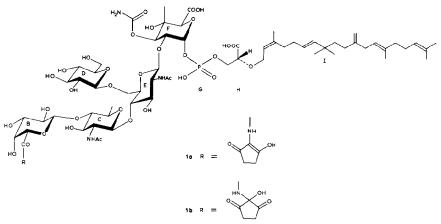
Carbohydrate Research, 126 (1984) C1-C5 Elsevier Science Publishers B.V., Amsterdam – Printed in The Netherlands

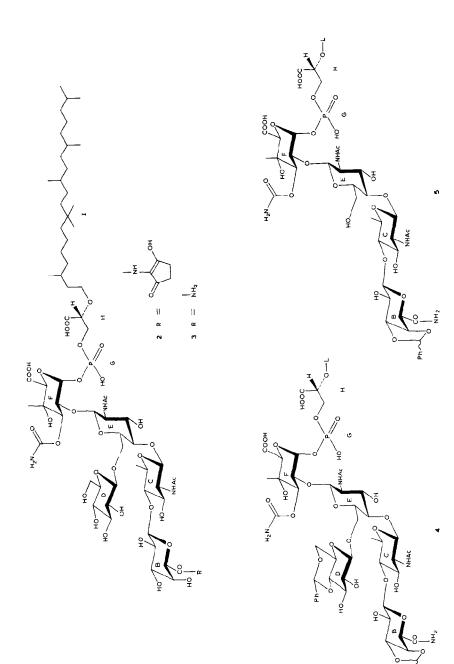
Preliminary communication

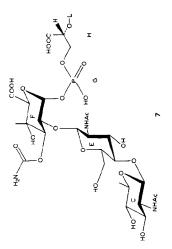

Stepwise degradation of moenomycin A

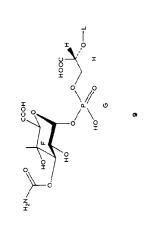
PETER WELZEL*, FRANZ KUNISCH, FRITHJOF KRUGGEL, HERMANN STEIN, ARANKA PONTY, and HELMUT DUDDECK

Abteilung für Chemie der Ruhr-Universität, Postfach 102148, D-4630 Bochum (West Germany) (Received August 25th, 1983; accepted for publication, December 13th, 1983)

The antibiotic moenomycin A (1a) is the main constituent of the commercial product flavomycin[®] which is employed in animal nutrition¹. Compound 1a is an efficient inhibitor of the biosynthesis of peptidoglycans of bacterial cell-walls by interacting with the enzyme(s) that catalyse the transfer of the disaccharide unit from the disaccharide— (oligopeptide)—pyrophosphoryl—undecaprenol intermediate to the growing, linear peptidoglycan chain².


We now report on a systematic degradation of the oligosaccharide part of 1a which was performed with the aim of defining the structural basis of the antibiotic activity of 1a.




Transformation of 1a to 3 by catalytic hydrogenation (to give 2) and subsequent ozonolysis has already been described³. Compound 3 has now been obtained much more efficiently (88% yield) from 2 (7.4 mmol) by oxidation with K_3 [Fe(CN)₆] (80.8 mmol) in 0.37M K₂CO₃ and subsequent reversed-phase chromatography (HP 20, water-methanol gradient). We believe that an intermediate of type 1b is involved in this reaction.

^{*}To whom enquiries should be addressed.

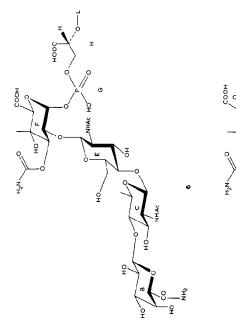
(Ha

Т

v

P

¥


ω

ĝ

, E

HOOC

È

L = Lipid part (see unit] of 2)

Stepwise degradation of 3 was based on the diol-cleavage methodology⁴. Compound 3 (0.72 mmol) was treated for 52 h at 90° with benzaldehyde (28 mmol) and anhydrous zinc chloride (9.9 mmol) in dimethyl sulfoxide solution⁵, to give, after chromatographic separations (first on HP-20 with a water-methanol gradient and then on silica gel with 10:6:1 chloroform-methanol-water), 4 in 14% yield; 4 is possibly a mixture of two diastereoisomers isomeric at the acetal carbon of the benzylidene group of unit B. Only unit D of 4 contains a free diol group. Therefore, (a) cleavage of 4 (0.12 mmol) with sodium metaperiodate (0.4 mmol) in 50% acetic acid containing sodium acetate (1.9 mmol) at 40° for 5 h, (b) reversed-phase chromatography (HP 20, watermethanol gradient) and lyophilisation, (c) reaction⁶ (Barry degradation⁷) with a 100-fold excess of N,N-dimethylhydrazine in 2-propanol-M H₂SO₄ at pH 4 (2.5 h at 20° and 1 h at 90°), and (d) lyophilisation and chromatographic separation (silica gel, 10:6:1 chloroform-methanol-water) gave 5 in 37% overall yield.

Liberation of another diol grouping was achieved by removing the benzylidene group from 5 by hydrogenolysis (in 1:8 methanol—acetic acid, Pd/C catalyst) to give 6 quantitatively. Degradation under the conditions described above converted 6 into 7 (32%).

TABLE I

SELECTED ¹³C-N.M.R. DATA [6 VALUES, (CD₃), SO] FOR COMPOUNDS 3-9

3	4	5	6	7	8	9	Assignment	Unit
173.1	171.6	172.5	a	173.3	173.3	a	C-1	н
171.7	171.3	171.8	171.6	171.7	172.1	172.6	C-6	F
170.6	170.6	169.6	170.7	-	_	-	C-6	В
169.7	169.7	169.2	169.3	169.4	169.4	_	NHCOCH ₃	C,E
156.5	156.7	156.6	156.7	156.6	156.3	158.0	OCONH,	F
103.6	104.2		-	_	-	_	C-1	D
102.9	103.7	102.8	103.8	_	_	_	C-1	В
101.9	102.9	102.3	102.5	102.7	102.9	_	C-1	Ε
101.2	102.5	101.7	101.5	101.9	-		C-1	С
	101.5	101.3		_	_		C-7 ^b	В
_	101.0		-	_		_	C-7 ^b	D
93.7	94.3	93.8	94.1	94.2	94.3	94.5	C-1	F
84.4	84.8	84.6	84.4	75.4	-		C-4	С
80.7	80.7	80.7	80.8	80.4	70.5	_	C-4	E
71.9	70.8	70.8	59.6	59.2	60.7		C-6	E
70.3	80.7	80.7	70.5		_	_	C-4	В
69.0	80.7	-	_			_	C-4	D
55.5	55.7	55.5	55.5	55.5	55.1	_	C-2	Е
55.0	54.6	54.6	54.3	54.3	-		C-2	С
23.1	23.4	а	23.4	23.2	23.3	-	NHCOCH3	C,E
17.3	17.3	17.4	17.4	18.0	-		C-6	С
16.2	16.2	16.3	16.4	16.4	16.9	16.7	<i>C</i> H ₃ -4	F

^a Not observable. ^b Acetal carbon.

The tetrasaccharide 7 could be obtained from 3 directly by removing units B and D in one step. Thus, (a) cleavage of 3(0.7 mmol) with an excess of sodium metaperiodate (4.7 mmol) in 50% acetic acid containing sodium acetate (7.3 mmol) for 2 h at 40° , (b) reversed-phase chromatography (HP 20, water-methanol gradient) and lyophilisation, (c) treatment of the oxidation product with a 20-fold excess of N,N-dimethylhydrazine in 2-propanol-M H_2SO_4 (pH 4.5) for 3 h at 85°, and (d) chromatographic separation (first on HP 20 with a water-methanol gradient and then on silica gel with 10:6:1 chloroform-methanolwater) furnished 7 in a 47% overall yield. Compound 7 could be submitted to another degradation cycle in which ammonia was used instead of N,N-dimethylhydrazine⁸. Thus, (a) treatment of 7 (0.4 mmol) with sodium metaperiodate (1.6 mmol) under the conditions described above, (b) destruction of the excess of periodate with 1.9 mmol of ethylene glycol (1 h at 20°), (c) degradation of the oxidation products with ammonia (pH 9.5, 16 h at 20°), (d) adjustment to pH 6 and chromatographic separations (HP 20, water-methanol gradient; and then silica gel, 10:6:1 chloroform-methanol-water) gave 8 (31%) and 9 (16%). Under the same conditions, 8 was degraded to 9 in 46% yield. All new compounds gave spectra that were in agreement with the assigned structures. The most characteristic and informative ¹³C-n.m.r. signals are collected in Table I.

In the *in vitro* $assay^2$ for the transglycosylation step, moenomycin A (1a), 2, 3, and the degradation products 6-8 showed the same inhibitory effect, whereas 9 was 10-fold less efficient. From these results, it is concluded that only units E, F, G, H, and I of 1a are essential for full biological (*in vitro*) activity.

ACKNOWLEDGMENTS

We thank Dr. J. van Heijenoort for reporting his biochemical results to us prior to publication, Dr. G. Huber (Hoechst AG) for a generous gift of pure moenomycin A, K. Hobert for technical assistance, and Hoechst AG and the Fonds der chemischen Industrie for financial support.

REFERENCES

- 1 G. Huber, in F. E. Hahn (ed.), Antibiotics, Vol. V/1, Springer, Berlin, 1979.
- Y. van Heijenoort, M. Derrien, and J. van Heijenoort, FEBS Lett., 89 (1978) 141-144;
 Y. van Heijenoort and J. van Heijenoort, *ibid.*, 110 (1980) 241-244.
- 3 P. Welzel, B. Wietfeld, F. Kunisch, Th. Schubert, K. Hobert, H. Duddeck, D. Müller, G. Huber, J. E. Maggio, and D. H. Williams, *Tetrahedron*, 39 (1983) 1583-1591.
- 4 B. Lindberg, J. Lönngren, and S. Svensson, Adv. Carbohydr. Chem. Biochem., 31 (1975) 185-240.
- 5 A. N. de Belder, Adv. Carbohydr. Chem. Biochem., 34 (1977) 179-241; see D. M. Hall, Carbohydr. Res., 86 (1980) 158-160.
- 6 A. von Wartburg, M. Kuhn, and K. Huber, Helv. Chim. Acta, 51 (1968) 1317-1328.
- 7 P. S. O'Colla, Methods Carbohydr. Chem., 5 (1965) 382-392.
- 8 H. Paulsen, R. Jansen, and P. Stadler, Chem. Ber., 114 (1981) 837-842.