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A B S T R A C T

This study aimed at uncovering mechanisms that govern the spatio-temporal patterning of the human cortex and
its structural variability, and drawing links between fetal brain development and variability in adult brains. A
data-driven analytic approach based on structural MR images revealed the following findings: (1) The cortical
surface can be subdivided into 13 independent regions (“communities”) based on macroscopic features. (2) Thirty
centers of low inter-subject variability were found in major sulci on the cortical surface. Their variability showed a
strong positive correlation with the known time points at which they appear in fetal development. Centers
forming early induce a higher inter-subject regularity in a larger local vicinity, while those forming later result in
smaller regions of higher variability. (3) The layout of sulcal and gyral patterns within a community is governed
typically by two centers. Depending on the relative variability of each center, communities can be classified into
structural sub-types. (4) Sub-types across ipsi-lateral communities are independent, but associated with the sub-
type of the same community on the contra-lateral side. Results shown here integrate well with current knowledge
about macroscopic, microscopic, and genetic determinants of brain development.
1. Introduction

The quest to understand the relationship between brain and behavior
has typically included an intermediate step in the form of brain parcel-
lation. Indeed, the individual variability of macro-structural features of
the cerebral cortex has puzzled neuro-anatomists for two centuries
(Gratiolet, 1854; Eberstaller, 1890; Cunningham, 1892; Duvernoy,
1991), who, from visual observation, developed a common ontology
(Swanson, 2015). Considerable training is required for a human observer
to recognize cortical structures. Difficulties arise because even major
sulci and gyri show a remarkable structural variability within and be-
tween subjects (Ono et al., 1990). Secondary features may be prevalent in
some individuals only, and there is an abundance of literature describing
detailed regional variation (e.g., Tomaiuolo et al., 1999; Chiavaras and
Petrides, 2000; Kringelbach and Rolls, 2004; Germann et al., 2005; Kahnt
et al., 2012). However, the definition of regions under study and criteria
for sub-type classification are often phenomenological and ad-hoc. An
over-arching “theory of cortical variability” trying to assess and interpret
the relationship between common and individual features of the human
cortex is currently missing.

Existing brain atlas schemes used in anatomical and functional MRI
studies (e.g., Tzourio-Mazoyer et al., 2002; Desikan et al., 2006; Oishi
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et al., 2008; Glasser et al., 2016) are based on the implicit assumption
that all brains can be sufficiently represented as a commonmean, without
assessing the validity of this assumption. The positional error incurred
from mapping an individual brain into a normative space is generally
well above the current resolution limit of modern neuroimaging
methods. No current approach allows referencing the individual vari-
ability found on the cortical surface at the imaging level of detail, limiting
the advance of knowledge about individual determinants in translational
research and clinical practice.

In the present work, rather than focusing on commonalities, we aimed
to elucidate mechanisms that govern cortical variability. We applied a
data-driven, quantitative approach for assessing individual cortical
variability, based on the analysis of anatomical MR brain imaging data
acquired in a large cohort of healthy adults. Without including anatom-
ical knowledge, our unbiased approach used machine-learning methods
to reveal processes that segregate cortical space while allowing individ-
ual variations. As a first step, we introduce background and terminology
used in this study:

Sulcal roots: Neuroanatomical studies of fetal development have
established locations and time points at which sulci first appear on the
cortical surface (Cunningham, 1892; Chi et al., 1977; Nishikuni and
Ribas, 2012). Regis et al. (1995, 2005) introduced the term “sulcal roots”
a, Irvine, CA, 92697-2755, USA.
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Fig. 2. Overall mapping of variability onto example “inflated” left and right
brain hemispheres. Focal regions of a low variability (in magenta) are sur-
rounded by highly variable “rims” (in red). There is a correspondence between
variability and geodesic depth: regions of low variability are found in deep
cortical folds.
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for these initial locations, and was one of the first to suggest the analysis
of structural variations in terms of their number and relative configura-
tion. More recently, analyses of in uteroMRI data sets (Dubois et al. 2008,
2014; Hu et al., 2011; Clouchoux et al., 2012; Habas et al., 2012) have
provided hints that sulcal roots are retained as the locally deepest points
within sulci (“pits”). Studies in infants (Meng et al., 2014) and adults
(Lohmann et al., 2008; Im et al., 2010; le Guen et al., 2018a) have shown
that pits can serve as anatomical landmarks that have a low inter-subject
variability (for a recent review, refer to: Im and Grant, 2018).

Basins: We introduced the concept of sulcal basins as a richer repre-
sentation of cortical features than points (Yang and Kruggel, 2008;
Kruggel, 2018). A basin corresponds to a cortical patch that is centered
around a locally deepest point and includes the neighboring sulcal area
up to the gyral crowns (Fig. 1). Basins are automatically segmented on a
surface representing the gray/white matter (GM/WM) interface, using as
criteria, geodesic depth and surface curvature. In this way, basins provide
a complete segmentation of the cortical surface.

Variability: In our previous publication (Kruggel, 2018), we demon-
strated how basin segmentations can be used to quantify inter-individual
structural variability. In this context, cortical variability is a point-wise
measure that corresponds to a weighted sum of the probabilities of
finding specific basins at that location across a group of subjects. If the
same basin is found at a specific location across all subjects, the vari-
ability is zero. Higher values indicate a higher structural variability
(Fig. 2). We demonstrated that neighboring basins cluster into cortical
communities: basins overlap within a community but not across commu-
nities when compared across subjects. Thirteen communities were
derived by automated clustering (Fig. 3).

In this work, we assess biological mechanisms that govern cortical
variability. We will demonstrate that: (1) The structural pattern within
the 13 communities described before (Kruggel, 2018) is governed by 30
centers of low inter-subject variability (CLV) located in major sulci. (2)
Their variability shows a strong positive correlation with the known time
points at which they appear in fetal development. Deep, low variable
centers are formed early in development. (3) The layout of sulcal and
gyral patterns within a community is governed by typically two centers.
Deep, low variable centers induce a higher regularity in a larger local
vicinity. Depending on the relative variability of each center, commu-
nities can be classified into structural sub-types. (4) Sub-types across
ipsi-lateral communities are independent, but associated with the
sub-type of the same community on the contra-lateral side. Community
sub-types offer a “pattern library” that is sufficiently large to represent
individual variability.
Fig. 1. Processing stages for basin segmentation: Surface shape index (top left,
dimensionless units), geodesic depth (top right, in mm), basin segmentation
(below left, arbitrary color labels), and aligned spherical map (below right,
arbitrary color labels).

Fig. 3. Mapping of 13 cortical communities onto example left and right brain
hemispheres: fronto-superior (FS, dark orange); fronto-polar (FP, white); fronto-
inferior (FI, black); central sulcus (CS, gray); parietal (PA, dark green); insula
(IN, light green); temporo-lateral (TL, red); occipito-lateral (OL, yellow); orbital
(OR, pink); temporo-medial (TM, light brown); occipito-medial (OM, brown);
medial-anterior (MA, light orange); medial-posterior (MP, light blue).
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2. Material and methods

2.1. Subjects and imaging data

This work included imaging data of the 1113 subjects in the “1200
Subjects Release” of the Human Connectome Project released in March
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2017. The cohort consisted of 606 females and 507 males in the age
range of 22–37 years (mean: 28.7 years). T1-and T2-weighted structural
MR images were used in this study. For detailed acquisition information,
refer to the release document (Human Connectome Project, 2017).

2.2. Segmentation of cortical features

The analytical procedures described in this section were extended
from our previous work (Yang and Kruggel, 2008; Kruggel, 2018), and
we included only relevant detail here.

Generation of hemispheric surfaces: Native T1-and T2-weighted struc-
tural images were co-registered, corrected for intensity inhomogeneities,
and the intracranial space was extracted. This space was classified into
four compartments, roughly corresponding to GM, WM, cerebro-spinal
fluid (CSF) and connective tissue. The inner cavities of the WM seg-
mentation (e.g., inner ventricles, basal ganglia) were filled to form a
binary object with genus zero. The cerebellum and brain stem were
clipped 15mm below the AC-PC plane, and split into hemispheres at the
mid-sagittal plane. A triangulated surface was computed from this object,
and optimally adapted to the GM/WM interface. These meshes retained
the individual dimensions of the acquired images (0.7mm vertex dis-
tance, about 230.000 vertices, 0.35mm2 Voronoi area per vertex).
Cortical thickness (Osechinskiy and Kruggel, 2012) and myelin ratio
(Glasser and van Essen, 2011) were determined at each vertex location,
using the intensity-corrected T1-and T2-weighted images.

Segmentation of cortical basins: Surface curvature was computed from
the hemispheric mesh, represented by the shape index (Fig. 1, p. 4).
Geodesic depth was determined in image space, using a constrained
distance transform on the sulcal compartment and interpolated at vertex
positions (Fig. 1, p. 4). Finally, basins were segmented by a watershed-
region growing process guided by surface curvature and geodesic
depth. Each basin received a unique label stored at each vertex (Fig. 1, p.
4). Regions that were clipped at the mid-sagittal plane and the brain stem
were excluded from the process. This procedure yielded 100–140 basins
per hemisphere. Basins implicitly encode surface properties: their bor-
ders correspond to shallow cortical ridges, and centers to deep sulcal
folds.

Inter-subject alignment: To compare data across individuals, each
hemispheric mesh was unfolded to a unit sphere while minimizing angle
and area distortion (Kruggel, 2008). The overall correspondence between
individual spherical meshes was maximized by finding a rotation that
optimizes the normalized mutual information of the vertex-wise basin
labels with an arbitrarily chosen reference. Finally, basin labels were
re-sampled on an icosahedral mesh matching the spatial resolution of the
original data (ico7, 163842 vertices; Fig. 1, p. 4). Likewise, geodesic
depth, curvature, cortical thickness, and myelin ratio were re-sampled at
each vertex location. This process led to a spatial normalization across
individuals: Each vertex was considered as homologue between in-
dividuals. Technically, data for each hemisphere were stored as a 3D
matrix of the 1113 subjects by 163842 vertices by 5 features, along with
the spherical mesh that represented vertex positions and neighborhood
relationships.

2.3. Cortical variability and communities

This section contains a condensed version of the methods published in
(Kruggel, 2018). Please, refer for details to this publication.

Variability map: If all brains had identical surface features, basin labels
at each vertex would also be identical. Using the basin segmentation of an
example brain as a reference, we computed a basin variability map as
follows: For a reference sphere Sr with M basin labels and an object
sphere So with N basin labels, we collected an M � N matrix Oðm; nÞ of
label correspondences. Nonzero entries in row m of this matrix corre-
spond to the number of vertices that overlap between basin m in the
reference and basins n on the object mesh. The row-wise maximum de-
notes the basin on So that best corresponds to basins m on the reference.
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This map of homologue basins was used to relabel basins of So in terms of
Sr . For a given reference, this process was repeated for all subject meshes.
Next, we determined the frequencies of labels at each vertex, and ranked
them by decreasing values, denoting the top rank as zero. Their rank-
weighted sum was used as our vertex-wise variability metric V. The
variability is zero for a one-to-one match m to n, while any other over-
lapping basins increase the metric by the amount of overlap, weighted by
the rank. All vertices of basin m received the variability score Vm corre-
sponding to this basin. Using one subject as a reference, averaging the
1112 pair-wise variability maps resulted in an individual variability map.
Averaging all 1113 individual maps led to the overall variability map
(Fig. 2, p. 5).

Community map: Neighboring basins were clustered as communities
in terms of their mutual overlap. For a chosen reference mesh Sr , labels
on a subject mesh So were re-labeled as described above, to find a matrix
O of dimensions M �M that contains the occurrence of label corre-
spondences. Elements on the diagonal of this matrix contain the number
of homologue labels between the reference and the subject mesh, and off-
diagonal elements the number of vertices in non-homologue basin pairs.
Community building was performed by a graph-based algorithm (For-
tunato, 2008). Initially, this graph contains an unconnected set of M
nodes that represent the basins of the reference mesh. For each
off-diagonal non-zero matrix element, an edge was added to the graph,
and the edge weight updated by the amount of overlap (“connection
strength”). Given the same reference Sr , this process was repeated for all
subject meshes So, accumulating edge weights in the reference graph.
Communities were formed as subsets of nodes that maximized their
common connectivity while minimizing their cross-community connec-
tivity. The final number of communities emerged from the heuristic
optimization process (Campigotto et al., 2014). Each subject mesh was
selected once as the reference, resulting in 1113 maps of community
clusters. To integrate all individual community maps, a variability map
was computed from the community labeling, as described above. Regions
of low variability were occupied by the same community in all subjects,
bordered by small rims of high variability where neighboring commu-
nities “compete” for space. A watershed-region growing procedure was
used to segment this variability map into 13 communities for each
hemisphere (Fig. 3, p. 6). This set of communities is considered as the
structural core that is common to all the brains in our cohort.
Community-wise variability maps (as shown in Fig. 4, and 8-10) were
computed by determining the basins that comprise a specific community
in each subject, and computing a variability map as described above.
Maps were thresholded such that at least 50% of all subjects contributed
to a given vertex position.

2.4. Community sub-types

The arrangement of basins within a community may differ across
groups of subjects. We examined for community sub-types using the
following steps:

Pair-wise similarity: A subject pair was selected, and vertex-wise basins
labels within a specified community were compiled in a contingency
matrix. If patterns are identical, this matrix has non-zero entries only on
the diagonal. The normalized mutual information (NMI) of the contin-
gency matrix ranges from 1 (for an identical pattern) to 0 (for a random
correspondence of labels). The NMI, weighted by the basin size, was used
as a similarity metric. The similarity between all subject pairs was
computed, and compiled in a similarity matrix.

Domain decomposition: The N � N similarity matrix was projected into
a lower-dimensional space using principal component analysis, with M
components selected such that the retained variance was above 80%,
typically,M 2 f3;⋯;10g. The resulting data set containedM observations
(i.e., the projected components) in N subjects.

Clustering: Multivariate Gaussian mixture models were adapted to
projected data (Scrucca et al., 2017). The optimal number of classes C
was selected from the maximal Bayesian information criterion. For each



Fig. 4. Variability in example communities OR, FS, FI, CS, IN, TL, OM, and MP. Please refer to Table 2 for anatomical loci of CLVs.
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subject, the basin pattern in a specific community was addressed to a
community sub-type c 2 f1;⋯;Cg.

Statistical Assessment: In order to assess properties of community sub-
types, we computed class-wise maps of the following vertex-wise fea-
tures: the variability of basin label patterns; cortical depth; cortical cur-
vature; cortical thickness; myelin ratio; and spatial z-score maps of class-
wise differences between features. Differences in spatial statistics were
considered significant if they passed a Bonferroni correction (jzj > 4:08).
The complexity of the basin structure was evaluated using linear
regression, with the number of basins as the dependent variable, and the
sub-type and subject sex as independent variables. Subject age was
generally found to have an insignificant influence, so is not reported
here.

2.5. Anatomical analysis

Locations of CLVs were determined by searching the overall vari-
ability map (Fig. 2, p. 5) for local minima. Vertex positions were mapped
back from common into individual space of a reference data set, and
anatomical locations identified by comparison with an anatomical atlas
(Duvernoy, 1991). For the comparison with fetal development, we
referred to the rich collection of photographs of fetal brains in Nishikuni's
thesis (2006), where sulcal roots were identified in both hemispheres at
different stages of development. The mean time point by which a sulcal
root appeared was used in the analysis here. Note that Nishikuni does not
report hemispheric asymmetries in development.

3. Results

On the basis of the analytical framework detailed below, we exam-
ined the relevance of cortical communities in terms of their relationship
to brain development, and their importance for segregating the
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developing cortex into structural sub-units. First, we studied the rela-
tionship between communities and their centers of low variability (CLV).
Second, we assessed the relationship of geodesic depth and variability of
these centers, and linked their variability to their temporal sequence in
fetal brain development. Third, we demonstrated that communities form
sub-types, governed by specific properties of CLVs in sub-groups of our
cohort.

3.1. Structural centers in communities

A visual comparison of the variability map (Fig. 2, p. 5) with the
community map (Fig. 3, p. 6) led to the observation that communities
contain core sulcal regions of low variability (in magenta), bordered by
variable gyral regions (in red). To study this relationship more system-
atically, maps of the basin variability in the 13 communities were
computed, and their local minima determined as CLVs. Spherical maps
were projected to a local plane for visualization (Fig. 4, p. 12). To ease
comparison across figures, the same color mapping was used to depict
vertex-wise variability measures, although the distinction of some cen-
ters may be less apparent.

Community size and number of centers per community were
compiled in Table 1. Thirty CLVs were determined in each hemisphere;
each community had between one and four centers. Each CLV represents
on average 3.1% of the hemispheric surface (2700mm2). Notably, cen-
ters with a relatively lower variability determine a larger local neigh-
borhood. Their anatomical locations were identified by mapping
positions back onto a hemispheric mesh. A list of all centers, their
anatomical location, and average variability is compiled in Table 2.

We emphasize that CLVs do not map one-to-one on a sulcal pit.
Centers were derived as local minima from a variability map, unlike the
process of finding pits as locally deepest surface points (Im et al., 2010;
Lohmann et al., 2008). Some centers represent more than one pit,



Table 1
Summary of basic community metrics. Communities: Size (number of vertices
(#) and percent of total size (%) in both left and right hemispheres. Low-
variability centers (CLVs): Number (#) and percent of total surface size (%).
NL refers to non-cortical regions (cut plane areas in the middle and brain stem).

Community Vertices left Vertices right CLVs

# % # % # %

NL 10531 6.42 10913 6.66 NA NA
OR 4820 2.94 4658 2.84 2 1.44
FS 9385 5.72 10190 6.21 2 2.98
FI 11223 6.84 11133 6.79 2 3.40
FP 6413 3.91 5111 3.11 1 3.51
CS 7234 4.41 6364 3.88 2 2.07
PA 10733 6.55 16036 9.78 3 2.72
IN 20617 12.58 18113 11.05 4 2.95
TL 17650 10.77 17092 10.43 2 5.21
TM 19648 11.99 21799 13.30 4 3.16
OL 11173 6.81 8916 5.44 2 3.06
OM 13308 8.12 11612 7.08 2 3.80
MA 12210 7.45 9288 5.66 2 3.27
MP 8897 5.43 12617 7.70 2 3.28

Table 2
Locations of CLVs and their relative variability.

Comm. CLV Location Var. left Var. right

OR OR1 Olfactory sulcus low low
OR2 Orbital sulcus medium medium

FP FP1 Fronto-marginal sulcus medium medium
FS FS1 Sup. front. sulcus, post. medium high

FS2 Sup. front. sulcus, ant. high high
FI FI1 Inf. front. sulcus, post. low low

FI2 Inf. front. sulcus, ant. high high
CS CS1 Central sulcus, inf. low medium

CS2 Central sulcus, sup. low medium
PA PA1 Post-central sulcus, inf. medium medium

PA2 Post-central sulcus, sup. high high
PA3 Intra-parietal sulcus medium medium

IN IN1 Circular sulcus, front. medium medium
IN2 Circular sulcus, par. low low
IN3 Lat. sulcus, polar plane low low
IN4 Lat. sulcus, temporal plane low low

TL TL1 Sup. temp. sulcus, ant. medium low
TL2 Sup. temp. sulcus, post. medium low

TM TM1 Hippocampal sulcus low low
TM2 Collateral sulcus, mid. medium medium
TM3 Occ.-temp. sulcus, ant. high high
TM4 Inf. temp. sulcus high high

OL OL1 Par.-occ. sulcus low low
OL2 Lat. occ. sulcus high high

OM OM1 Occ.-par. sulcus low low
OM2 Calcarine sulcus medium high

MA MA1 Cingulate sulcus, post. high high
MA2 Cingulate sulcus, ant. medium medium

MP MP1 Cingulate sulcus, asc. low low
MP2 Sub-par. sulcus medium medium

Fig. 5. Top: Variability of CLVs in the right vs. left hemisphere. CLVs OM2, FS1,
PA2, and OL2 were less variable on the left, while TL1, TL2, and CS1 were less
variable on the right side. Below: Normalized depth of CLVs in the right vs. left
hemisphere. Centers were slightly deeper on the left side, with the exception of
IN3, TL2, CS1, and FP1. Refer to Table 2 for an explanation of CLV labels.
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because low-variable neighboring basins may coalesce (e.g., TL1, Tl2,
FI1, FS2). Combinations of two neighboring sulcal pits lead to different
CLV shape configurations (e.g., “I” and “L”-type centers FI1 and FS1).
3.2. Variability vs. geodesic depth

We hypothesized that: (1) There is a close relationship between
center variability and depth; (2) Deep, low variable centers are formed
early in development. We determined variability and geodesic depth of
the 30 CLVs in all individual maps, resulting in a table of N¼ 1113
subjects by M¼ 30 variability and depth measures for each hemisphere.
Depth measures were normalized by the subject-wise median. Finally,
variability and normalized depth were averaged across all subjects.

The variability of CLVs on the right vs. left side is plotted in Fig. 5, top.
As the slope of the regression line (1.0005, p < 2e-16) indicates, the
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overall variability was not different between both hemispheres. How-
ever, individual variability scores were significantly lower on the left side
(Wilcoxon test, p¼ 0.04). Some CLVs (TL1, TL2, PA2, OM2) showed
gross differences in their variability between both hemispheres. Fig. 5,
below shows CLV depth on the right vs. left side. Here, the slope of the
regression line (0.947, p< 2e-16) indicated that CLVs are overall slightly
deeper on the left side. Exceptions are CLVs IN3, TL2, CS1, and FP that
are deeper on the right side. Notably, there was a similar group of deep,
low-variable centers on both sides (OR1, MP1, TM1, OM1, OL1, IN2-4,
plus OR2, IN1, TL1, and TL2 on the right side) that may be considered
as the “invariant core” centers of the brain. This group is separated in
variability and depth from a second (CS1-FP1) and third group (FP1-
OL2).

The assessment of CLV variability vs. normalized depth (Fig. 6) did
not reveal a simple relationship. Notably, there was an upper limit on this
relationship, because no CLV was deep and variable. Separating centers
on the basal and medial aspects of the brain (in black) from those on the
convexity (in red) demonstrated that variability and depth were strongly
correlated for the CLVs on the convexity (left: p¼ 1.5e-4, R2¼ 0.56;
right: p¼ 1.4e-3, R2¼ 0.44). Centers on the basal and anterior medial
aspect of the brain cannot be deep, due to anatomical constraints.



Fig. 6. Variability vs. normalized depth of CLVs in the left and right hemi-
sphere. Centers on the convexity of the brain (in red) showed a strong corre-
lation between variability and depth (left: p¼ 1.5e-4, R2¼ 0.56; right: p¼ 1.4e-
3, R2¼ 0.44).

Fig. 7. Variability vs. average timing of sulcal formation (in gestation week) in
the left and right hemisphere. Developmental data were adapted from Nishikuni
and Ribas (2012). Their data were not separated by hemispheres.
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The temporal sequence of emerging folding patterns of the human
brain was studied by post-mortem assessment (Chi et al., 1977; Nishi-
kuni, 2006) and in utero MRI (Dubois et al., 2008; Habas et al., 2012;
Huang et al., 2013). As previously noted, data about the average
appearance of sulci during weeks 12–40 of gestation were taken from
(Nishikuni and Ribas, 2012) and adapted to the CLV notation in Table 2.
Variability was more strongly correlated with appearance on the left
(Fig. 7; left: R2¼ 0.629, p¼ 2.31e-6) than the right side (Fig. 7; right:
R2¼ 0.303, p¼ 3.12e-3). Note that post-mortem data (Nishikuni, 2006)
were not differentiated by side.

We conclude that sulci appearing early in development remain as
regions of low variability in adulthood. The apparent clustering of CLVs
into three depth and variability groups spurred the idea that CLVs
develop in three “waves”: (1) The first wave occurs between GW 16 and
20 and segregates a basal ring of communities (OR, IN, TM, OL, OM, and
MA) by seeding one CLV in each community. (2) The second wave fol-
lows between GW 21 and 26 as a superior ring of communities (CS, PA,
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TL, FI, FS, MP, and FP), again, by placing one CLV in each community. At
GW 26, CLVs are allocated in all communities. (3) Secondary and ternary
structures develop after GW 26. The second CLV appears in each com-
munity at the same time (IN, OM) or 4–11 weeks later (OR, OL, TM, MP,
MA, FI, PA).

3.3. Community sub-types

The number and pattern of basins within a community differed across
subjects. While primary sulci and their roots were regularly found in all
subjects, secondary sulci were present only in sub-groups of subjects.
Thus, these sub-groups may have distinctive basin patterns within a
community, i.e., form structural sub-types. We used the analytic pro-
cedure described in Section “Methods” and focused on communities CS,
OR, and IN. In comparison with traditional neuroanatomy, these example
communities correspond to different hierarchy levels: CS is a sulcus, OR a
local region with several sulci, and IN is often considered as a “fifth lobe”.
Even with the examples at three different scales, we demonstrate that



Fig. 8. Sub-types of community CS. Top row: Classification in the left and right hemispheres. Cases marked by green triangles correspond to class 1, blue dots to class
2, and red squares to class 3, shown in the three rows below. Below: Mean variability for the three CS sub-types. In each sub-figure, the outer side corresponds to the
inferior, the inner to the superior portion of the central sulcus.
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their structural patterning is governed by similar rules.
Community CS - Central Sulcus: We found three sub-types in the CS

community that showed highly significant differences in local variability
(Fig. 8). In the left hemisphere, type 1 (n¼ 162 subjects, 14.6%) repre-
sented the central sulcus as a single, “straight”, deep basin with very low
variability (< 0.1). Type 2 (n¼ 376, 33.8%) split off a more variable
portion by a bridging gyrus in its superior third, with a total average of
2.95 basins. In type 3 (n¼ 575, 51.7%), a bridging gyrus located in the
middle separated variable inferior and superior portions. This pattern
had 4.07 basins on average. Interestingly, males had 0.29 more basins
than females, and the ratio of females in sub-type 1 was significantly
higher (1.42, p¼ 0.042). Similar to the left hemisphere, in the right, type
1 (n¼ 85, 7.6%) represented the central sulcus as a single, “straight”,
deep basin with very low variability (< 0.1). Type 2 (n¼ 343, 30.8%)
split off a more variable portion by a bridging gyrus in its superior third,
with a total average of 3.24 basins. In type 3 (n¼ 685, 61.5%), a bridging
gyrus was located rather in the middle and separated a variable superior
portion. This pattern had 3.56 basins on average. Males had 0.35 more
basins than females. A weak association was found between left and right
hemispheric clustering (p¼ 0.059). Types 1–3 were of similar native
surface size (left: 3480mm2, right: 3251mm2). and males had larger
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areas than females (left:þ404 mm2, p< 2e-16; right:þ458 mm2, p< 2e-
16).

Community OR - Orbito-Frontal Cortex: Four sub-types were found in
both hemispheres with highly significant differences in local variability
(Fig. 9, p. 20). As noted, community OR consists of two CLVs, in the ol-
factory and orbital sulci. Patterns of sub-types were similar in both
hemispheres, and a strong association was found between the left and
right hemispheric clustering (p¼ 1.1e-7).

In type 1 (left: n¼ 164, 14.7%, 6.31 basins; right: n¼ 331, 29.7%,
5.98 basins), community OR was comprised of two deep CLVs with very
low variability (< 0.1). This type was more prevalent in females (left:
1.40, right: 1.33) and showed a deep transverse orbital sulcus (TOS),
with the medial, intermediate, and lateral sulcus typically split off. In
type 2 (left: n¼ 406, 36.5%, 8.40 basins; right: n¼ 285, 25.6%, 7.51
basins), the CLV in the olfactory sulcus was prominent, while the orbital
sulcus was represented by two basins, of which the lateral one was deeper
and more invariant. Both sulci were shallower than in sub-type 1. This
type was more prevalent in males (left: 1.30, right: 1.64). Type 3 (left:
n¼ 310, 27.9%, 7.39 basins; right: n¼ 281, 25.2%, 6.90 basins) was
similar to type 2, but the CLV in the orbital sulcus was uniformly shallow.
In type 4 (left: n¼ 233, 20.9%, 7.39 basins; right: n¼ 216, 19.4%, 6.57



Fig. 9. Sub-types of community OR. Top row: Classification in the left and right hemispheres. Cases marked by green triangles correspond to class 1, blue dots to class
2, red squares to class 3, and black crosses to class 4, shown in the four rows below. Below: Mean variability for the four OR sub-types.
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basins), both CLVs were variable and shallow, resulting in a variable
basin pattern. Males had significantly more basins than females (left:
0.50, right: 0.59).

In the left hemisphere, types 1 and 4 were of similar native surface
size (2827mm2 and 2773mm2), while types 2 and 3 were significantly
larger (3003mm2 and 3040mm2, p¼ 1e-9). In the right hemisphere,
types 1 and 3 were of similar size (2720mm2, 2560mm2), while type 2
was significantly larger (2780mm2, p¼ 1e-9) and type 4 smaller
(2300mm2, p ¼ 1e-9). Independent of sub-type, males had larger areas
than females (left: þ352 mm2, p < 2e-16; right: þ348 mm2, p < 2e-16).

Chiavaras and Petrides (2000) developed a classification scheme for
orbito-frontal sulci using structural properties as detected by MR imag-
ing. Although their definition was phenomenological, our type 1 corre-
sponded to their type 3, our type 2 to their type 2, and our types 3 and 4
to their type 1.
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Community IN - Insula: Four sub-types were found in community IN
that showed highly significant differences in local variability (Fig. 10, p.
22). The community IN consisted of four CLVs: in the frontal (IN1) and
parietal (IN2) section of the circular sulcus (at the anterior-posterior level
of the long insular gyri), and the temporal (IN3) and polar (IN4) planes
(at the level of the short insular gyri, with IN3 segregated from IN4 by the
transverse temporal gyrus). Note that this definition of the community IN
differs from the standard delineation as it includes opercular regions,
especially, on the temporal side. The clear distinction between IN1 and
IN2 corresponds to the sub-division into anterior insula/frontal opercu-
lum and posterior insula/parietal operculum, in line with a recent data-
driven analysis of functional neuroimaging data (Kelly et al., 2012).

Sub-type patterns were similar in both hemispheres, and a significant
association was found between the left and right hemispheric clustering
(p¼ 3.6e-7). Type 1 (left: n¼ 357, 32.1%, 8.45 basins; right: n¼ 315,



Fig. 10. Sub-types of community IN. Top row: Classification in the left and right hemispheres. Cases marked by green triangles correspond to class 1, blue dots to class
2, red squares to class 3, and black crosses to class 4, shown in the four rows below. Below: Mean variability for the four IN sub-types.
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28.3%, 6.86 basins) was found as a single, confluent group of four centers
with very low variability (< 0.1). In type 2 (left: n¼ 257, 23.1%, 10.35
basins; right: n¼ 387, 34.8%, 7.94 basins), the center in anterior insula/
frontal operculumwas significantly less deep andmore variable, and split
off by 1–2 additional basins. Type 3 (left: n¼ 324, 29.1%, 10.66 basins;
right: n¼ 100, 9.0%, 8.01 basins) showed prominent CLVs in the insula,
while the center in the polar plane was more variable, separated by 1–2
additional basins. In type 4 (left: n¼ 175, 15.7%, 12.33 basins; right:
n¼ 311, 27.9%, 10.19 basins), the anterior insula and polar plane had a
low variability, while the other two sub-regions were more shallow,
variable and separated by 3–4 additional basins. Males had significantly
more basins than females (left: 1.04, right: 0.98, p¼ 1.7e-3).

In the left hemisphere, types 1, 2 and 3 had similar native surface size
(8951mm2, 8948mm2, and 9104mm2), while type 4 was significantly
larger (9193mm2, p¼ 0.00195). In the right hemisphere, types 1 and 2
were of similar size (7950mm2, 8024mm2), while types 3 and 4 were
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significantly larger (8213mm2, p¼ 0.00221 and 8148mm2, p ¼
0.0072). Independent of sub-type, males had larger areas than females
(left: þ1131 mm2, p < 2e-16; right: þ876 mm2, p < 2e-16).

Centers vs. Sub-Type Structure: Based on the structural variation of the
sub-types found above, it appears that their CLVs were expressed in two
variants (low variable/deep vs. variable/shallow). A combination of their
variants governs the sub-type structure: a community with two CLVs can
form four sub-types. Denoting a probability pi that CLV i is in a low-
variable state (likewise, 1� pi for the variable state), sub-type 1 should
be found with a probability p1 p2 (likewise, sub-type 4 with a probability
of ð1� p1Þ ð1� p2Þ). Assuming independence of variant probabilities p1;
p2, their values were determined from the relative sub-type fractions, and
were compiled in Table 3. While the assumption of two discrete variants
is likely an over-simplification, the similarity of the observed vs. the
estimated fractions is striking. Thirty centers per hemisphere span a state
space of more than 1 billion (230) combinations - offering a simple



Table 3
Examination of sub-type fractions in communities OR, IN, and CS in the left and
right hemispheres. For each sub-type ST, the observed fractions (column obs:),
the estimated fractions (column est:), governed by the two state probabilities p1;
p2 (column Parm:) are shown.

Community ST Probability left Probability right

obs. est. Parm. obs. est. Parm.

OR 1 0.147 0.154 0.297 0.297
2 0.279 0.279 0.356 0.194 0.242 0.551
3 0.209 0.202 0.433 0.252 0.254 0.538
4 0.365 0.365 0.256 0.207

IN 1 0.321 0.321 0.283 0.211
2 0.231 0.206 0.609 0.348 0.348 0.377
3 0.291 0.288 0.527 0.090 0.166 0.559
4 0.157 0.185 0.279 0.275

CS 1 0.146 0.148 0.076 0.082
2 0.338 0.339 0.304 0.308 0.352 0.188
3 0.517 0.155 0.487 0.615 0.100 0.433
– – 0.356 – 0.420
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explanation for the puzzling structural variability of the cerebral cortex.

4. Discussion

This study aimed at understanding the spatio-temporal determinants
of structural segregation and patterning on the human cerebral cortex.
We assessed the spatial relationship between regions common to all
brains (“communities”) and their individual structural variants (“sub-
types”), and provided clues about their temporal allocation.

Our principal findings can be summarized as follows: (1) The cortical
surface can be subdivided into 13 communities based on macroscopic
features. These communities form the common core expressed in all
brains. Their allocation on the early cortical surface reserves sufficient
space for developing neuro-functional systems. The individual variability
is confined within a community. (2) Thirty centers of low variability are
found on the cortical surface. Their variability (present in our adult
brains) shows a strong positive correlation with the appearance of cor-
responding sulci during gestation. Centers forming earlier in develop-
ment induced a higher regularity in a larger local vicinity, while those
forming late result in smaller regions of higher variability. A first, basal
ring of communities is segregated from GW 16 to 20, followed by a
second, superior ring that appears between GW 21 and 26. (3) The layout
of basin patterns within a community is governed by 1–4 centers of low
variability. Interestingly, communities can be classified into sub-types,
depending on the relative variability in each center. It is likely that - at
least in part - this variability depends on individual factors influencing
the relative timing at which centers within a community are formed
during gestation. (4) Sub-types are independent of those in neighboring
communities, while there is a weak to strong association with the sub-
type of the corresponding community on the contra-lateral side. Sub-
types over all communities comprise a pattern library that is capable of
explaining a considerable amount of macro-structural variation of the
cortex.

Based on the above, it can be of great interest to integrate these
findings with the current knowledge about the spatio-temporal devel-
opment of the human cortex.

4.1. Methodological considerations

The outcome of community sub-typing depends on three components:
The selection of features that represent structural properties; the choice
of a similarity metric for comparing features between subject pairs; the
layout of an analytical strategy for clustering community sub-types based
on their mutual similarity. Note that N � N pair-wise comparisons must
be made before clustering, which can be computationally demanding.

We included a rich set of vertex-wise features in this study (basin
labels, local curvature, geodesic depth, cortical thickness, and myelin
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ratio) and used a statistical comparison over the community region as a
similarity measure. Our current method did not correct for a possible
relative rotation or scaling of individual patterns. Such a correction might
improve results shown here, at the expense of a much higher computa-
tional cost.

As an alternative to vertex-wise features, basin patterns can be rep-
resented as an attributed geometric graph (Bandelt and Chepoi, 2008),
where nodes correspond to basins and edges to their neighborhood re-
lationships (Yang and Kruggel, 2008). The connectivity and extent of
basin nodes bear important information, thus, neighbors can be merged
but not flipped. Most commonly, graph edit methods (Billie, 2005; Ferrer
and Bunke, 2012) or random walks (Harchaoui and Bach, 2012) can be
employed to compute a similarity metric. Spatial features within a
community can also be considered as a probability distribution on the
sphere, and a Wasserstein (“earth mover's”) metric used to rate similarity
(Solomon et al., 2015). Due to the much higher computational
complexity of these approaches, we performed limited experiments here,
and did not a decisive advantage compared to the simple metric above.
We continue to work on the implementation of highly efficient and more
capable similarity measures.

After all N � N pair-wise similarities were compiled in a matrix, data
were projected into a lower-dimensional and clustered into sub-types.
For domain decomposition, we assessed PCA, ICA and kernel PCA
(Sch€olkopf et al., 1998). For classification, we studied using Gaussian
mixture models (GMM) (Scrucca et al., 2017), agglomerative and divisive
clustering (Kaufman and Rousseeuw, 1990), and evidence accumulation
clustering (Fred and Jain, 2005). Due to the overlap between sub-types in
clustering space, results varied across methods and their parameters (e.g.,
the number of retained components). Domain decomposition by PCA
followed by GMM classification was chosen as a well-understood and
robust approach here. We plan to revise the methodology when more
information about the nature of structural differences within commu-
nities is available.

Our former work on line representations of sulci and gyri (Lohmann
et al., 1997, 1998) was recently re-kindled in the form of a graph rep-
resentation of gyral crest lines (Chen et al., 2017). While results shown
here clearly indicated that gyral features were more variable than sulcal
ones, their relative advantage in capturing important individual detail
remains to be assessed. More interestingly, a multi-scale representation
of cortical curvature (Duan et al., 2018) led to a novel approach for
classifying local gyral patterns. Similarly, a recently described method for
the spectral decomposition of the cortical folding (Germanaud et al.,
2012) led to interesting conclusion about temporal wave dynamics of
cortical development (Dubois et al., 2019¼). Research on the represen-
tation of individual cortical features and their analytic approaches is
on-going (Mangin et al., 2010).

4.2. Community sub-types

A clear clustering was found in communities CS, OR, and IN. Similar
results (i.e., two to six clusters) were obtained for other communities,
corroborating the hypothesis that combinations of basin patterns within
a community cluster to form sub-types. A few results from this analysis
deserve a closer look: Hemispheric asymmetries: Overall, the cortex in
the right hemisphere appeared to be structurally more complex. Cortical
variability was slightly but significantly higher on the right side, and sub-
type patterns were less discriminative. Generally, a weak to strong sta-
tistical association was found between the sub-type and hemispheric
side. Thus, structural features between homologue communities are
generally similar but not identical. In contrast, no significant association
was found between clusters of neighboring (ipsi-lateral) communities,
underlining their structural independence. We interpret that this inde-
pendence is due to an early segregation in development, as further dis-
cussed below. Although there are no striking differences in the cortical
development of both hemispheres (Chi et al., 1977; Nishikuni, 2006;
Nishikuni and Ribas, 2012; Dubois et al., 2019), early minute
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asymmetries become more prominent with time (Im et al., 2010; Habas
et al., 2012; Dubois et al., 2014; le Guen et al., 2018b). The strongest
hemispheric difference was found for the superior temporal sulcus,
which was less variable and deeper on the right side, confirming prior
findings (Im et al., 2010; Habas et al., 2012). In contrast to develop-
mental studies by Nishikuni (2006), Chi et al. (1977) reported that the
superior temporal sulcus appeared 1–2 weeks earlier on the right side. In
addition, the asymmetric development of the transverse temporal gyrus
(Chi et al., 1977) leads to more left-sided sulcal interruptions (le Guen
et al., 2018b), and thus, to a higher variability. The lateral sulcus is longer
on the left, providing more space on its posterior end (IN2, IN4) for the
planum temporale (Chi et al., 1977; Im et al., 2010). Chi et al. (1977) also
reported an earlier appearance of the superior frontal sulcus on the left
side, which was found here as less variable on the left.

Sex differences: Several imaging studies established the fact that brain
size scales with body height (e.g., Kruggel, 2006) which largely explains
sex-related difference in absolute brain size. In this cohort, body height
and sex explained 45% of the overall variance: Males had slightly larger
brains (þ111 ml, p < 2e-16), with a sex-independent increase in brain
volume of 3.2 ml per cm body height (p¼ 2.7e-16). Our approach for
spatial normalization partially corrected for such differences. Males had
consistently between 0.3 and 1.0 more basins per community than fe-
males, given a male brain surface that is 13.5% larger on average. As
previously reported (Kruggel, 2018), these additional basins were
small-to medium-sized (< 400mm2) and occupied additional space
available on the slightly larger male hemisphere. These additional basins
did not noticeably influence sub-type configurations. This finding is in
line with a former analysis of the cortical folding by Awate et al. (2010)
who concluded that patterns in both sexes are not simply scaled versions
of each other: While females had a larger number of fine-scale features,
males had additional folds. Overall sex differences may also be present in
the form of a higher sulcal tortuosity in males (Germanaud et al., 2012;
Fish et al., 2017) which is difficult to relate to our analysis. Generally, sex
differences were not reported or detected before GW 30 (Scott et al.,
2011) but were present in neonates (Meng et al., 2014), which may
indicate that influences of sex on brain structure increase with later
stages of maturation. A highly significant association between sub-type
and sex was found for some communities (e.g., CS type 1 left, OR type
1 and 2). Interestingly, a recent voxel-based study of multi-modal MRI
brain data (Feis et al., 2013) revealed the most significant sex-related
differences in the fronto-orbital and fronto-inferior portions of the
brain. Thus, it is likely that sex-related differences become more preva-
lent when focusing on sub-regions, such as communities, which is under
further investigation.

Age-related changes: Our cohort included adults in the age range be-
tween 20 and 36. Especially the frontal cortex is known to still mature in
early adulthood (Sowell et al., 1999), while degenerative processes
become noticeable in the fourth decade of life (Kruggel, 2006). Longi-
tudinal studies in infants (Duan et al., 2018; Dubois et al., 2008; Meng
et al., 2014) described macroscopic correlates of cortical maturation as
an increase of gyral fine-structure. Changes were quantified by a higher
fractal dimension of the cortical folding (Sandu et al., 2014) or an in-
crease of the proportion of higher frequencies in a spatial decomposition
of surface curvature (Dubois et al., 2019; Germanaud et al., 2012).
Degenerative processes beginning in adulthood lead to a thinning of the
cortex and white matter stalks, thereby reducing gyral fine-structure. In
contrast, sulcal pits are considered as cortical landmarks that remain
stable throughout life (Meng et al., 2014).

Wherever applicable, we controlled measures for a possible depen-
dence of age. Surprisingly, we did not find influences at a significance
level stronger than a trend, so they were not reported here. We remark
that 70% of subjects in our cohort belong to the age range of 25–32 years,
which may be considered as the “plateau phase” in the transition be-
tween maturation and degeneration. In the context of our analysis,
changes in gyral fine-structure may correspond to changes in detail of
boundaries between adjacent basins, but not to changes in their spatial
258
arrangement. Thus, we expect that aging affects local quantitative mea-
sures (e.g., variability), but not regional features (e.g., the community
subclass type).

4.3. Relation to brain development and genetics

This study determined a strong correlation between the variability of
centers and the temporal sequence of their appearance during fetal
development. In the past, the development of macroscopic structural
features has received much attention: Seminal work was performed the
19th century (Gratiolet, 1854; Eberstaller, 1890; Cunningham, 1892),
although reports were rather descriptive and obtained from limited
sample sizes. More recent post-mortem examinations were based on
larger samples (Chi et al., 1977; Nishikuni, 2006; Nishikuni and Ribas,
2012) and complemented by image-analytic methods applied to in utero
MRI (Dubois et al. 2008, 2014; Hu et al., 2011; Clouchoux et al., 2012;
Habas et al., 2012). Nishikuni and Ribas (2012) attributed some vari-
ability in results vary due to: (1) Difficulties in determining the exact date
of contraception; (2) Increasing individual biological variation of sulcus
formation during gestation; (3) Method-related detection criteria. How-
ever, there is converging evidence for the relative sequence of sulcus
formation which was assessed here (Nishikuni and Ribas, 2012). While it
was hypothesized before that sulcal pits are presumably formed early
(Regis et al., 1995; Lohmann et al., 2008; Im et al., 2010), we presented
here, to our best knowledge, the first quantitative evidence for this
hypothesis.

Brain development comes in waves. The apparent grouping of CLVs
by variability and depth (Fig. 5), and their correlation with development
(Fig. 6) support the idea of three “waves”. A first, basal ring of commu-
nities is segregated during GW 16–20 by seeding a single CLV in each
community. A second, superior ring follows between GW 21 and 26.
Around this time point, all communities are allocated. A second CLV is
placed typically 4–11 weeks after the first one, and is rather related to the
development of secondary features. We note that the first ring corre-
sponds to phylogenetically old cortical areas, while the second ring
consists of more recent ones.

The knowledge about the microscopic development of the human
brain dramatically increased in recent years (for recent reviews, refer to:
Sun and Hevner, 2014; Fernandez et al., 2016; Borrell, 2018). Several
mechanisms were determined as pre-conditions for the folding of the
human cortex: (1) Abundant neurogenesis and gliogenesis (Welker,
1990); (2) Splitting of the subventricular zone (SVZ) into inner and outer
sections (OSVZ) during neurogenesis (Reillo et al., 2011); (3) Complex
morphological and transcriptional diversity of progenitor cells (de Juan
Romero et al., 2015); (4) Regional differences in the density of progenitor
cell proliferation (Reillo et al., 2011) and gene expression levels (de Juan
Romero et al., 2015). The regularity of macroscopic folding patterns
within and across species suggest the existence of genetic mechanisms
that regulate early cortical development (Borrell, 2018). A tran-
scriptomics analysis in the developing ferret determined many genes
expressed in distinct spatial patterns (Huang et al., 2013; de Juan Romero
et al., 2015) and temporal variations (Martinez-Martinez et al., 2016) in
the OSVZ that are related to prospective locations of primary folds and
fissures. Jammes and Gilles (1983) studied the growth of the surface area
in human fetuses. They found a biphasic growth, with a slow gain of the
isocortex up to GW 24–26 and an exponential growth thereafter.
Conversely, the allocortex showed a regular gain in GW 13–31, with no
increase later on. Likewise, the germinal matrix (SVZ and ISVZ) peaked
in size at GW 25, then showed a marked decrease. These findings are
similar to a later MRI-based study (Scott et al., 2011), who modeled
isocortical growth as exponential from GW 20 on. Thus, the assumed
formation of our CLVs in two stages (GW 16–20 and 21–26) precedes and
prepares for the period of cortical growth, corroborating their impor-
tance for spatial segregation.

Details of the genetic regulation underlying the spatio-temporal
pattern formation of the human cortex are still largely unknown.
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However, recent studies demonstrated the heritability of 16 sulcal pits
that correspond to our CLVs (le Guen et al., 2018ale Guen et al., 2018b).
Further evidence for the influence of genetic factors may come from the
assessment of specific types of brain malformations (Mangin et al., 2010;
Im and Grant, 2018).

Several groups investigated the hypothesis that gyrification is a
consequence of differential mechanical forces that occur during cortical
growth (e.g., Bayly et al., 2013; Ronan et al., 2014; Tallinen et al., 2016;
Toro and Burnod, 2005; Xu et al., 2010). Bionumerical simulations of a
developing brain consisting of a cortical layer attached to a white matter
core led to brain models that stunningly match an adult brain (Tallinen
et al., 2016).

It is likely that both genetics and biomechanics contribute to gyr-
ification. While genetic mechanisms described above may indicate lo-
cations and time lines of gyrification, they do not suggestwhy gyrification
occurs - and biomechanical processes may offer an explanation. Con-
versly, a pure biomechanical model may be insufficient to explain why
the complex-shaped brain is formed in a highly similar fashion - a spatio-
temporal control likely stears brain growth.

4.4. Determinants of cortical variability

An early segregation of cortical space is required to ensure a regular
development. We assume that the cortical communities detected in
adults correspond to these regions. Their allocation is presumably
genetically determined and common to all human brains. The cortical
folding process is regularized by a temporal sequence of seeding centers
within communities, with a first, early set in phylogenetically older re-
gions, and a later set in younger regions. Centers formed early induce a
larger, locally more regular folding pattern, while those forming later
influence smaller areas with a higher degree of variability. The relative
formation of centers within a community leads to distinct structural
patterns that are detectable as community sub-types. The spatio-temporal
pattern of center development is also presumably genetically deter-
mined, but to a lesser extent than the community segregation process
and/or controlled by genetic variants common to sub-groups of a pop-
ulations. Non-genetic factors contribute to the individual cortical for-
mation with increasing weight from the third trimester on.

Options for “assembling cortices” by combining sub-types of the 13
communities may explain some of the puzzling individual cortical vari-
ability. The regular portion of the conventional neuro-anatomical
ontology maps to the layout of the community structure and their
inherent invariants. Individual structural variants are confined within a
community, and are often not described in anatomical terms, because a
suitable comprehensive framework is missing.

We emphasize that the sub-typing conducted here is based on
macroscopic assessment of structural features only. Further evidence
must come from the inclusion of structural connectivity and functional
results, and will likely lead to even more fine-grained sub-division of
cortical regions (e.g., Kringelbach and Rolls, 2004; Anwander et al.,
2007; Uylings et al., 2010; Kahnt et al., 2012, Kelly et al., 2012). Thus, we
prefer to refrain from speculating about neuro-biological implications of
regional sub-typing at this time. Considering the strong arguments for
region sub-types provided by this data-driven analysis, we suggest to
consider advantages of individual sub-typing into account when
analyzing structure-function relationships in the human brain.

Acknowledgment

Authors thank Dr. Robert Hunt (Depts. of Anatomy and Neurobiology,
UC Irvine) for insightful comments on the manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.neuroimage.2019.04.031.
259
References

Anwander, A., Tittgemeyer, M., von Cramon, D.Y., Friederici, A.D., Kn€osche, T.R., 2007.
Connectivity-based parcellation of Broca's area. Cerebr. Cortex 17, 816–825.

Awate, S.P., Yushkevich, P.A., Song, Z., Licht, D.J., Gee, J.C., 2010. Cerebral cortical
folding analysis with multivariate modeling and testing: studies on gender differences
and neonatal development. Neuroimage 53, 450–459.

Bandelt, H.J., Chepoi, V., 2008. Metric graph theory and geometry: a survey. Contemp.
Math. 453, 49–86.

Bayly, P.V., Okamoto, R.K., Xu, G., Shi, Y., Taber, L.A., 2013. A cortical folding model in-
corporating stress-dependent growth explains gyral wavelengths and stress patterns
in the developing brain. Phys. Biol. 10, 016005.

Billie, P., 2005. A survey on tree edit distance and related problems. Theor. Comput. Sci.
337, 217–239.

Borrell, V., 2018. How cells fold the cerebral cortex. J. Neurosci. 38, 776–783.
Campigotto, R., Conde-Cespedes, P., Guillaume, J.L., 2014. A generalized and adaptive

method for community detection arVix:1406.2518v1.
Chen, H., Li, Y., Ge, F., Li, G., Shen, D., Liu, T., 2017. Gyral net: a new representation of

cortical folding organization. Med. Image Anal. 42, 14–25.
Chi, J.G., Dooling, E.C., Gilles, F.H., 1977. Gyral development of the human brain. Ann.

Neurol. 1, 86–93.
Chiavaras, M.M., Petrides, M., 2000. Orbitofrontal sulci of the human and macaque

monkey brain. J. Comp. Neurol. 422, 35–54.
Clouchoux, C., Kudelski, D., Gholipour, A., Warfield, S.K., Viseur, S., Bouyssi-Kobar, M.,

Mari, J.L., Evans, A.C., du Plessis, A.J., Limperopoulos, C., 2012. Quantitative in vivo
MRI measurement of cortical development in the fetus. Brain Struct. Funct. 217,
127–139.

Cunningham, D.J., 1892. Contribution to the Surface Anatomy of the Cerebral
Hemispheres. Academy House, Dublin, Ireland.

de Juan Romero, C., Bruder, C., Tomasello, U., Sanz-Anquela, J.M., Borrell, V., 2015.
Discrete domains of gene expression in germinal layers distinguish the development
of gyrencephaly. EMBO J. 34, 1859–1874.

Desikan, R.S., Segonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D.,
Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., Albert, M.S., Killiany, R.J.,
2006. An automated labeling system for subdividing the human cerebral cortex on
MRI scans into gyral based regions of interest. Neuroimage 31, 968–998.

Duan, D., Xia, S., Rekik, I., Meng, Y., Wu, Z., Wang, L., Lin, W., Gilmore, J.H., Shen, D.,
Li, G., 2018. Exploring folding patterns of infant cerebral cortex based on multi-view
curvature features: methods and applications. Neuroimage. https://doi.org/10.10
16/j.neuroimage.2018.08.041.

Dubois, J., Benders, M., Borradori-Tolsa, C., Cachia, A., Lazeyras, F., Ha-Vinh
Leuchter, R., Sizonenko, S.V., Warfield, S.K., Mangin, J.F., Hüppi, P.S., 2008. Primary
cortical folding in the human newborn: an early marker of later functional
development. Brain 2028–2041. https://doi.org/10.1093/brain/awn137.

Dubois, J., Dehaene-Lambertz, G., Kulikova, S., Poupon, C., Hertz-Pannier, L., 2014. The
early development of the brain white matter: a review of imaging studies in fetuses,
newborns and infants. Neuroscience 276, 48–71.

Dubois, J., Lefevre, J., Angleys, H., Leroy, F., Fischer, C., Lebenberg, J., Dehaene-
Lambertz, G., Borradori-Tolsa, C., Lazeyras, F., Hertz-Pannier, L., Mangin, J.F.,
Hüppi, P.S., Germanaud, D., 2019. The dynamics of cortical folding waves and
prematurity-related deviations revealed by spatial and spectral analysis of
gyrification. Neuroimage. https://doi.org/10.1016/j.neuroimage.2018.03.005.

Duvernoy, H.M., 1991. The Human Brain. Springer, Wien, Austria.
Eberstaller, O., 1890. Das Stirnhirn: Ein Beitrag zur Anatomie der Oberfl€ache des

Grosshirns. Urban & Schwarzenberg, Leipzig, Germany.
Feis, D.L., Brodersen, K.H., von Cramon, D.Y., Luders, E., Tittgemeyer, M., 2013.

Decoding gender dimorphism of the human brain using multimodal anatomical and
diffusion MRI data. Neuroimage 70, 250–257.

Fernandez, V., Llinares-Benadero, C., Borrell, V., 2016. Cerebral cortex expansion and
folding: what have we learned? EMBO J. https://doi.org/10.15252/
embj.201593701.

Ferrer, M., Bunke, H., 2012. Graph edit distance - theory, algorithms, and applications. In:
Lezoray, O., Grady, L. (Eds.), Image Processing and Analysis with Graphs: Theory and
Practice. CRC Press, Boca Raton, USA, pp. 383–422.

Fish, A.M., Cachia, A., Fischer, C., Mankiw, C., Reardon, P.K., Clasen, L.S.,
Blumenthal, J.D., Greenstein, D., Giedd, J.N., Mangin, J.F., Raznahan, A., 2017.
Influences of brain size, sex, and sex chromosome complement on the architecture of
human cortical folding. Cerebr. Cortex 27, 5557–5567.

Fortunato, S., 2008. Community detection in graphs. Phys. Rep. 486, 75–174.
Fred, A.L.N., Jain, A.K., 2005. Combining multiple clusterings using evidence

accumulation. IEEE Trans. Pattern Anal. Mach. Intell. 27, 835–850.
Germanaud, D., Lefevre, J., Toro, R., Fischer, C., Dubois, J., Hertz-Pannier, L.,

Mangin, J.F., 2012. Larger is twistier: spectral analysis of gyrification (SPANGY)
applied to adult brain size polymorphism. Neuroimage 63, 1257–1272.

Germann, J., Robbins, S., Halsband, U., Petrides, M., 2005. Precentral sulcal complex of
the human brain: morphology and statistical probability maps. J. Comp. Neurol. 493,
334–356.

Glasser, M.F., van Essen, D.C., 2011. Mapping human cortical areas in vivo based on
myelin content as revealed by T1- and T2-weighted MRI. J. Neurosci. 31,
11597–11616.

Glasser, M.F., Coalson, T.S., Robinson, E.C., Hacker, C.D., Harwell, J., Yacoub, E.,
Ugurbil, K., Andersson, J., Beckmann, C.F., Jenkinson, M., Smith, S.M., van
Essen, D.C., 2016. A multi-modal parcellation of human cerebral cortex. Nature 536,
171–178.

Gratiolet, L.P., 1854. Memoire sur les plis cerebraux de l’homme et des primates.
Bertrand, Paris, France.

https://doi.org/10.1016/j.neuroimage.2019.04.031
https://doi.org/10.1016/j.neuroimage.2019.04.031
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref1
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref1
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref1
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref1
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref2
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref2
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref2
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref2
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref3
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref3
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref3
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref4
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref4
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref4
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref5
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref5
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref5
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref6
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref6
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref7
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref7
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref8
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref8
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref8
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref9
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref9
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref9
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref10
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref10
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref10
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref11
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref11
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref11
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref11
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref11
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref12
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref12
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref13
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref13
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref13
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref13
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref14
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref14
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref14
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref14
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref14
https://doi.org/10.1016/j.neuroimage.2018.08.041
https://doi.org/10.1016/j.neuroimage.2018.08.041
https://doi.org/10.1093/brain/awn137
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref17
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref17
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref17
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref17
https://doi.org/10.1016/j.neuroimage.2018.03.005
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref19
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref20
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref20
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref20
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref20
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref21
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref21
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref21
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref21
https://doi.org/10.15252/embj.201593701
https://doi.org/10.15252/embj.201593701
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref23
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref23
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref23
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref23
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref24
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref24
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref24
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref24
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref24
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref25
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref25
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref26
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref26
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref26
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref27
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref27
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref27
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref27
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref28
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref28
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref28
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref28
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref29
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref29
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref29
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref29
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref30
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref30
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref30
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref30
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref30
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref31
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref31


F. Kruggel, A. Solodkin NeuroImage 196 (2019) 248–260
Habas, P.A., Scott, J.A., Roosta, A., Rajagopalan, V., Kim, K., Rousseau, F.,
Barkovich, A.J., Glenn, O.A., Studholme, C., 2012. Early folding patterns and
asymmetries of the normal human brain detected from in utero MRI. Cerebr. Cortex
22, 13–25.

Harchaoui, Z., Bach, F., 2012. Tree-walk kernels for computer vision. In: Lezoray, O.,
Grady, L. (Eds.), Image Processing and Analysis with Graphs: Theory and Practice.
CRC Press, Boca Raton, USA, pp. 499–528.

Hu, H.H., Hung, C., Wu, Y.T., Chen, H.Y., Hsieh, J.C., Guo, W.Y., 2011. Regional
quantification of developing human cortical shape with a three-dimensional surface-
based magnetic resonance imaging analysis in utero. Eur. J. Neurosci. 34,
1310–1319.

Huang, H., Jeon, T., Sedmak, G., Pletikos, M., Vasung, L., Xu, X., Yarowsky, P.,
Richards, L.J., Kostovic, I., Sestan, N., Mori, S., 2013. Coupling diffusion imaging
with histological and gene expression analysis to examine the dynamics of cortical
areas across the fetal period of human brain development. Cerebr. Cortex 23,
2620–2631.

Human Connectome Project, 2017. 1200 Subjects Data Release Reference Manual. htt
ps://www.humanconnectome.org/study/hcp-young-adult/document/1200-subject
s-data-release. (Accessed 14 November 2018).

Im, K., Grant, P.E., 2018. Sulcal pits and patterns in developing human brains.
Neuroimage. https://doi.org/10.1016/j.neuroimage.2018.03.057.

Im, K., Jo, H.J., Mangin, J.F., Evans, A.C., Kim, S.I., Lee, J.M., 2010. Spatial distribution of
deep sulcal landmarks and hemispherical asymmetry on the cortical surface. Cerebr.
Cortex 20, 602–611.

Jammes, J., Gilles, F., 1983. Telencephalic development: matrix volume and isocortex
and allocortex surface areas. In: Gilles, F., Leviton, A., Dooling, E. (Eds.), The
Developing Human Brain: Growth and Epidemiologic Neuropathology. Elsevier,
Amsterdam, The Netherlands, pp. 87–93.

Kahnt, T., Chang, L.J., Park, S.Q., Heinzle, J., Haynes, J.D., 2012. Connectivity-based
parcellation of the human orbitofrontal cortex. J. Neurosci. 32, 6240–6250.

Kaufman, L., Rousseeuw, P.J., 1990. Finding Groups in Data: an Introduction to Cluster
Analysis. Wiley, New York, USA.

Kelly, C., Toro, R., Martino, A.C., Cox, C.L., Bellec, P., Castellanos, F.X., Milham, M.P.,
2012. A convergent functional architecture of the insula emerges across imaging
modalities. Neuroimage 61, 1129–1142.

Kringelbach, M.L., Rolls, E.T., 2004. The functional neuroanatomy of the human
orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog.
Neurobiol. 72, 341–372.

Kruggel, F., 2006. MRI-based volumetry of head compartments: normative values of
healthy adults. Neuroimage 30, 1–11.

Kruggel, F., 2008. Robust parametrization of brain surface meshes. Med. Image Anal. 12,
291–299.

Kruggel, F., 2018. The macro-structural variability of the human neocortex. Neuroimage
172, 620–630.

le Guen, Y., Auzias, G., Leroy, F., Noulhiane, M., Dehaene-Lambertz, G., Duchesnay, E.,
Mangin, J.F., Coulon, O., Frouin, V., 2018a. Genetic influence on the sulcal pits: on
the origin of the first cortical folds. Cerebr. Cortex 28, 1922–1933.

le Guen, Y., Leroy, F., Auzias, G., Riviere, D., Grigis, A., Mangin, J.F., Coulon, O.,
Dehaene-Lambertz, G., Frouin, V., 2018b. The chaotic morphology of the left superior
temporal sulcus is genetically constrained. Neuroimage 174, 297–307.

Lohmann, G., 1998. Extracting line representations of sulcal and gyral patterns in MR
images of the human brain. IEEE Trans. Med. Imaging 17, 1040–1048.

Lohmann, G., Kruggel, F., von Cramon, D.Y., 1997. Automatical detection of sulcal
bottom lines in MR images of the human brain. In: Duncan, J., Gindi, G. (Eds.),
Information Processing in Medical Imaging (Poultney), Lecture Notes in Computer
Science, vol. 1230. Springer, Heidelberg, pp. 369–374.

Lohmann, G., von Cramon, D.Y., Colchester, A.C., 2008. Deep sulcal landmarks provide
an organizing framework for human cortical folding. Cerebr. Cortex 18, 1415–1420.

Mangin, J.F., Jouvent, E., Cachia, A., 2010. In-vivo measurement of cortical morphology:
means and meanings. Curr. Opin. Neurol. 23, 359–367.

Martinez-Martinez, M.A., de Juan Romero, C., Fernandez, V., Cardenas, A., G€otz, M.,
Borrell, V., 2016. A restricted period for formation of outer subventricular zone
defined by Cdh1 and Trnp1 levels. Nat. Commun. 7, 11812.

Meng, Y., Li, G., Lin, W., Gilmore, J.H., Shen, D., 2014. Spatial distribution and
longitudinal development of deep cortical sulcal landmarks in infants. Neuroimage
100, 206–218.

Nishikuni, K., 2006. Estudo do desenvolvimento morfologico fetal e pos-natal dos sulcos
cerebrais [in Portugese]. Thesis, University of Sao Paulo, Brazil.
260
Nishikuni, K., Ribas, G.C., 2012. Study of fetal and postnatal morphological development
of the brain sulci. J. Neurosurg. Pediatr. 11, 1–11.

Oishi, K., Zilles, K., Amunts, K., Faria, A., Jiang, H., Li, X., Akhter, K., Hua, K., Woods, R.,
Toga, A.W., Pike, G.B., Rosa-Neta, P., Evans, A., Yhang, J., Huang, H., Miller, M.I.,
van Zijl, P.C.M., Mazziotta, J., Mori, S., 2008. Human brain white matter atlas:
identification and assignment of common anatomical structures in superficial white
matter. Neuroimage 43, 447–457.

Ono, M., Kubik, S., Abernathey, C.D., 1990. Atlas of the Cerebral Sulci. Thieme, Stuttgart,
Germany.

Osechinskiy, S., Kruggel, F., 2012. Cortical surface reconstruction from high-resolution
MR brain images. Int. J. Biomed. Imaging. https://doi.org/10.1155/2012/870196.

Regis, J., Mangin, J.F., Frouin, V., Sastre, F., Peragut, J.C., Samson, Y., 1995. Generic
model for the localization of the cerebral cortex and preoperative multimodal
integration in epilepsy surgery. Stereotact. Funct. Neurosurg. 65, 72–80.

Regis, J., Mangin, J.F., Ochiai, T., Frouin, V., Riviere, D., Cachia, A., Tamura, M.,
Samson, Y., 2005. “Sulcal root” generic model: a hypothesis to overcome the
variability of the human cortex folding patterns. Neurol. Med.-Chir. 45, 1–17.

Reillo, I., de Juan Romero, C., Garcia-Cabezas, M.A., Borrell, V., 2011. A role for
intermediate radial glia in the tangential expansion of the mammalian cerebral
cortex. Cerebr. Cortex 21, 1674–1694.

Ronan, L., Voets, N., Rua, C., Alexander-Bloch, A., Hough, M., Mackay, C., Crow, T.J.,
James, A., Giedd, J.N., Fletcher, P.C., 2014. Differential tangential expansion as a
mechanism for cortical gyrification. Cerebr. Cortex 24, 2219–2228.

Sandu, A.L., Izard, E., Specht, K., Beneventi, H., Lundervold, A., Ystad, M., 2014. Post-
adolescent developmental changes in cortical complexity. Behav. Brain Funct. 2014,
10–44.

Sch€olkopf, B., Smola, A., Müller, K.R., 1998. Nonlinear component analysis as a kernel
eigenvalue problem. Neural Comput. 10, 1299–1319.

Scott, J.A., Habas, P.A., Kim, K., Rajagopalan, V., Hamzelou, K.S., Corbett-Detig, J.M.,
Barkovich, A.J., Glenn, O.A., Studholme, C., 2011. Growth trajectories of the human
fetal brain tissues estimated from 3D reconstructed in utero MRI. Int. J. Dev.
Neurosci. 29, 529–536.

Scrucca, L., Fop, M., Murphy, T.B., Raftery, A.E., 2017. Mclust 5: clustering, classification
and density estimation using Gaussian finite mixture models. The R Journal 8,
205–233.

Solomon, J., de Goes, F., Peyre, G., Cuturi, M., Butscher, A., Nguyen, A., Du, T., Guibas, L.,
2015. Convolutional Wasserstein distances. ACM Trans. Graph. 34, 66, 1–66:11.

Sowell, E.R., Thompson, P.M., Holmes, C.J., Jernigan, T.L., Toga, A.W., 1999. In vivo
evidence for post-adolescent brain maturation in frontal and striatal regions. Nature
Neurosci. 1999, 859–861.

Sun, T., Hevner, R.F., 2014. Growth and folding of the mammalian cerebral cortex: from
molecules to malformations. Nat. Rev. Neurosci. 15, 217–232.

Swanson, L., 2015. Neuroanatomical Terminology: A Lexicon of Classical Origins and
Historical Foundations. Oxford University Press, Oxford, United Kingdom.

Tallinen, T., Chung, J.Y., Rousseau, F., Girard, N., Lefevre, J., Mahadevan, L., 2016. On
the growth and form of cortical convolutions. Nat. Phys. 12, 588–593.

Tomaiuolo, F., MacDonald, J.D., Caramanos, Z., Posner, G., Chiavaras, M., Evans, A.C.,
Petrides, M., 1999. Morphology, morphometry and probability mapping of the pars
opercularis of the inferior frontal gyrus: an in vivo MRI analysis. Eur. J. Neurosci. 11,
3033–3046.

Toro, R., Burnod, Y., 2005. A morphogenetic model for the development of cortical
convolutions. Cerebr. Cortex 15, 1900–1913.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N.,
Mazoyer, B., Joliot, M., 2002. Automated anatomical labeling of activations in SPM
using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.
Neuroimage 15, 273–289.

Uylings, H.B.M., Sanz-Arigita, E.J., de Vos, K., Pool, C.W., Evers, P., Rajkowska, G., 2010.
3D Cytoarchitectonic parcellation of human orbitofrontal cortex. Correlation with
postmortem MRI. Psychiatr. Res. Neuroimaging 183, 1–20.

Welker, W., 1990. Why does cerebral cortex fissure and fold? A review of determinants of
gyri and sulci. In: Jones, E., Peters, A. (Eds.), Cerebral Cortex, vol. 8b. Plenum Press,
New York, USA, 3–136.

Xu, G., Knutsen, A.K., Dikranian, K., Kroenke, C.D., Bayly, P.V., Taber, L.A., 2010. Axons
pull on the brain, but tension does not drive cortical folding. J. Biomech. Eng. 132,
071013.

Yang, F., Kruggel, F., 2008. Automatic segmentation of human brain sulci. Med. Image
Anal. 12, 442–451.

http://refhub.elsevier.com/S1053-8119(19)30317-9/sref32
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref32
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref32
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref32
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref32
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref33
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref33
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref33
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref33
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref34
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref34
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref34
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref34
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref34
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref35
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref35
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref35
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref35
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref35
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref35
https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release
https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release
https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release
https://doi.org/10.1016/j.neuroimage.2018.03.057
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref38
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref38
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref38
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref38
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref39
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref39
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref39
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref39
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref39
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref40
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref40
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref40
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref41
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref41
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref42
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref42
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref42
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref42
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref43
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref43
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref43
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref43
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref44
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref44
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref44
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref45
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref45
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref45
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref46
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref46
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref46
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref47
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref47
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref47
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref47
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref48
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref48
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref48
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref48
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref49
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref49
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref49
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref50
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref50
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref50
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref50
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref50
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref51
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref51
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref51
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref52
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref52
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref52
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref53
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref53
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref53
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref53
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref54
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref54
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref54
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref54
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref55
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref55
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref56
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref56
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref56
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref57
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref57
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref57
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref57
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref57
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref57
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref58
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref58
https://doi.org/10.1155/2012/870196
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref60
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref60
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref60
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref60
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref61
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref61
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref61
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref61
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref62
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref62
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref62
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref62
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref63
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref63
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref63
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref63
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref64
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref64
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref64
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref64
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref65
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref65
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref65
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref65
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref66
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref66
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref66
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref66
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref66
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref67
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref67
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref67
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref67
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref68
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref68
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref68
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref69
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref69
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref69
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref69
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref70
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref70
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref70
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref71
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref71
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref72
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref72
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref72
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref73
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref73
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref73
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref73
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref73
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref74
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref74
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref74
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref75
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref75
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref75
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref75
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref75
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref76
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref76
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref76
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref76
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref77
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref77
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref77
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref77
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref78
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref78
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref78
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref79
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref79
http://refhub.elsevier.com/S1053-8119(19)30317-9/sref79

	Determinants of structural segregation and patterning in the human cortex
	1. Introduction
	2. Material and methods
	2.1. Subjects and imaging data
	2.2. Segmentation of cortical features
	2.3. Cortical variability and communities
	2.4. Community sub-types
	2.5. Anatomical analysis

	3. Results
	3.1. Structural centers in communities
	3.2. Variability vs. geodesic depth
	3.3. Community sub-types

	4. Discussion
	4.1. Methodological considerations
	4.2. Community sub-types
	4.3. Relation to brain development and genetics
	4.4. Determinants of cortical variability

	Acknowledgment
	Appendix A. Supplementary data
	References


