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Abs t r ac t .  This paper describes a.n automatic procedure for extracting 
sulcal bottom lines from MR (magnetic resonance) images of the hu- 
man brain, which will serve as a tool for landmark extraction as well as 
for investigating the nmrphometry of sulci. The procedure consists of a 
seqnence of several image processing steps, inclnding morphological op- 
erators and a constrained distance transform which provides information 
about suleal depth at each location. 

1 I n t r o d u c t i o n  

This paper  describes an automat ic  procedure for extracting the bo t tom lines 
of the naain cortical sulci from MR (magnetic resonance) images of the lmman 
brain. The sulci are deep narrow valleys or folds of the cortical surface. 

The automat ic  detection of sulcal bo t tom lines is of interest for several rea- 
sons. Firstly, sulcal bo t tom lines are suited to serve as la.ndlnarks that  can be 
used to reference brain locations in a way that  is anatomically meaningfnl. Sec- 
ondly, sulcal bo t tom lines allow us to represent an entire sn]cus by a tree like 
structure of curves rather than of surfaces, and thus present a highly condensed 
representation of a prominent landmark.  

Another aspect associated with the work reported here is that  in the process 
of the extraction of sulcal bo t tom lines information about sulcal depth becomes 
available. This aspect may be relevant in studying interpersonal sulcal variability. 
It is, for instance, an ongoing question whether the interpersonal variability in 
sulcal patterns decreases with depth. The depth information made available by 
our method will hopefully help to address this issue fi'om a new viewpoint. 

Previous investigations of sulcal structure and interpersonal variability [1], 
[2], [3] were often based on manual  segmentations and were therefore restricted to 
very few data  sets. Automat ic  procedures for the identification of sulcal bo t tom 
lines have not been reported in the literature so far. 

However, the automat ic  extraction of other prominent lines as landmarks 
from 3D data. sets has received considerable attention. Particularly, the compu- 
tation of curvature properties for the purpose of ridge line extraction should be 
mentioned. The methods described in [4],[5],[6],[7] fall into that  category. Our 
approach differs in that  it extracts lines of maximal depth as measured from the 
smoothed brain surface as opposed to lines of maximal curvature. Sulcal bo t tom 
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lines do not usually coincide with lines of maximal curvature, so that ridge line 
extraction is not a viable approach to our problem. 

The automatic extraction of sulcal structures has been the subject of several 
research projects either focusing on the extraction of sulcal skeletons [8] or snlcal 
surfaces [9],[10]. These techniques differ from ours in that they are not. aimed a.t 
making depth information available. 

Our bot tom line extraction process consists of several steps beginning with a 
segmentation procedure to identify the sulcal interiors. We skeletonize the sulcal 
compartments to obtain medial surfaces which are then eroded until the bot tom 
is reached. Finally, the resulting chains of bot tom voxels are connected into a 
graph of polygons. In the following, each of these steps will be described in detail. 
The method reported here is an extension of our earlier work [1 i] improving it 
in both accuracy and computational efficiency. 

2 D e p t h  lneasurements  

We start out with a white matter  segmentation of tile initial MR data set. 
To obtain the sulcus interior, we apply a 3D morphological closing filter using a 
sphere shaped structuring element of very large size, e.g. of radius 7 or larger. The 
difference between the binarized white matter  image and the morphologically 
closed image yields the sutcal areas. 

Once sulcM and white mat ter  areas are labelled, depth measurements in 
the sulcal compartments are made. The technique used for this purpose is an 
ada.ptation of the constrained distance transform [12]. Each voxel which has 
been labelled as "sulcus interior" receives a depth label indicating its depth as 
measured from the idealized brain surface. 

Standa.rd distance transforms [13] require a binary image as input in which 
feature points are marked as "white" pixels. In the distance transformed image 
each "black" voxel receives a label indicating its distance fl'om the nearest feature 
poiut. 

Input images to constrained distance transforms may contain an additional 
third type of label which represent a class of "obstacle" points. The constrained 
distance transform attributes a distance label to each "black" voxel towards its 
nearest "white" voxel where the length is measured along paths that are forced 
to avoid voxels labelled as "obstacles". In the present case, the obstacle voxels 
are the ones that are labelled as "white matter".  We now seek the lengths of 
shortest paths from each sulcal voxel towards the idealized surface which do not 
trespass white matter  areas. 

The distance transform is performed by moving two 3D filter masks over the 
image in two separate scans. The filter mask represents local distances which 
are propagated through the entire image as the algorithm progresses. Note that  
some voxels may be entirely surrounded by obstacle voxels so that no valid path 
to any feature voxel exists. Those voxels will of course remain unlabeled. 

Shallow sulci can be eliminated by thresholding the output  of the depth 
labeling procedure. Typically, we are only interested in sulei deeper than 4ram. 
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3 Extract ion of sulcal medial  surfaces 

After the sulcM compartments have been identified, their medial surface is ex- 
tracted. A large number of skeletonization algorithms have been reported in the 
literature, e.g. [14], [15],[16]. In our experiments we found that a modified version 
of Tsa.o's method [16] yielded the best results. 

Tsao's algorithm performs a parallel deletion of directional border points 
where a voxel is a border voxel in a given principal direction (north, south, west, 
east, top, bot tom) if its neighbour in that direction belongs to the backgronnd. 

We modified this algorithm by changing the order in which points are con- 
sidered for deletion. The basic idea[17] is the following: we first compute the 
distance transform of the image to be thinned such that each foreground voxel 
receives a label indicating its distance from the nearest background voxel. We 
then place all foreground voxels in an array and sort it by distance values. The 
points that receive the smallest distance values are the first to be considered 
for deletion, where the same deletion criteria and subcycle schedule as in Tsao's 
original algorithm is used. If no more points at this distance level can be deleted, 
we move on to the next higher distance value, and so on until all distance levels 
have been processed. 

There are two prime advantages of this method over the original procedure. 
Firstly, by placing all foreground voxels into an array we do not need to scan the 
entire image for each deletion subcycle, and thus gain a considerable increase in 
computation speed. Secondly, by sorting this array according to distance values, 
we achieve a much better localization for the resulting skeleton as skeletal voxels 
are forced to reside on local maxima of the distance transform. Figure 1 shows 
two slices of a. thinning result. 

Figure 1: 3D Thinning: axial slices 

4 Extract ion of sulcal bo t tom lines 

The next step consists in reducing the medial surface such that only its bot tom 
line remains. We use a modification of the thinning algoritlnn to achieve this. 
The basic idea. is to remove voxels at progressively deeper levels while leaving 
voxels at the sulcus ends unchanged. 

As before, we place all foreground voxels belonging to the medial surface into 
an array. Note that  each voxel in this array already has a depth label obtained 
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in a. previous step. }Ve now use this labeling to sort tile array by depth and 
begin by deleting voxels at the smallest depth level. Points are deletable if they 
are topologically simple, and if they are not endpoints, where end points are 
characterized by the fact that  there are no more than two non-zero 26-adjacent 
voxels. 

In contrast to our thinning procedure, deletion is now performed sequentially 
rather than in parallel as only sequential deletion is guaranteed to preserve topol- 
ogy. A pseudo-code version of the algorithm is given below: 

BottomLine(image) 
{ 

copy medial surface voxels into array; 

sort array by depth; 

for (depth d = i to maxdepth) { 

ndelete = I; 

while (ndelete > O) { 

ndelete = O; 

for (all voxels v in array at depth d) { 

if (not EndVoxel(v) and SimplePoint(v)) { 

Delete(v); 

ndelete = ndelete + I; 
} 

} 
} 

The above procedure reduces sulcal medial surfaces to sulcus bo t tom lines 
so that  at the end of this stage only one-voxel thick chains of foreground voxels 
re(nlain. 

We now transfer the binary raster image into a graph structure by first 
creating a. node for each foreground voxel specifying its voxel address and its 
depth. We then establish links between nodes such that  each node is connected 
to all its 26-adjacent neighbouring nodes. We thus obtain an undirected graph 
with a symmetr ic  arc relation where adjacent nodes are linked in both directions. 
Lastly, spurious bra.nches axe pruned in a. final postprocessing step. 

5 Experiments 

The method was applied to seven T1 weighted MRI data sets fronl three differ- 
ent MR sca.nners. Tile same set of parameters  was used for all data. sets. The 
results were checked manually by two Mlnan  experts (neurologists) doing ran- 
dora checks. The results were found to be correct in a.hnost every case. The only 
errors that  were found are related to tile following systematic problem. 

The algorithm blindly interprets every cavity or indentation within the white 
mat ter  as a sulcus. Therefore, structures such as the basal ganglia and the ven- 
tricles are filled with a "sulcus" line unless those structures have been masked 
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out beforehand. For the same reason, the Cisterna pontis and Cisterna va]lec- 
ula cerebri are also wrongly interpreted as "snlci" causing a. conglonaeration of 
lines around the brain basis connecting the two helnispheres. In our experiments, 
we used a visual editor to manually break and remove such obviously incorrect. 
lines. With the exception of those systematic errors, the results were found to 
be correct. 

Figure 2 shows some bo t tom lines resulting from one such experiment, indi- 
cating how the verification was done: the mouse cursor is linked to the sagitta.1, 
coronal and axial slices of the data set so that  a mouse click onto a node in the 
graph automatical ly positions the cursor to the corresponding location in the 
MR data  set, so that. the expert can assess the correctness of the location of a 
node. 

Figure 2: Sulcus bo t tom lines 

6 C o n c l u s i o n  

A new method for the extraction of sulcal bo t tom lines was presented. The 
method is essentially parameter  free with the exception of two thresholding pa- 
rameters for the postprocessing step and another threshold applied to the depth 
labelled image to exclude shallow sulci. All three thresholds are uncritical in the 
sense that  s tandard settings can be adopted. 

Our method will serve both as a tool for landmark extraction as well as a 
tool for investigating the morphomet ry  of sulci. Future work will focus on a 
classification of sulcus types and on studying interpersonal variability of sulcal 
structures. The depth information provided by this tool will play a central role in 
this work. In particular, we hope that  this method will help to clarify to question 
of whether or not interpersonal variability decreases with depth. 
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