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Abstract. We describe a combination of a region growing and a watershed algo- 
rithm optimized for the detection of homogeneous structures in magnetic reso- 
nance (MR) volume datasets. No prior knowledge is used except a segment 
model. The adaptation to different d~t~ sets is enntroll~ by parameters which 
can be determined interaetively due to the high speed of the algorithm. Results 
are shown for the segmentation of the basal ganglia and the white matter of the 
brain. 

1 Introduction 

The basic idea of the segmentation method described in this paper is to combine a 
region based approach using homogeneity and connectivity to yield segments with an 
morphological approach using watersheds on gradients to achieve a good localisation 
of the segment borders. The segmentation method is based on a simple but very gen- 
eral segment model which is defined in section 2. An extremly efficient implementa- 
tion of this algorithms is given in section 3. Except the segment model no other a priori 
knowledge is used. The algorithm is adapted to different data sets by parameters, 
whose values can be determined automatically or interactively. The results shown in 
section 4 are generated with the second method, which is favored because of the short 
computing times even for large datasets. An approach for the knowledge based auto- 
matic determination of the parameters for a similar algorithm can be found in [ 1]. 

As a testbed for our algorithm we have selected the detection of the white matter and 
the basal ganglia in brain MR tomograms. A special property of the algorithm needed 
to segment these structures is its ability to differentiate very similar neighboring struc- 
tures that are seperated only by a very slight inhomogenity. 

2 T h e  A l g o r i t h m  

To segment the structures of the brain mentioned above a segment model is defined: 

A segment is a connected, homogeneous region surrounded by inhomogeneous 
regions (edges) or by other segments (with different mean gray values). 
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Homogeneity refers to a suitable predicate. If a segment is not enclosed totally by 
edges it must have neighboring segments with a smooth intensity transition between 
them. These smooth transitions appear frequently in MR brain images but can hardly 
be detected by a purely gradient oriented segmentation approach. Nevertheless for 
both types of neighbors the segment borders should be located at the local extreme val- 
ues of the gradient between the structures. To achieve these goals the following region 
growing algorithm is proposed: 

The growing starts at the most homogeneous regions, found due to their small gradient 
magnitude and continues to the less homogeneous regions. Therefore the voxels are 
sorted by their gradient magnitude and are processed in that order. This avoids expen- 
sive neighbor search during the segmentation and makes the algorithm orders of mag- 
nitude faster than classical approaches [3]. Interestingly, this procedure is comparable 
to the implementation of the watershed algorithm based on immersion simulation [2]. 

During the region growing process the assignment of voxels to segments is controlled 
by a voxel-segment homogenity predicate. To avoid the creation of one segment for 
each local minimum, what happens if the watershed transformation is applied, a seg- 
ment-segment merging step is introduced. It is conlrolled by a segment-segment 
homogeneity predicate. This algorithm yields stable results since the segments grow at 
first as large as possible in the homogenous regions. Additionally, the algorithm needs 
no seed points and the shape of the segments is puffy d_a!a driven. However, with 
increasing gradient magnitude during the segmentation process an increasing fragmen- 
tation would occur. To prevent this, two methods are proposed: 

a) "Relaxed region growing": the voxel-segment and the segment-segment homogene- 
ity predicate are relaxed with increasing gradient magnitude. 

b) "Region growing plus watershed": the region growing with fixed homogenity pred- 
icates is stopped at a certain gradient magnitude and the segmentation is completed 
with a modified watershed transformation. 

"Relaxed region growing" has the advantage to form large segments even in less 
homogeneous areas. But regions may be connected if they are separated only by a 
slight edge. Hence this method is suitable to segment regions with neighbors of differ- 
ent intensity values for example the white matter of flue brain (Fig. 2). 

"Region growing plus watershed" stops the region growing process as soon as the gra- 
dient magnitude reaches the parameter value h~top. This value should be chosen small 
enough to avoid the formation of many small segments. The result would be an incom- 
plete segmentation. The idea is to extend the existing segments up to the surfaces of 
maximum gradient magnitude of the neighboring edges. We achieve this by a modified 
watershed transformation, which let  the segments grow up to the next neighboring 
edge. Consequently all edges with magnitude > hstop lead to segment borders. Hence 
the separation of distinct structures can be forced if an edge lies between them. 

The difference between the modified and the morphological watershed transformation 
is that the assignment of a voxel with several segmented neighbors is still controlled by 
the voxel-segment homogeneity predicate, i.e. the voxel is assigned to the most suit- 
able segment. Problems with deviated watershed lines [2] does not occur. 
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3 Implementation 

The voxels are segmented from the minimal gradient magnitude up to h_max = hstop 
("Region growing plus watershed") cx to h_max = maximum gradient magnitude 
(''Relaxed region growing') (see Fig. 1). 

for (h= 0; h< h_max; h= h+ 1) { 
while there are unsegmented voxels v with gradient magnitude h { 

while there are voxels g of v have neightx)ring segments { 
put voxels g in queue Q; 
for all voxel x in Q { 

if x can be merged with best matching neighboring segment then { (**) 
voxel-segment merge; 
if segments have become new neiglflxrrs then try seg.-seg, merge; } 

else create new segment; } } 
/* Treat local minima now: */ 
for all unsegmented voxels v ereate new segment; } } 

if "Region growing plus watershed" then perform modified watershed transformation; 

Fig. 1. Segmentation algorithm 

The final modified watershed transformation ('Region growing plus watershed") is 
equivalent to the region growing algorithm except that the segment-segment merge is 
omitted and the statement in line (**) is unconditional. 

Both the region growing and the subsequent watershed algorithm use the same data 
structures and exploit the excellent perfonnaime O(n) (without sorting, n number of 
voxels) of this implementation. Furthermore they are independent of the underlying 
coordinate grid and can be extended to graphs and m dimensional images. 

4 Results and Discussion 

We have applied the algorithm to segment the white matter and the basal ganglia of the 
brain. Fig. 2.a) shows the segment border of the single segment containing the white 
matter superimposed on the initial volume (slice 110 from 256 slices, size 256 x 109 
voxel). The 3D visualization in Fig. 2.1)) is computed with the V-Buffer algorithm [4] 
using the volume with the segment labels. For this segmentation the "Relaxed region 
growing" has been used. In spite of considerable intensity changes in the white matter 
a single segment is formed. 

Next, results of the segmentations of the basal ganglia are presented: 

Fig. 3 shows a computed segmentation of  the caudatum. The used volume consists of 
154 slices with 127 x 154 voxel. Here and in the following all computations were 
made using the "Region growing plus watershed" algorithm. The segmentation com- 
pares well to hand segmentations although the border lines are more jagged. All seg- 
mentatious are computed without smoothing the data to avoid suppression of small 
structures (Canny operator: o = 0.7). 
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Fig. 2. a) Segmentation of the white matt= Fig. 2. b) Visualization of the white matter 

The segmentation in slice 55 (Fig. 3.1)) shows that the caudatum splits into two seg- 
ments. The reason are different gray values in the area of the tail of the caudatum. As 
can be seen in Fig. 4 the gray values of the eaudatum and the putamen are very similar 
where they are close together. So an increased homogenity threshold parameter would 

Fig. 3. Segmentation of the caudate nuclei, a) Slice 59, b) Slice 55 

yield an incorrect segment merge. For the same reason the putamen and the thalamus 
(Fig. 4) also sprit into two main segments. This splitting is a principle property of this 
segmentation approach when segmenting structures of a high inhomogenity relative to 
their vicinity. The complexity of the named brain structur~ can not be modelled per- 
fectly with our simple segment model. Rather, the complex objects decompose into 
their homogeneous substructures. Because of its high speed the algorithm seems to be 
well suited to serve as a tool for higher level systems to achieve a first decomposition 
of an image into a small number of homogeneous regions highly correlated with the 
anatomical strucure. 

The computing time including the sort on a SUN Spare 10/40 for the first data volume 
(14 MBytes) is 142 seconds, for the second data volume (6 MBytes) 69 seconds. For 
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re43eated segmentations of the same volume the algorithm may be speeded up by stor- 
ing the array of sorted voxels once it is computed. 

Fig. 4. Segmentation of thalamus and putamen 

5 Conclusions 

We have presented a 3D segmentation algorithm optimized to segment homogeneous 
strucmre~ in MR data volumes at a very high speed. The algorithm is based on a seg- 
ment model exploiting homogenity as well as inhomogenity. The implementation is a 
very efficient immersion simulation [2]. Results are shown for the segmentation of the 
basal ganglia and the white matter of the brain. Two different variants of the algorithm 
are given. One is optimized for the segmentation of inhomogenous regions well seper- 
ated from similar structures, the other for the segmentation of adjacent structures with 
very alike properties. It shows that complex objects decompose into their homoge- 
noeus substructures that may be reassambled latex by an expert (system). This seems to 
be a good result since the number of substructures is small and depends only on the 
complexity of the object. 
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