)
using raw data, after Gaussian spatial filtering
(s2 5 0.8) and after restoration (d 5 4, b 5 0.4), respec-
tively.

As expected, highly significant bilateral activations
are found in the superior temporal gyrus, and, to a
lesser extent, in the thalamus on both sides.

In comparison with the native data in the top row,
Gaussian filtering (middle row) leads to a general
enhancement of the signal but also to a considerable
spatial blurring. In contrast, the signal restoration
scheme proposed here (bottom row) surpasses the
signal enhancement of a Gaussian filter while retain-
ing anatomical details.

Figure 5 shows the thresholded z-map after restora-
tion from top to bottom for different parameter values
(respectively, d 5 2 and b 5 0.3, d 5 2 and b 5 0.6,
d 5 6 and b 5 0.3, d 5 6 and b 5 0.6). b 5 0.3 corre-
sponds to a weak contribution of the prior model to the

FIG. 4. Statistical evaluation of fMRI experiment: correlation coefficient with a threshold equal to 2.75 on original data (a), data filtered
with a spatial Gaussian kernel s 5 0.8 (b) and data restored with the proposed model (d 5 4, b 5 0.4) (c).
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global energy. Therefore, the results are very similar to
those obtained without restoration. Increasing the value
of the b parameter allows us to study the influence of
the d parameter. A small value (d 5 2) leads to a too
large definition of transitions. In this instance, some
noise will be considered as signal and with a high value
of b noise appears in the result. Excessively high value
for d(d 5 6) yields a too strict definition of edges.
Transitions between activated and nonactivated voxels
are then smoothed, which results in unduly blurring.
Indeed, a very high value for d leads to the same result
as Gaussian filtering. A good compromise seems to be
obtained with d 5 4 and b 5 0.4 (see Fig. 4).

In Fig. 6 we have plotted the time course of the fMRI
signal during one period of the box-car waveform (the
three curves correspond to raw data, data after spatial
Gaussian filtering and data after restoration). These
signals have been averaged over the activated area in
the right auditory cortex (i.e., the area on the left side of
the images in column 3 of Fig. 4). The restoration
provides a better interpretation of the activation due to
the regularization in the time domain. Noise has been
removed but the slopes of activation and deactivation

have not been blurred. Using a temporal Gaussian
filter would have removed the noise but also deformed
the activation and deactivation slopes.

The counterpart of the proposed model is an increase
of the computation time in comparison with Gaussian
filtering. Indeed, the defined energy function has local

FIG. 5. Parameters influence in the restoration: (a: d 5 2, b 5 0.3; b: d 5 2, b 5 0.6; c: d 5 6, b 5 0.3; d: d 5 6, b 5 0.6.)

FIG. 6. Time course of the signal in the right auditory cortex:
(shifted) box-car waveform as model, the raw data, data filtered with
a spatial Gaussian kernel s 5 0.8, and data restored with the
proposed model.
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minima. Therefore, we have to use a stochastic algo-
rithm to reach the global minimum. Some determinis-
tic algorithms adapted to MRFs have been proposed
but they rely on a good initialization of the solution.
Such an initial solution is not easily available in our
problem leading us to apply simulated annealing. On a
typical workstation, our program requires 2 s per
timestep for a 128 3 64 voxels slice. For the example
dataset of 4 slices and 912 timesteps this corresponds to
2 h of computation time.

Spatial filtering as well as temporal filtering im-
proves the signal to noise ratio as reported by Zarahn et
al. (1997) and Aguirre et al. (1997). In the temporal
domain, best results are obtained with a filter matching
the hemodynamic function (Friston et al., 1995). How-
ever, these filters are lowpass filters and spoil the high
frequencies of the signals. With the proposed approach
the prior model makes the distinction between noise
and signal: noise is suppressed without spoiling the
signal. This results in a better delineation of the
activated areas and a better definition of the hemody-
namic response. Moreover, an a priori model of the
hemodynamic response is not required.

Conclusion

Spatial Gaussian filtering is generally used to en-
hance activation in fMRI studies. However this results
in blurring of activated areas and a loss of low-level
activations. In this paper, we propose to restore the
signal by using a Markov random field embedded in a
Bayesian framework. This leads to a noise reduction
while restoring the shape of signals corresponding to
activated voxels. The advantage of this approach has
been demonstrated using fMRI data, improving the
detection of activation with respect to the results
obtained either on initial data or on filtered data. The
restoration of the shape of the temporal signal provides
a better characterization of the activation, especially
for the slopes of activation and deactivation.

In the classical SPM approach, within the threshold
of the statistical test a P value is computed to assess the
significance of the detected activation. The effect of the
Gaussian filtering can be taken into account to compute
this probability. The extension of this mathematical
derivations to the case of data restored with a MRF has
not been achieved and seems very problematic. Indeed,
to preserve transitions we have considered some F-func-
tions which introduce nonlinearities. Some Monte Carlo
simulations could provide a way to derive empirically a
P value for analyzing the statistical test performed on
restored data. The correlation coefficient performed in
this paper allows us to detect signals matching the
reference waveform. The statistical significance of this
coefficient after the restoration process is under study.
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