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Abstract 

Thas paper descrzbes a new approach to the auto- 
matzc detectzon of  the bottom lanes of the mazn cortz- 
ea1 sulcz usang MR amages of the human brazn. The 
prancaple adea as to extract lanes of  maxzmal depth as 
measured from the smoothed brazn surface. The maan 
advantage o f  our approach over exzstzng methods as that 
at as not based on curvature estamatzon. It as therefore 
much more robust and easaer to amplement. 

1. Introduction 

This paper describes a new approach to the au- 
tomatic detection of anatomical landmarks from MR 
(magnetic resonance) images of the human brain. The 
landmarks we are particularly interested in are the bot- 
tom lines of the main cortical sulci. The brain’s sulci 
are deep narrow valleys or folds that increase the size 
of the cortical surface. 

Their bottom lines are of interest in two respects. 
Firstly, they allow us to  represent an entire sulcus by 
a tree like structure of curves rather than of surfaces, 
and thus present a highly condensed representation of 
prominent landmarks. Secondly, the sulcus bottoms 
are areas of great anatomical interest in themselves 
and have been the subject of a number of anatomical 
studies [9]. Their automatic detection will be a useful 
tool in human brain mapping as it will help to perform 
comparative structural studies across subjects. 

The principle idea underlying our approach is to 
extract lines of maximal depth as measured from a 
smoothed brain surface. Those lines are found in the 
following way. Each indentation or valley in the brain’s 
surface is filled up by layers of voxels in an iterative 
way, where the iteration starts a t  a smoothed out ide- 
alized surface and moves inward until the bottom of 
the valley is reached. In the process, each voxel re- 
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ceives a label that encodes its depth as measured from 
the starting layer. In this way, the innermost layers 
of voxels receive the highest labels, the outermost vox- 
els have label zero. The  way in which the voxels are 
placed to fill up the valley is reminiscient of a brick 
laying process. 

Once the sulci are filled up by depth labelled voxels, 
we apply a 3D thinning algorithm to  extract a me- 
dial surface of each sulcus. In a final step, we extract 
the bottom line of that medial surface by eroding pro- 
gressively deeper levels of the medial surface until the 
bottom is reached. 

2. Related Work 

There appears to be no previous work aimed at the 
extraction of the sulcus bottoms. However, there are a 
number of papers closely related to  our work that also 
deal with the extraction of prominent lines as land- 
marks in MR images. 

One group of papers focuses on the computation of 
curvature properties and ridge line extraction. The 
methods described in [2],[6],[7],[12], fall into that cate- 
gory. 

Our approach differs in that it extracts lines of max- 
zmal depth as measured from a smoothed brain surface 
as opposed to lines of maxamal curvature. The advan- 
tage is that depth is much easier to  compute than cur- 
vature. Tests that we performed using ridge line meth- 
ods for detecting prominent lines on the brain surface 
did not produce satisfactory results. Also note that the 
bottoms of the sulci do not always coincide with lines 
of maximum curvature. 

The work by [3] is directed towards identification of 
the main sulci using Voronoi diagrams. Our method 
presented here avoids the use of Voronoi diagrams and 
is therefore much faster. 

Another closely related type of work is reported in 
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Figure 1, MR image Figure 2. initial segmentation 

[4]. The authors focus on the representation of the cor- 
tical topography as relational graphs using homotopic 
transformations. Our work differs from this one in that 
it does not, employ optimization techniques and is es- 
sentially parameter free. We therefore hope to obtain 
more robust results while requiring less computation 
time. 

The use of skeletonization methods for the analy- 
sis of 3D medical images is widespread (see for in- 
stance [S],[ll]). In addition to the traditional topo- 
logical thinning methods we use a variation of these 
methods which allow us to extract bottom lines of me- 
dial surfaces of sulci. 

3. Depth labelling 

The first step in our scheme consists of a “depth la- 
belling” procedure applied to the sulcus interiors. The 
basic idea is to fill each sulcus in a manner similar 
to region growing starting from the brain’s surface and 
working our way inward until the sulcus bottom is met. 

The input into the algorithm is a segmented image 
in which each voxel is either labelled as “sulcus”, “brain 
interior” or as “exterior”. Figure 2 shows one slice of 
such an initial segmentation that serves as input into 
the algorithm. This initial segmentation is obtained 
by a k-means clustering segmentation [lo] that sep- 
arates brain from non-brain voxels. In a second step, 
the sulci are closed by a morphological closing filter [5]. 
The difference between the segmented image and the 
morphologically closed image yields the sulcal areas. 

The algorithm attaches a label to each ‘kulcus” 
voxel which corresponds to its depth. It begins by at- 
taching the label “1” to the outer layer of sulcus voxels. 
As the algorithm moves along, progessively deeper lev- 

els of the “filling material” receive higher labels, until 
finally each sulcus is filled with layers of labelled voxels. 

At each iteration, all voxels in the image are 
scanned. During the scan, each sulcus voxel that is 
6-adjacent to a voxel that was already depth labelled 
in the previous scan receives a new depth label. The 
depth label is incremented after each scan through the 
entire image. As the process is reminiscient of brick lay- 
ing, we call this procedure the “brick layer algorithm”. 
The result is in fact independent of the direction of the 
scan. 

Note that this algorithm also enables us to separate 
the sulci: we simply threshold the brick layered image, 
and apply a connected components algorithm. 

Below a small portion of an image slice after brick 
laying is shown. The brain interior is coded as 255, the 
exterior is coded as 0, and the rest of the voxels have 
labels corresponding to  their depth. 

0 0 0 0 0 0  
255 1 1 1 1 255 
255 2 2 2 2 255 
255 3 3 3 3 255 
255 4 4 4 4 255 
255 5 4 4 4 255 
255 255 4 4 4 255 
255 255 5 5 5 255 
255 255 255 6 6 255 
255 255 255 255 255 255 

Note that there is a group of voxels that receive 
the same label even though some voxels in the group 
appear to  be deeper than others. This is due to  the 
fact that the algorithm works in a three-dimensional 
setting, where the distance to the surface is in fact 
equal for all members of this group. 

In the following, a pseudo-code version of the algo- 
rithm is given, where input(v) denotes the value of the 
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Figure 3. segmented MR image Figure 4. thinned sulci 

voxel a t  location w in the input image, and output(w) 
denotes the value at location w in the output image. 

procedure brick-layer 
.c 
create an output image; 
initialize its voxels to zero; 
set old-label := 0; 
set new-label := old-label + 1; 
set n := 1; 
while (n > 0) do: { 
n = 0; 
for all voxels v in the input image do: 
if input (v) equals “sulcus“ do : 
for all 6-neighbours B of v do: 
if output (w) equals old-label do: 
output (v) : = new-label ; 
n := n + 1: 
skip checking the rest of the neighbours; 

1 
> 

4. Locating sulcus bottoms 

Of particular interest are the bottom lines of the 
sulcus valleys. Unfortunately, the sulcus bottoms do 
not have constant depth. The bottoms may actually 
be quite rugged. Therefore, it is not feasible to simply 
threshold the output of the brick laying algorithm. We 
propose the following procedure instead. The first step 
consists in reducing the sulcus interior to its medial 
surface. This can be done by applying a 3D topologi- 
cal thinning method. In our experiments, we used the 
method described in [13] with the simple point char- 
acterization replaced by the method described in [l]. 
Figure 4 shows the result of this step. 

The second step consists in further reducing the me- 
dial surface such that only its bottom line remains. We 

use a modification of the thinning algorithm to  achieve 
this. The basic idea is to  remove voxels a t  progessively 
deeper layers while leaving voxels at the sulcus ends 
unchanged. The criteria used in deciding which voxels 
to remove are simliar to  the criteria used in topological 
thinning. 

Only border voxels at the current depth level are 
considered for deletion. A voxel is called a border voxel 
in a given principal direction (north, south, west, east, 
top, bottom) if its neighbour in that direction is zero. 
Obviously, simple points (i.e. points whose removal 
would alter the topology) are not removed. In addi- 
tion, end points are also not removed. End points are 
characterized by the fact that  there are no more than 
two non-zero 26-adjacent voxels. Other criteria such 
as the “checking plane” condition employed by [13] are 
not used here. 

A pseudocode version of the algorithm is given be- 
low. Note that it is essentially Tsao’s thinning algo- 
rithm [13] with an outer loop through the depth levels 
added and the checking plane condition omitted. 

procedure bottom-line 
c 
for (depth=l; depthcmaxdepth; depth++) c 
while (marked voxels exist) { 

for all voxels v do: 
for all principal directions (N,S,E,W,T,B) do: 

if (label(v) != depth) skip: 
if (not Borderpoint (v, current direction)) 

if (not EndPoint(v)) skip; 
if (not SimplePoint(v)) skip; 
mark-f or-deletion(v) ; 

> 
delete all marked voxels; 

skip ; 

1 
1 
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Figure 5. medial surface 

Figure 7. sulcus bottom lines (top view of 
left hemisphere), 1: sulcus centralis, 2: sul- 
cus postcentralis, 3: sulcus frontalis supe- 
rior, 4: sulcus frontalis inferior 

Figure 6. bottom line 

Figures 5,6 illustrate the effect of this algorithm 
when applied to an individual sulcus. Figure 5 shows 
the medial surface of this sulcus, figure 6 shows the 
result after the bottom line extraction was applied. 

5 .  Experiments 

I 

Figure 8. sulcus bottom lines (side view) 

The experiments were performed on several data 
sets. In each case, we used segmented data sets as 
input, in which the brain matter had been extracted. 
We opened the sulci by applying a 3D morphological 
opening operator using a 3 x 3 x 3 sphere as a structur- 
ing element, after which the brick laying and bottom 
line extraction were performed. In a final step, the bot- 
tom lines were converted into a graph structure. The 
results so far have been quite promising. 

Figures 7,s show the result of an experiment involv- 
ing a data set consisting of 40 slices of size 64 x 155 
voxels. Some of the main sulci are labelled to provide 
better orientation. (1: sulcus centralis, 2: sulcus post- 
centralis, 3: sulcus frontalis superior, 4: sulcus frontalis 
inferior) A more thorough anatomical validation is un- 
der way. The computing time was approximately 1.5 
minutes (after segmentation) on a DEC-Alpha Unix- 
workstation, where most of the the time was spent on 
morphological filtering and medial surface extraction 
(3D thinning). 

6. Conclusion 

A new method of extracting relevant anatomical 
landmarks from MR images of the human brain was 
presented. The landmarks that were extracted are the 
bottom lines of the cortical sulci, which correspond to 
lines of maximal depth as measured from the smoothed 
surface. The principal advantage of our method is that 
it is parameter free and thus very robust. Compared 
to ridge line extraction methods it produces far better 
results and is also easier to  implement. 

The main tool that we proposed here was the “brick 
layer” algorithm, that performs a depth labelling of 
the sulci. The brick layer algorithm provides an easy 
method of separating sulci from one another, and it 
allows us to investigate the sulcus properties a t  various 
depths. By eroding the sulcus medial surface we can 
easily extract the sulcus bottom. 

Future work will be aimed at an automatic labelling 
of the detected sulci using features such as direction, 
length, depth and adjacency relations. 
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