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A B S T R A C T

The human neocortex shows a considerable individual structural variability. While primary gyri and sulci are
found in all normally developed brains and bear clear-cut gross structural descriptions, secondary structures are
highly variable and not present in all brains. The blend of common and individual structures poses challenges
when comparing structural and functional results from quantitative neuroimaging studies across individuals, and
sets limits on the precision of location information much above the spatial resolution of current neuroimaging
methods. This work aimed at quantifying structural variability on the neocortex, and at assessing the spatial
relationship between regions common to all brains and their individual structural variants. Based on structural
MRI data provided as the “900 Subjects Release” of the Human Connectome Project, a data-driven analytic
approach was employed here from which the definition of seven cortical “communities” emerged. Apparently,
these communities comprise common regions of structural features, while the individual variability is confined
within a community. Similarities between the community structure and the state of the brain development at
gestation week 32 lead suggest that communities are segregated early. Subdividing the neocortex into commu-
nities is suggested as anatomically more meaningful than the traditional lobar structure.
Introduction

The current neuro-anatomical ontology (NeuroNames, 2010; Swan-
son, 2015) is based on the traditional abstraction from visual observation
rather than quantitative, data-driven evidence. Considerable training is
required for a human observer to recognize neocortical structures. Dif-
ficulties arise from the well-known fact that even primary
macro-anatomical features show a remarkable structural variability, and
secondary features may be prevalent in some individuals only. An
abundance of neuro-anatomical literature describes detailed variation
(e.g., of the operculum: Ayberk et al., 2012; Idowu et al., 2014; or sulcal
patterns: Ono et al., 1990). However, a quantitative assessment of vari-
ation patterns is missing that may lead to a deeper understanding of the
relationship between common and variable structures on the human
neocortex.

This variability renders approaches for an automated quantification
of neocortical structures as difficult. Digital brain atlases have been
developed to aid the communication and registration of neuro-scientific
information with increasing levels of sophistication (Brett et al., 2001;
Evans et al., 2012; Shattuck et al., 2008; Talairach and Tournoux, 1988).
These image-based approaches contain exemplary, generic information
with (some) population-based but not individual variation. Manual
ornia, Irvine, CA 92697-2755, USA.
outlining is still considered as the reference method for a precise seg-
mentation of brain structures. Diligent procedures were developed that
guide the delineation of macroscopic anatomy in individual brains (Klein
and Tourville, 2012; Shattuck et al., 2008).

In contrast, several approaches were developed to represent
anatomically meaningful, individual features of the neocortical surface in
symbolic format. Most notably, Regis et al. (1995, 2005) introduced the
concept of “sulcal roots” (or “pits”) that correspond to locally deepest
points of neocortical sulci. Lohmann and von Cramon (2000) developed a
method for segmenting cortical patches as catchment basins centered at a
sulcal roots. In a later publication, Lohmann et al. (2008) used gyral
landmarks to define a common anatomical framework, into which sulcal
pits were mapped. They describe 11 regional groups of major (deep) pits,
and a larger set of minor (shallow) pits. Im et al. (2014) proposed a more
refined approach to segment sulcal pits, and used a surface-based
nonlinear atlas of sulcal patterns to map pits into a common space on a
unit sphere. They selected deep pits manually, and segregated a map of
48 pit clusters that may serve as stable anatomical landmarks. We and
others (Cachia et al., 2003; Yang and Kruggel, 2008) developed systems
that use a derived network of neocortical patches to detect and label
neocortical landmarks by symbolic pattern matching and learning pro-
cesses. Auzias et al. (2013, 2015) picked up an idea already indicated by

mailto:fkruggel@uci.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2018.01.074&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2018.01.074
https://doi.org/10.1016/j.neuroimage.2018.01.074
https://doi.org/10.1016/j.neuroimage.2018.01.074


F. Kruggel NeuroImage 172 (2018) 620–630
Lohmann et al. (2008) that sulcal pits are arranged in concentric chains
along the anterior-posterior axis of the brain, folding into the temporal
lobe. They propose a longitude/latitude scheme between an insular and a
cingular pole for parameterizing the neocortical surface, and devise a
nonlinear mapping to align sulcal bottom lines across individuals.

It has long been noted that deep primary convolutions of the
neocortex develop first, and are less variable than more shallow, sec-
ondary folds that appear later (for a review, refer to Welker, 1990),
suggesting that the development of primary structures is under tighter
genetic control. While mathematical modeling (Toro and Burnod, 2005)
demonstrated that the development of cortical convolutions is a conse-
quence of cortical growth, the development of thalamo- and
cortico-cortical connections determine the segregation of neocortical
space (e.g., Rakic, 1988, 2004; Welker, 1990), and contribute to the
definition of the folding pattern. Thus, it has been hypothesized that deep
sulcal pits develop first and are more invariant than shallow ones across
individuals. The early structural development of the human brain was
recently studied by in utero MRI (Dubois et al., 2008; Habas et al., 2012).
The study of cortical curvature maps derived from this imaging data
confirm that major folds develop between gestation week 22 and 28.
Meng et al. (2014), analyzed data acquired in a large-scale longitudinal
study of the cortical development in infants from 0 to 2 years of age, and
studied spatial distribution and temporal development of deep sulcal
landmarks in a critical period of brain development. A recent study
confirmed a genetic influence on the formation of sulcal pits (Le Guen
et al., 2017), albeit with moderate heritability estimates between 0.2 and
0.5.

Several studies (Lohmann et al., 2008; Im et al., 2014; Meng et al.,
2014; Nie et al., 2012; Auzias et al., 2015) used sulcal pits as landmarks
on the cortical surface. All employed different nonlinear registration
procedures to reduce the inter-individual variability for deriving clusters
of sulcal pits. The analytic approach described here retained the indi-
vidual variability, and avoided using arguable features or anatomical
models underlying nonlinear registration procedures. To quantify struc-
tural patterns, we segmented the neocortical surface into disjoint patches
centered around pits, termed basins (Yang and Kruggel, 2008). Basins
capture local surface properties such as patch size, surface curvature,
geodesic depth, and neighborhood relationships with adjacent basins,
thus, provide a richer representation than just the location information of
sulcal pits. We represented the neocortical surface as a graph of basins
linked by their neighborhood relationships, and analyzed the local
variation of corresponding basin labels across a large subject sample to
characterize cortical regions in terms of their structural variability. Using
a two-level clustering approach, we determined seven groups of “co-
varying” basins, called communities here, that emerge from the data
without injecting anatomical knowledge. We hypothesized that com-
munities form a structural layer between a hemisphere and its basins,
such that communities are similar in all normally developed brains, while
the inter-individual variability is kept within a community.

Methods and materials

In the following, we describe the image data base of the population
sample used in this study, the processing that led to the segmentation of
white matter (WM)/grey matter (GM) interfaces, the basin segmentation
process, and the clustering method from which the definition of basin
communities emerged.

Subjects and imaging data

This work included imaging data of all 897 subjects in the “900
Subjects Release” of the Human Connectome Project released in
December 2015. This sample consists of 503 females and 394 males in
the age range of 20–40 years. Structural MR images were acquired on a
customized Siemens 3T “Connectome Skyra” housed at Washington
University in St. Louis, using a standard 32-channel Siemens receive head
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coil and a body transmission coil. T1-weighted data were acquired using
a 3D MPRAGE protocol with parameters TR¼ 2400ms, TE¼ 2.14ms,
TI¼ 1000ms, flip angle 8�, FOV¼ 224 � 224mm, 0.7 mm isotropic
voxel size, 7min 40 s acquisition time. T2-weighted data were acquired
using a 3D T2-space protocol with parameters TR¼ 3200ms,
TE¼ 565ms, FOV¼ 224 � 224mm, 0.7mm isotropic voxel size, 8 min
24 s acquisition time. For detailed information, refer to the release
document (Human Connectome Project, 2017).
Image processing

Our processing started from triangulated meshes representing the
WM/GM interface of the left or right cerebral hemisphere with a topo-
logical genus of zero. Such surfaces can be generated by several available
software packages, and we described our processing chain below.

Unprocessed T1-and T2-weighted structural images were down-
loaded from the HCP database server. Imaging data were converted from
NIFTI to BRIAN format (Kruggel, 2017). Each T1-weighted image was
aligned with the stereotaxic coordinate systems and the corresponding
T2-weighted image rigidly registered with the aligned data set. Both
images were corrected for intensity inhomogeneities (Glasser et al.,
2013). A mask for the intracranial compartment was generated based on
the T1-weighted image using a registration approach (Hentschel and
Kruggel, 2004) and applied to both images. The intracranial space was
classified into four compartments based on a Gaussian mixturemodel (He
et al., 2008), roughly corresponding to WM, GM, cerebro-spinal fluid
(CSF) and connective tissue. The inner cavities of the WM segmentation
(ventricles and basal ganglia) were filled via a patch-based approach
using an atlas of 20 pre-segmented data sets (Coupe et al., 2011). From
the resulting WM segmentation of the brain, the cerebellum and brain
stem were clipped at a level of 15mm below the plane of the anterior and
posterior commissures, and split into hemispheres at the mid-sagittal
plane. In each hemisphere, a multi-seeded region growing process
(Segonne, 2008) was applied to reconstruct the object as a single
c18-connected component (Toriwaki and Yonekura, 2002). A triangu-
lated surface was computed from this object (Nielson, 2003), and opti-
mally adapted to the WM/GM interface as a deformable model using the
intensity-corrected T1-weighted brain image. Meshes retained the indi-
vidual dimensions in which images were acquired (� 1mm vertex dis-
tance), and had a topological genus of zero. Each face represented an area
of about 0.30mm2, each vertex a Voronoi area of about 0.60mm2 (Meyer
et al., 2002).
Basin segmentation

The neocortical surface was segmented into patches using surface
curvature and geodesic depth as local properties. Basins are regions
grown from locally deepest points in convex regions at sulcal bottoms
until they meet in concave regions at gyral crowns. We used a segmen-
tation procedure that was revised from a previous publication (Yang and
Kruggel, 2008).

Principal curvature components κ1; κ2 (Meyer et al., 2002) were
computed at each vertex of the triangulated surface (see Fig. 1, top left)
and converted into the shape index s ¼ 2

π arctan
κ1þκ2
κ1�κ2

, that ranges between
�1 (convex areas) and þ1 (concave areas). For computing the geodesic
depth, we used the hemispheric WM segmentation, filled sulci using a
morphological closing operator, and computed a constrained distance
transform on the difference image (Verbeek et al., 1986). The resulting
depth values were interpolated in voxel space at vertex locations of the
hemisphere mesh (see Fig. 1, top right).

The region growing process was seeded at locally deepest vertices,
and each seed was addressed a unique label. In each iteration, all unla-
beled vertices on the outer boundary of a region were examined, and the
deepest vertex in a convex neighborhood was added to a region. The
growing process ended when all vertices in a convex neighborhood were



Fig. 1. Processing stages for basin segmentation: Surface
curvature (top left, dimensionless units), geodesic depth
(top right, in mm), initial basin segmentation (below left,
arbitrary color labels), and final segmentation (below
right, arbitrary color labels).
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assigned to a region. Next, regions that included less than lim vertices
were merged with a neighbor if (a) there was a single neighbor only, or
(b) both regions shared a large fraction fr of their border (see Fig. 1,
below left). Finally, regions were grown into concave areas until all
surface vertices were labeled (see Fig. 1, below right). In order to keep
regions compact, the closest unlabeled vertex in a concave neighborhood
was selected in each iteration. Note that WM regions that were clipped at
the mid-sagittal plane and the brain stem were excluded from the
growing process. The final number of basins is dependent on the setting
of the merge size limit lim, and, to a lesser extent, on the boundary length
limit fr. Small regions form in the first step of the growing process (a) at
shallow surface “dimples” or (b) in highly curved sulcal areas. Parameter
setting were chosen as lim ¼ 200 and fr ¼ 0:1 to retain the first group but
merge the second. This process yielded 80–120 basins per hemisphere
and required about 8 s of processing time for a surface mesh of 150.000
vertices.

Neocortical variability

To assess the structural variability of the cortical surface, we mapped
all basin segmentations of a specific hemisphere into the same space, and
examined the overlap of basin regions. Invariant cortical locations (as
referenced by a vertex positions) receive the same basin label, while
variable locations receive several different labels.

The first step unfolded a hemisphere surface mesh onto a unit sphere.
This mapping problem has been studied extensively (Clarenz et al.,
2004). Mapping a convoluted surface onto a sphere introduces an error in
the edge length and angles of the mapped triangles. Because it is
important here to retain both size and shape of basins, we aimed at a
minimal overall distortion (Friedel et al., 2007) and used a
multi-resolution context for optimization (Kruggel, 2008). Note that
mapped meshes retain their basin labels.

Next, the overall correspondence between spherical meshes was
optimized by linear registration with an arbitrary reference. Technically,
we optimized the free parameters of a quaternion rotation in 3D by
maximizing the normalized mutual information of the vertex-wise labels.
Given the best rotation parameters, labels of the object mesh were
interpolated at vertex locations of the reference. As a result, basin labels
of all hemispheric meshes were mapped onto locations of the reference
mesh, thus, allowing point-to-point comparisons across all individuals.
This linear matching retained most of the inter-subject variability, which
is understood here as the variation of features found at a given position. It
is sufficient to keep labels and other surface featurs of all hemispheric
meshes as multi-valued vectors of the same length NL, and retain the
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vertex graph of the reference mesh to represent the connectivity.
Now, our variability metric can be defined. While the registration

process led to an optimal overlap of basins, basin labels at any location
may differ, due to inter-subject variability. For a reference sphere R with
NR distinct basin labels and a subject sphere S with NS labels, we
computed an NS � NR matrix of label correspondences. Element i; j of this
matrix contained the number of vertices labeled as i on sphere S and j on
sphere R. Thus, the basin i on S that best matches reference basin j can
simply be found as the row-wise maximum. This map of homologue
basins was used to relabel basins of S in terms of R. Given the same
reference R, this process was repeated for all subject spheres S, accu-
mulating NR possible labels on S at each vertex i of the reference R in a
matrix O of dimensions NL � NR. Now, we respresented the distribution
of labels at each vertex by a metric. For each row of this matrix, we
ranked elements Oði; jÞ by decreasing values, denoting the highest rank k
as zero. For our variability metric V, we used the rank-weighted sum of
region overlaps:

Vi ¼
XNR

j

kðOði; jÞÞ�Oði; jÞ: (1)

Note that the best match does not contribute to this sum (k ¼ 0), such
as non-overlapping basins (Oði; jÞ ¼ 0). An optimal “one-on-one” overlap
yields a variability of zero. A larger number of overlapping regions pe-
nalizes the metric by multiplication with an increasing rank k. Fig. 2 il-
lustrates this procedure: all spherical basin meshes (top) were registered
with a reference (below left), and variability scores computed by this
process (below middle) were mapped onto an inflated reference surface
mesh (below right) to ease identification of anatomical regions.

To be insensitive to the choice of the reference, each mesh was
selected once as the reference, and the process above was repeated,
resulting in 897 variability maps. To generate a common map, one mesh
was selected as a reference, and nonlinear transformations from each
mesh to this reference were computed, using the shape index as surface
feature (Yeo et al., 2010). The resulting deformation fields were used to
transfer all variability maps into a common space, and averaged.

Neocortical communities

The variability map introduced above provides a localized, vertex-
wise measure of cortical variability. Now, we wanted to assess the
extent by which basins overlap with neighbors across a subject sample,
therefore, providing a regional assessment of cortical variability. We
hypothesized that covarying basins show a stronger overlap and can be



Fig. 2. Illustration of the process used to generate a variability map. All meshes correspond to the left brain hemisphere as seen from the left side. Top row: Basin
segmentations of three subjects, mapped onto a sphere and registered with the basin map of a reference subject (below left). The resulting variability map for this
reference subject is shown (below middle), along with the corresponding mapping on a surface mesh (below right). Several regions of low variability are labeled to
ease orientation on the spheres. For explanation of the labels, refer to Fig. 5.
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clustered into groups, called communities here.
Algorithmically, community building corresponds to a clustering

process operating on a graph (for a review, refer to Fortunato, 2008).
Here, nodes of this graph correspond to basins of a reference mesh.
Initially, this graph is unconnected. For a chosen reference mesh R, labels
on a subject mesh Swere re-labeled as described above, to find amatrixO
of dimensions NR � NR that contains the occurrence of label correspon-
dencies. Elements on the diagonal of this matrix contain the counts of
homologue labels between the reference and the subject mesh, and
off-diagonal elements the amount of overlap between two
non-homologue basin pairs. For each off-diagonal non-zero matrix
element, an edge was added to the graph, and the edge weight updated
by the amount of overlap. Given the same reference R, this process was
repeated for all subject meshes S, accumulating edge weights w on the
reference graph. At the end of this process, edge weights reflected the
“connection strength” between neighboring basins as determined from
the whole sample. Now, communities c were built by forming subsets of
nodes that maximized their common connectivity while minimizing their
cross-community connectivity. More formally, we aimed at maximizing
the modularity:

M ¼ 1
wt

X
i

NR X
j

NR
�
Oði; jÞ � wiwj

wt

�
δ
�
ci; cj

�
; (2)

where wt ¼
XNR

i

XNR

j

Oði; jÞ; wi ¼
XNR

k

Oði; kÞ; wj ¼
XNR

j

Oðk; jÞ; (3)

and the delta function δð⋅Þ is equal to one if basins i and j were addressed
to the same community.

Different approaches for this NP-hard problem have been developed.
The optimal solution can be found by linear programming (Brandes et al.,
2008), which may be prohibitive in terms of computation time when the
number of basins NR becomes large. Heuristic approaches form com-
munities by agglomeration: initially, each node corresponds to a
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community, and communities are merged until modularity is optimal.
We used an algorithm (Campigotto et al., 2014) that randomizes an
initial solution for a defined number of iterations while keeping the best
overall solution. Note that the final number of communities NC emerges
from the optimization process. If two surfaces have an identical basin
structure, the number of communities corresponds to the number of
basins (NC ¼ NR), if they are maximally different, just one community is
found. For our problem, the optimal solution was found in 10–200min of
computation time (Brandes et al., 2008), while the heuristic solution was
found in a few seconds (Campigotto et al., 2014), with a modularity score
that was 1–2% lower than the optimal value.

Each mesh was selected once as the reference, and the process above
was repeated, resulting in 897 maps of community clusters. The inte-
gration of all cluster maps into a common one is described in the next
section. The similarity of two clustering maps can be determined from the
co-occurrence matrix of the vertex-wise correspondences between com-
munity labels. The normalized mutual information (NMI) of this matrix
was used as a similarity metric: this value ranges between 0 (for random
label pairings) and 1 (for a vertex-wise identical community
segmentation).

Results

Neocortical surface and basins

Basin segmentations were computed for both hemispheres in all 897
subjects included in this study. Between 100� 11.2 basins were found on
the left, and 100 � 10.5 on the right hemisphere (see Fig. 3), with no
difference between hemispheres (paired t-test: p¼ 0.855). On average,
males had 8.2 more basins on the left (p < 0.0001), and 7.7 more basins
on the right hemisphere (p < 0.0001).

The total hemispheric surface area followed a normal distribution,
after separating for sex: females 814 � 69 cm2 (left), 806 � 70 cm2

(right); males 924 � 77 cm2 (left), 913 � 79 cm2 (right). Hemispheric



Fig. 3. Number of basins on the right (x axis) and left (y axis) hemisphere,
where each dot corresponds to at least one subject. Overall, no statistical
difference in the number of basins between hemispheres was found.
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surfaces were slightly larger of the left vs right side in females
(þ7.39 cm2, 0.91%, paired t-test: p< 0.0001); and in males (þ10.38 cm2,
1.12%, paired t-test: p< 0.0001). Our values are slightly lower compared
to published data (Tramo et al., 1995; van Essen et al., 2012), because
their results were given for a pial (Tramo) resp. mid-cortical surface
segmentation (van Essen). Published relative variances (in percent) and
male/female differences were similar to our results.

For each individual, basins were classified based on their size and
maximum depth using a Gaussian mixture model, where the optimal
number of classes was determined from the Bayesian information crite-
rion (Fraley and Raftery, 2002). Individual class means were pooled
among all subjects, and re-classified. Basins roughly group into three
classes (refer to Fig. 4): (1) large, deep basins (avg. depth 15mm, avg.
Fig. 4. Area vs. depth of basin classes on all left hemispheres. In a first
approximation, three clusters can be distinguished: (1) large, deep basins (avg.
depth 15mm, avg. size 1320mm2), identified sections of primary sulci; (2)
medium-sized, deep basins (avg. depth 10mm, avg. size 400mm2), identified
as sections of secondary sulci; (3) small, shallow basins (avg. depth 4.7mm,
avg. size 230mm2), corresponding to “dimples”.

624
size 1320mm2), identified sections of primary sulci; (2) medium-sized,
deep basins (avg. depth 10mm, avg. size 400mm2), identified as sec-
tions of secondary sulci; (3) small, shallow basins (avg. depth 4.7mm,
avg. size 230mm2), corresponding to “dimples”.

Neocortical variability

Variability scores were determined for both hemispheres, including
all 897 subjects. Fourteen regions were found as invariant that were
roughly similar in extent and variability scores in both hemispheres (see
Fig. 5, magenta-blue regions):

(1) the insula (IN), (2) the central sulcus (CS), (3) the ventral segment
of the pre-central sulcus (PCS), (4) the dorsal segment of the pre-central
sulcus, extending into the superior frontal sulcus (SFS), (5) the ventral
segment of the post-central sulcus (IPS), extending into the anterior
section of the intra-parietal sulcus, (6) the caudal section of the intra-
parietal sulcus (CIP), (7) the superior temporal sulcus (STS), (8) the ol-
factory sulcus, (9) the orbital sulci (ORS, OLS), (10) the anterior portion
of the collateral sulcus (ACS), (11) the posterior section of the collateral
fissure (PCS), (12) the marginal portion and knee of the cingulate sulcus
(MCS), (13) the precuneus (PC), (14) the parieto-occipital sulcus (POS).

Regions of highest variability (see Fig. 5, yellow-red regions) were
found as a mesh of partially connected long rims: (1) along the edge
between the lateral and medial surface of both hemispheres, from the
frontal to the occipital pole, (2) along the trajectory of the inferior
temporal gyrus from the occipital to the temporal pole, (3) from the
occipital pole to the inferior parietal lobule, splitting into two branches
(a) along the dorsal margin between the insula and the lateral surface, to
the frontal pole, and (b) along the ventral margin between the insula and
the lateral surface, to the temporal pole.

Neocortical communities

Now, basin segmentations were clustered into neocortical commu-
nities. Community maps were computed for each subject, resulting in
897 maps for both hemispheres. Note that the number of communities
emerges from the clustering process. For all subjects included here, a
relatively narrow range of 7–13 communities per hemisphere were found
(see Fig. 6). Modularity scores were in the order of 0.75, indicating a high
degree of separation between communities.

The number of communities was not significantly different between
both hemispheres of a subject (paired Wilcoxon-test: p¼ 0.320), and did
not depend on sex, surface size, or the number of basins.

To examine the community structure across all subjects, a two-step
procedure was used. First, the pair-wise similarity of two community
maps was expressed by the NMI of the label co-occurrence matrix. Sim-
ilarity values followed a narrow, unimodal Gaussian distribution: 0.71�
0.03, indicating a high similarity among all pairs of community struc-
tures. Then, pairwise similarity values were compiled in matrix and
converted into a Euclidean distance matrix. A principal component
analysis was used to map distances into a low-dimensional space con-
sisting of 10 dimensions with 90.2% retained variance. Classification
using a Gaussian mixture model revealed that all solutions belong to a
single cluster.

Second, a variability map of all community labelings was computed,
similar to the process described for the basin labelings above. Regions of
low variability (magenta) correspond to communities consistently found
in all subjects (see Fig. 7), bordered by rims of high variability (green-
red). Clear separations between communities indicated a highly similar
community pattern on all hemispheres. The variability map was
segmented using a watershed-region growing procedure into seven
communities in each hemisphere.

To ease orientation, communities were mapped onto a reference
surface mesh (see Fig. 8). The basic layout consists of seven communities,
identified as: (1) an orbital region including the frontal pole and orbital
portion of the frontal lobe (OR); (2) a frontal region including structures



Fig. 5. Vertex-wise variability for both hemispheres,
collected in 897 subjects and mapped onto an inflated
reference surface. Higher values indicate more vari-
able regions. Fourteen regions (in magenta-blue)
were detected as invariant: (IN) the insula, (CS) the
central sulcus, (VPC) the ventral segment of the pre-
central sulcus, (SFS) the dorsal segment of the pre-
central sulcus, extending into the superior frontal
sulcus, (IPS) the ventral segment of the post-central
sulcus, extending into the anterior section of the
intra-parietal sulcus, (CIP) the caudal section of the
intra-parietal sulcus, (STS) the superior temporal
sulcus, (OLS) the olfactory sulcus, (ORS) the orbital
sulci, (ACS) the anterior portion of the collateral
sulcus, (PCS) the posterior section of the collateral
fissure, (MCS) the marginal portion and knee of the
cingulate sulcus, (PC) the precuneus, (POS) the
parieto-occipital sulcus.
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Fig. 7. Variability map computed from community clustering. Communities can be identified as regions of low variability (magenta), bordered by rims of high
variability (green-red). All meshes correspond to the left brain hemisphere, as seen from the left (left figure), right (middle figure), and bottom (right figure). For
explanation of the labels, refer to Fig. 8.
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Fig. 8. Basin communities for both hemispheres,
derived from 897 subjects, shown for an example
reference mesh. Generally, seven communities were
found: orbital (OR, 1, in pink); fronto-superior (FS,
2a, in orange) and fronto-inferior (FI, 2b, in red);
central sulcus (CS, 3a, light brown) and parietal (PA,
3b, in dark brown); insula (IN, 4, in grey); temporo-
lateral (TL, 5a, in light blue) and temporo-medial
(TM, 5b, in dark blue); occipito-lateral (OL, 6a, in
coral) and occipito-medial (OM, 6b, in yellow);
medial-anterior (MA, 7a, in light green) and medial-
posterior (MP, 7b, in dark green). Rarely, the insula
is split into an anterior and posterior portion. Com-
munities marked as (a,b) may not be separated in
some hemispheres, resulting in a range of 7–13
communities per hemisphere.
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on the lateral convexity of the frontal lobe (FI, FS); (3) a central region
corresponding to the central, post-central and intra-parietal sulcus and
adjacent gyri (CS, PA); (4) the insula including the frontal and parietal
operculum (IN); (5) a temporal region (TL, TM); (6) an occipital region
(OL, OM); and (7) the medial surface including the cingulate sulcus and
precuneus (MA,MP). Medial cut planes and the brain stem were
addressed to community NL.

Next, each of these basic communities was compared with the indi-
vidual community structure, again using overlap matrices. Five com-
munities were often split: the frontal region into a more regular inferior
(2a, FI) and more variable superior portion (2b, FS); the centro-parietal
into a central (3a, CS) and parietal portion (3b, PA); the temporal re-
gion into a clearly separated lateral (5a, TL) and medial portion (5b, TM);
the occipital into a regular medial (6a, OM), and a highly variable lateral
portion (6b, OL), and the medial region into a more regular posterior (7a,
MP) and variable portion anterior portion (7b, MA). Rarely, the insula is
Table 1
Community area, relative area difference (male vs. female) and significance (t-test) for communi
(paired t-test). Areas and differences Δ are specified in % of the total surface area of a given he
suppressed for non-significant (n.s.) comparisons, at a threshold of p ¼ 0:05.

Community Size LH Δ(M/F) p-value Size RH

NL 5.99 �0.300 <0.0001 6.00
FS 7.32 – n.s. 7.25
FI 8.81 0.251 7.22e-4 7.65
CS 4.42 �0.122 9.61e-3 4.23
PA 6.12 – n.s. 7.05
MA 4.15 0.241 1.23e-3 5.78
MP 6.58 �0.170 0.0315 6.08
IN 11.85 – n.s. 10.45
TL 11.02 – n.s. 9.23
TM 10.18 �0.156 0.0250 10.25
OL 8.39 – n.s. 10.78
OM 7.24 – n.s. 7.71
OR 7.87 0.138 0.0294 7.49
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split into an anterior and posterior portion. Any combination of these
splits may be found in a specific hemisphere, leading to the variation of
the number of communities shown in Fig. 6.

The high similarity of the community structure across individuals
may be surprising. However, comparing the figures for the vertex-wise
similarity (Fig. 5) and the community structure (Fig. 8) demonstrated
that communities were formed around regions of low variability: the
orbital region around ORS and OLS; the frontal regions around SFS and
VPC; the centro-parietal region around CS and IPS; the temporal regions
around STS and (ACS,PCS); and the occipital regions around CIP and
POS. The yellow-red rims in Fig. 5 approximately corresponded to the
boundaries of the communities in Fig. 8.

Areas of the individual communities were analyzed for sex-related
and inter-hemispheric differences (see Table 1). Roughly, communities
took similar proportions of the total hemispheric surface, with MA the
smallest (LH, 4.2%) and TL the largest (LH, 11.9%) community.
ties on the left and right hemisphere; relative area difference (left vs. right) and significance
misphere. Community NL corresponds to the surface area on the cut planes. Results were

Δ(M/F) p-value Δ(LH/RH) p-value

�0.244 <0.0001 – n.s.
– n.s. – n.s.
0.170 0.0191 1.160 <0.0001
– n.s. 0.186 <0.0001
– n.s. 0.929 <0.0001
– n.s. �1.625 <0.0001
– n.s. 0.494 <0.0001
�0.250 <0.0001 1.400 <0.0001
– n.s. 1.783 <0.0001
– n.s. – n.s.
– n.s. �2.38 <0.0001
0.218 <0.0001 �0.461 <0.0001
0.142 0.0212 0.382 <0.0001
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Significant inter-hemispheric differences were found for 10/14 commu-
nities: OL (RH > LH, 2.38%); TL (LH > RH, 1.78%); MA (RH > LH,
1.63%); IN (LH > RH, 1.40%); FI (LH > RH, 1.16%); PA (RH > LH,
0.93%); MP (LH > RH, 0.49%); OM (RH > LH, 0.61%); OR (LH > RH,
0.38%); and CS (LH> RH, 0.19%). Comparatively minor, but statistically
significant sex-related differences in community area were found for 4/
14 communities: IN (females > males, 0.25%); OM (males > females,
0.22%); FI (males > females, 0.17%); and OR (males > females, 0.14%).

In a first approximation, communities FI, FS, OR, and MA correspond
to the surface of the frontal lobe, communities CS, PA, and MP to the
parietal lobe, communities TL, TM to the temporal lobe, and commu-
nities OL, OM to the occipital lobe. This is further illustrated in Table 2.

Brain hemispheres were segmented into lobes using the MNI struc-
tural atlas (Mazziotta et al., 2001). Lobe labels were mapped onto surface
meshes, and the amount of overlap between lobes and the combinations
of communities above was assessed. Note that lobe boundaries were
defined by convention, and (mostly) follow sulcal bottom lines, while
communities were determined by a data-driven approach, and are
bounded by gyral crowns.

Discussion

This work assessed the variability of the macroscopic structures of the
human neocortex using a data-driven approach. We employed the
concept of cortical basins that implicitly encodes local surface properties,
i.e., curvature and geodesic depth. To compare across individuals, we
mapped cortical surfaces onto a common sphere while optimally
retaining the shape, size and neighborhood relationships of basins.
Variability was determined from the set of different basin labels that map
onto a specific surface location, weighted by their probability. Using the
amount of mutual overlap of basins across individuals, we grouped basins
into seven communities that are structurally segregated. Several meth-
odological and neuro-biological issues are discussed in the following.

Methodology

Basin Segmentation: We used the concept of basins to parcellate the
neocortical surface: a basin corresponds to a patch of the neocortical
surface centered around a locally deepest point (“pit”), bordered by a
local ridge (Lohmann and von Cramon, 2000; Yang and Kruggel, 2008).
Although in terms of data processing, basins are straightforward and
robust to segment, two details deserve discussion: (1) We assessed
different criteria for the basin merging process that influence the number
and size of basins retained for further processing. While the concept of
basins introduced above holds well for the convexity of the hemisphere,
shallow sulci on the medial frontal lobe and sulci adjacent to the limen
insulae require less rigorous criteria. After a comprehensive study, we
decided to merge adjacent regions if their common border in a convex
region is longer than 10% of the perimeter of the smaller region. (2) As an
alternative to our basin approach, the cortical segmentation can be
Table 2
Comparison between a segmentation into lobes (vertical) vs. combinations of communities (hor
spherical surface and are averaged over all subjects. Note that values do not add up to 100% du

Lobe FS þ FI þ OR þ MA CS þ PA þ MP

frontal 28.20 0.40
parietal 3.25 13.75
temporal 0.18 1.65
occipital 0.00 2.97
insula 3.36 3.48

Lobe FS þ FI þ OR þ MA CS þ PA þ MP

frontal 27.82 0.61
parietal 2.74 14.58
temporal 0.02 3.01
occipital 0.00 4.27
insula 2.69 2.71
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started from gyral crest lines (Stylianou and Farin, 2004), and grow re-
gions into sulci. However, gyral crest lines form a complex, connected
mesh that must be split into segments while sulcal roots are naturally
separated. Such a gyral segmentation defines structural units in terms of
gyri, with boundaries at sulcal bottom lines. Gyral segmentations also
arise if cortical end points of white matter fiber tracts are used for
parceling the neocortex, as discussed below. Here, we favored the sul-
cal/basin approach due to its simplicity and robustness.

Spherical Mapping: To compare structural features across individuals,
we mapped hemispheric surfaces onto a unit sphere. This process in-
troduces (1) an overall linear spatial normalization due to difference in
brain size, and (2) a regional nonlinear deformation related to individual
structural properties. Quantifying possible issues of the analytic pro-
cedure is difficult due to the unknown amount of individual differences.
To estimate the error introduced by the spherical mapping, we selected
region NL (i.e., the excluded vertices), and compared the relative area on
the spherical vs. hemisphere mesh in an individual data set. For the left
side, we found a ratio of 0.991 [0.976–1.001], for the right side 0.973
[0.962–0.985], indicating that the typical error in area size is less than
3%. Thus, the choice of our mapping metric ensured that local area (and
shape) were well reproduced in the spherical map. Next, we assessed the
similarity between region NL in an individual map registered to the
reference map by computing the Jaccard index (the ratio of the inter-
section and the union of both regions). For the left side, we found an
index of 0.680 [0.622–0.735], for the right side 0.712 [0.662–0.758],
corresponding to an overlap of 81–83%. These lower values and wider
margins express the influence of the individual variability retained by the
mapping process. Likewise, we conclude that the individual variability in
region size is much larger than the error introduced by the nonlinear
mapping process.

As an alternative to spherical mapping, a recent approach for
assessing the variability of cortical features could be used (Awate et al.,
2016, 2017). This method uses a regional histogram-based descriptor of
cortical measures (GM thickness, curvedness and shape index) to estab-
lish robust and optimal correspondencies across a set of surface meshes,
and offers the advantage of providing a statistical assessment of cortical
features. Structural features can also be matched in frequency space
(Auzias et al., 2013; Lombaert et al., 2013). This approach leads to
point-to-point correspondences between individual meshes with gradual
significance. Although this procedure avoids scaling and mapping issues
discussed here, the relevance and validity of such correspondences for
providing insight into structural variability is not clear. We consider the
normalization approach used here as rather simple and straightforward
to understand.

Variability Measure:We introduced a vertex-wise measure to represent
structural variability. By construction, this summary measure includes
probabilistic information about the number of different basins found at
this location and their relative prevalence. We also sampled vertex-wise
the probability that a vertex receives one basin label only and assessed
local indicators of spatial association (using Moran's I: Anselin, 1995).
izontal) for the left (top) and right hemisphere (below). Values are given in % of the total
e to the presence of cut planes (NL label). For more information, please, refer to the text.

TL þ TM OL þ OM IN

0.02 0.00 0.00
0.04 0.19 0.00
14.00 5.15 0.01
0.06 13.02 0.00
3.57 0.03 1.07

TL þ TM OL þ OM IN

0.02 0.00 0.00
0.00 0.13 0.00
13.46 2.33 0.00
1.29 13.18 0.00
3.39 0.00 1.30



Fig. 9. Reconstruction of the WM/GM surface of a preterm newborn imaged
at gestational week 32. Color codes correspond to the surface curvature.
Image was taken from Dubois et al. (2008, Fig. 1e).
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This measure detects spatial clusters, here, of structural variability. The
resulting statistical map was highly similar to Fig. 5 and did not reveal
additional information.

Conceptually, our approach for assessing variability differs from other
published methods. If two hemispheres differ in scale and orientation
only, they will be mapped identically onto the spherical mesh. Any dif-
ferences in local scale and shape are retained as individual differences
because our procedure does not include a regional matching, e.g., based
on surface features. Replacing our method of spatial normalization
through parametrization with a nonlinear registration approach (e.g.,
Awate et al., 2016, 2017; Auzias et al., 2013; Lombaert et al., 2013; Yeo
et al., 2010) would likely lead to a “sharper” variability map, at the
expense of defining a criterion for defining correspondencies between
cortical regions. However, we doubt that the range of variability values
will be much affected, because the number of neighboring basins is in-
dependent of the mapping process.

Our rank-based variability measure tolerates a “mild” variability.
Consider the central sulcus that is often represented by a single basin, and
sometimes split into two. If this split occurs in 20% of all cases, the
variability measure is 0.2. If three basins were found at a given vertex
with rates 60%, 20%, and 20%, the variability measure increases to 0.6.
Thus, the variability measure highlights areas where there or more basins
were found at similar rates. It should also be emphasized that variability
is computed vertex-wise, and does not assess (conventional) sulcal
structures. Consider the superior temporal sulcus that is often mapped
onto three or four basins with considerable differences in orientation. As
long as not more than two basins overlap at a given vertex, the variability
is not greater than 0.5. Conversely, in regions such as the middle cingular
sulcus or the operculum insulae, the application of the basin concept is
arguable, and potentially leads to an “inflated” variability.

Community Clustering: The high degree of modularity found in the
clustering process is not surprising. Our data are natively embedded on a
two-dimensional surface, limiting the number of possible interacting
neighbors. Because it is expected that surface structures never switch
places, the number of viable basin arrangements is further reduced. The
alternative community splits described in Section 3.3 have modularity
values that differ by a 1–2% only. Therefore, we prefer to postpone a final
decision about the “best” number of communities, other than stating a
lower bound of seven.

Neurobiology

Relevance of Basins: It is well established that sulcal pits are reliable
cortical landmarks and are helpful for abstracting from the inter-
individual variability (Cachia et al., 2003; Im et al., 2014; Lohmann
et al., 2008; Meng et al., 2014; Regis et al., 2005; Yang and Kruggel,
2008). Instead of point landmarks, we used surface patches in terms of
basins in this analysis, that implicitly encode the spatial extent of a region
surrounding a local pit, and its orientation and neighborhood relation-
ships with other basins on the neocortical surface, thus, retain a richer set
of information. While both approaches are equivalent and are expected to
yield similar results, we aimed at a complete parcellation of the
neocortical surface.

A strong positive correlation between basin size and depth was found
here (see Fig. 4). We interpreted this as a consequence of the fact that all
basins must accommodate a cortical layer of a similar thickness. In a first
approximation, basins cluster into three classes: (1) large, deep basins,
identified sections of primary sulci; (2) medium-sized, deep basins,
identified as sections of secondary sulci; (3) small, shallow basins, cor-
responding to “dimples”. We found a total of 80–120 basins per hemi-
sphere; removing shallow ones reduced the number of basins to 50–60,
which is in line with previous studies that focused on deep pits (Im et al.,
2014: 48/47 regions; Meng et al., 2014: 54 regions; Regis et al., 2005: 57
regions). The same number of basins was found in both hemispheres, as
reported by Meng et al. (2014).

Clustering of Basins: Several studies used variants of nonlinear
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registration procedures to reduce the inter-individual variability, and to
find a common set of deepest local pits in spatial “concentration regions”
(Lohmann et al., 2008; Im et al., 2014; Meng et al., 2014; Regis et al.,
2005). In contrast, we retained in the individual variability in our anal-
ysis and assessed which basins covary to form communities. Thus,
communities correspond to surface patches that include one or more
concentration regions in the sense above and provide a hierarchical or-
ganization level below a hemisphere but above basins/pits. We consider
the set of seven communities outlined here as common to all normally
developed brains, and hypothesize that individual variation is confined
within a community. A quantitative assessment of the individual vari-
ability within communities is subject to future work (see also Meng et al.,
2014).

Communities showed a left-ward asymmetry for PA, IN, and TL and a
right-ward asymmetry for OL and MA (see Table 1). The sign and
magnitude of these asymmetries are in line with published data (Lyttel-
ton et al., 2009; van Essen et al., 2012), although both publication show
vertex-wise instead of region area statistics provided here. Sex-related
differences in community size found here were on an order of magni-
tude smaller than inter-hemispheric differences. Available data on the
sign and magnitude of sex-related differences in surface size are sparse
and inconclusive (e.g., Escoriala et al., 2015). Although some of these
differences were statistically significant, doubts may be raised whether
size differences in the order of 0.1% bear neuro-biological relevance. It
should be noted that well-described sexual dimorphisms in brain struc-
tures (e.g., Ruigrok et al., 2014) were described at the level below our
communities.

Variability and Brain Development: There is mounting evidence that the
deepest basins (pits) are formed early in development (Dubois et al.,
2008; Habas et al., 2012; Le Guen et al., 2017; Meng et al., 2014; Nie
et al., 2012) and may serve as anchors for the development of functional
areas (Rakic, 1988, 2004; Welker, 1990). We found a striking similarity
of the cortical variability (see Fig. 5) with a reconstruction of the cortical
surface of a preterm newborn imaged at gestational week 32 (Dubois
et al., 2008, see Fig. 9). The regions of lowest variability correspond to
the sulcal regions formed first during development. We hypothesize that
basin communities correspond to this common core expressed in all
brains before individual determinants of brain development dominate.
Basins formed later are more shallow and have a higher degree of indi-
vidual structural variability.

This hypothesis is in line with recent models of cortical development.
Toro and Burnod (2005) found that primary sulci are likely determined
by (a) the location of architectonic inhomogeneities (Welker, 1990),
presumably influenced by region-specific genetic regulation (Johnson
et al., 2009; Rakic, 2004) and (b) mechanical influences on the initial
geometry of the cortex, such as exerted by differential growth patterns of
ontogenetic columns (Rakic, 1988). Secondary and ternary folds develop
subsequently as mandated by the preceding primary convolutions.
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Communities and Vascular Supply: We also note that there is a close
correspondence between communities and vascular territories of the
main cerebral arteries (Tatu et al., 1998): the anterior cerebral artery
supplies communities OR, MA, and MP; the middle cerebral artery sup-
plies communities FI, FS, IN, CS, PA and TL; while the posterior cerebral
artery supplies communities OL, OM, and TM. We suggest that the sep-
aration into cortical communities provides a more natural, data-driven
route for referencing cortical structures than one based on lobes.

Cortical Connectivity: Another support for the notion of communities
may come from the study of basin connectivity through cortico-cortical
WM fibers. The first description of sulcal interruptions (“plis de pas-
sage”) was provided by Gratiolet in 1854 that consist of short-range
U-fibers bridging a sulcus. A cortical parcellation based on white mat-
ter structures was developed by Oishi et al. (2008), and led to the defi-
nition of nine white matter “blades” that introduce a cortical
segmentation based on gyral stalks. Although their analysis does not
follow a data-driven approach, the resulting regions are roughly similar
to our communities. Hagmann et al. (2008) performed a network analysis
of individual structural connectivity maps directly, leading to a parti-
tioning of 66 anatomical subregions. Nijhuis et al. (2013) defined
“cortical hubs” as locations with higher long-range inter-connectivity.
While all three approaches provided an elegant and clear-cut analysis of
connectivity data, they strived to find and segregate patterns common to
a population sample from individual variation. We were unable to find
studies that assess basins and their connectivity.

The concept of basin communities introduced here extends and su-
persedes previous structural clustering approaches based on sulcal roots.
By construction, communities are formed around local regions of low
inter-subject variability. The demonstrated similarity of communities
with the developing folding pattern at week 32 suggests the hypothesis
that communities are segregated early, and that the subsequent indi-
vidual development is confined within a community. We propose that
our data-driven approach led to an anatomically (and presumably,
functionally) more meaningful subdivision of the neocortex than the
traditional concept of lobes. This suggestion is corroborated by the fact
that vascular supply patterns match easily with the community but not
with the lobe architecture. Further research will elucidate whether there
are distinguishable basin patterns within a community that may be
related to the presence of structural variants (e.g., the presence of a di-
agonal sulcus), providing a route for the quantification of individual
surface structures.

References

Anselin, L., 1995. The local indicators of spatial association – LISA. Geogr. Anal. 27,
93–115.

Auzias, G., Lefevre, J., Le Troter, A., Fischer, C., Perrot, M., Regis, J., Coulon, O., 2013.
Model-driven harmonic parameterization of the cortical surface: HIP-HOP. IEEE
Trans. Med. Imag. 32, 873–887.

Auzias, G., Brun, L., Deruelle, C., Coulon, O., 2015. Deep sulcal landmarks: algorithmic
and conceptual improvements in the definition and extraction of sulcal pits.
Neuroimage 111, 12–25.

Awate, S.P., Leahy, R.M., Joshi, A.A., 2016. Riemannian statistical analysis of cortical
geometry with robustness to partial homology and misalignment. In: Ourselin, S.,
et al. (Eds.), Medical Image Computing and Computer-assisted Intervention. MICCAI
2016, vol. 9900. Springer, Cham, pp. 237–246. Lecture Notes in Computer Science.

Awate, S.P., Leahy, R.M., Joshi, A.A., 2017. Kernel methods for Riemannian analysis of
robust descriptors of the cerebral cortex. In: Niethammer, M., et al. (Eds.),
Information Processing in Medical Imaging. IPMI 2017, vol. 10265. Springer, Cham,
pp. 28–40. Lecture Notes in Computer Science.

Ayberk, G., Yagli, E., Comert, A., Esmer, A.F., Canturk, N., Tekdemir, I., Dinc, H., 2012.
Anatomic relationship between the anterior sylvian point and the pars triangularis.
Clin. Anat. 25, 429–436.

Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., Wagner, D.,
2008. On modularity clustering. IEEE Trans. Knowl. Data Eng. 20, 172–188.

Brett, M., Christoff, K., Cusack, R., Lancaster, J., 2001. Using the Talairach atlas with the
MNI template. Neuroimage 13, S85.

Cachia, A., Mangin, J.F., Riviere, D., Kherif, F., Boddaert, N., Andrade, A., Papadopoulos-
Orfanos, D., Poline, J.B., Bloch, I., Zilbovicius, M., Sonigo, P., Brunelle, F., Regis, J.,
2003. A primal sketch of the cortex mean curvature: a morphogenesis based approach
to study the variability of the folding patterns. IEEE Trans. Med. Imag. 22, 754–765.
629
Campigotto, R., Cespedes, P.C., Guillaume, J.L., 2014. A generalized and adaptive method
for community detection. arVix, 1406.2518v1.

Clarenz, U., Litke, N., Rumpf, M., 2004. Axioms and variational problems in surface
parameterization. Comput. Aided Geomet. Des. 21, 727–749.

Coupe, P., Manjon, J.V., Fonov, V., Pruessner, J., Robles, M., Collins, D.L., 2011. Patch-
based segmentation using expert priors: application to hippocampus and ventricle
segmentation. Neuroimage 54, 940–954.

Dubois, J., Benders, M., Borradori-Tolsa, C., Cachia, A., Lazeyras, F., Ha-Vinh
Leuchter, R., Sizonenko, S.V., Warfield, S.K., Mangin, J.F., Hüppi, P.S., 2008. Primary
cortical folding in the human newborn: an early marker of later functional
development. Brain 2028–2041. https://doi.org/10.1093/brain/awn137.

Escoriala, S., Roman, F.J., Martinez, K., Burgaleta, M., Karama, S., Colomb, R., 2015. Sex
differences in neocortical structure and cognitive performance: a surface-based
morphometry study. Neuroimage 104, 355–365.

Evans, A.C., Janke, A.L., Collin, D.L., Baillet, S., 2012. Brain templates and atlases.
Neuroimage 62, 911–922.

Fortunato, S., 2008. Community detection in graphs. Phys. Rep. 486, 75–174.
Fraley, C., Raftery, A.E., 2002. Model-based clustering, discriminant analysis and density

estimation. J. Am. Stat. Assoc. 97, 611–631.
Friedel, I., Schroeder, P., Desbrun, M., 2007. Unconstrained spherical parameterization.

J. Graph., GPU, Game Tools 12, 17–26.
Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L.,

Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., van Essen, D.C., Jenkinson, M., 2013.
The minimal preprocessing pipelines for the Human Connectome Project.
Neuroimage 80, 105–124.

Gratiolet, P.L., 1854. Memoire sur les plis cerebraux de l’homme et des primates.
Bertrand, Paris, France.

Habas, P.A., Scott, J.A., Roosta, A., Rajagopalan, V., Kim, K., Rousseau, F.,
Barkovich, A.J., Glenn, O.A., Studholme, C., 2012. Early folding patterns and
asymmetries of the normal human brain detected from in utero MRI. Cerebr. Cortex
20, 13–25.

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J.,
Sprons, O., 2008. Mapping the structural core of human cerebral cortex. PLoS Biol. 6,
e159. https://doi.org/10.1371/journal.pbio.0060159.

He, R., Datta, S., Sajja, B.R., Narayana, P.R., 2008. Generalized fuzzy clustering for
segmentation of multi-spectral magnetic resonance images. Comput. Med. Imag.
Graph. 32, 353–366.

Hentschel, S., Kruggel, F., 2004. Determination of the intracranial compartment: a
registration approach. In: Jiang, T. (Ed.), Medical Imaging and Augmented Reality
(Beijing), Lecture Notes in Computer Science, vol. 3150. Springer, Singapore,
pp. 253–260.

Human Connectome Project. 900 Subjects Data Release Reference. https://www.
humanconnectome.org/documentation/S900/HCP_S900_Release.pdf (accessed:
November 1, 2017).

Idowu, O.E., Soyemi, S., Atobatele, K., 2014. Morphometry, asymmetry and variations of
the sylvian fissure and sulci bordering and within the pars triangularis and pars
operculum: an autopsy study. J. Clin. Diagn. Res. 8, AC11–AC14.

Im, K., Jo, H.J., Mangin, J.F., Evans, A.C., Kim, S.I., Lee, J.M., 2014. Spatial distribution of
deep sulcal landmarks and hemispherical asymmetry on the cortical surface. Cerebr.
Cortex 20, 602–611.

Johnson, M.B., Kawasawa, Y.I., Mason, C.E., Krsnik, Z., Coppola, G., Bogdanovic, D.,
Geschwind, D.H., Mane, S.M., State, M.W., 2009. Functional and evolutionary
insights into human brain development through global transcriptome analysis.
Neuron 62, 494–509.

Klein, A., Tourville, J., 2012. 101 labeled brain images and a consistent human cortical
labeling protocol. Front. Neurosci. https://doi.org/10.3389/fnins.2012.00171.

Kruggel, F., 2008. Robust parametrization of brain surface meshes. Med. Image Anal. 12,
291–299.

Kruggel, F., 2017. The BRIAN system. https://sip.eng.uci.edu (accessed: November 1,
2017).

Le Guen, Y., Auzias, G., Leroy, F., Noulhiane, M., Dehaene-Lambertz, G., Duchesnay, E.,
Mangin, J.F., Coulon, O., Frouin, V., 2017. Genetic influence on the sulcal pits: on the
origin of the first cortical folds. Cerebr. Cortex 1–12.

Lohmann, G., von Cramon, D.Y., 2000. Automatic labelling of the human cortical surface
using sulcal basins. Med. Image Anal. 4, 179–188.

Lohmann, G., von Cramon, D.Y., Colchester, A.C., 2008. Deep sulcal landmarks provide
an organizing framework for human cortical folding. Cerebr. Cortex 18, 1415–1420.

Lombaert, H., Grady, L., Polimeni, J.R., Cheriet, F., 2013. FOCUSR: feature oriented
correspondence using spectral regularization - a method for precise surface matching.
IEEE Trans. Pattern Anal. Mach. Intell. 35, 2143–2160.

Lyttelton, O.C., Karama, S., Ad-Dab’bagh, Y., Zatorre, R.J., Carbonell, F., Worsley, K.,
Evans, A.C., 2009. Positional and surface area asymmetry of the human cerebral
cortex. Neuroimage 46, 895–903.

Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., Woods, R., Paus, T.,
Simpson, G., Pike, B., Holmes, C., Collins, L., Thompson, P., MacDonald, D.,
Iacoboni, M., Schormann, T., Amunts, K., Palomero-Gallagher, N., Geyer, S.,
Parsons, L., Narr, K., Kabani, N., Le Goualher, G., Boomsma, D., Cannon, T.,
Kawashima, R., Mazoyer, B., 2001. A probabilistic atlas and reference system for the
human brain: international Consortium for Brain Mapping (ICBM). Royal Soc. Phil.
Trans. B 356, 1293–1322.

Meng, Y., Li, G., Lin, W., Gilmore, J.H., Shen, D., 2014. Spatial distribution and
longitudinal development of deep cortical sulcal landmarks in infants. Neuroimage
100, 206–218.

Meyer, M., Desbrun, M., Schr€oder, P., Barr, A.H., 2002. Discrete differential-geometry
operators for triangulated 2-manifolds. Visual. Math. 3, 1–26.

http://refhub.elsevier.com/S1053-8119(18)30074-0/sref1
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref1
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref1
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref1
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref2
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref2
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref2
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref2
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref3
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref3
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref3
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref3
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref4
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref4
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref4
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref4
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref4
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref5
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref5
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref5
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref5
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref5
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref6
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref6
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref6
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref6
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref7
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref7
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref7
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref8
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref8
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref9
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref9
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref9
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref9
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref9
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref10
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref10
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref11
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref11
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref11
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref12
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref12
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref12
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref12
https://doi.org/10.1093/brain/awn137
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref14
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref14
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref14
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref14
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref15
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref15
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref15
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref16
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref16
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref17
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref17
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref17
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref18
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref18
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref18
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref19
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref19
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref19
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref19
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref19
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref20
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref20
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref21
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref21
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref21
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref21
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref21
https://doi.org/10.1371/journal.pbio.0060159
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref23
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref23
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref23
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref23
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref24
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref24
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref24
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref24
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref24
https://www.humanconnectome.org/documentation/S900/HCP_S900_Release.pdf
https://www.humanconnectome.org/documentation/S900/HCP_S900_Release.pdf
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref26
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref26
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref26
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref26
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref27
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref27
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref27
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref27
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref28
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref28
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref28
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref28
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref28
https://doi.org/10.3389/fnins.2012.00171
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref30
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref30
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref30
https://sip.eng.uci.edu
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref32
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref32
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref32
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref32
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref33
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref33
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref33
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref34
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref34
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref34
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref35
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref35
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref35
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref35
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref36
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref36
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref36
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref36
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref37
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref37
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref37
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref37
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref37
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref37
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref37
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref37
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref38
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref38
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref38
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref38
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref39
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref39
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref39
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref39


F. Kruggel NeuroImage 172 (2018) 620–630
NeuroNames Ontology of Mammalian Neuroanatomy: NN2010 (2010). http://braininfo.
rprc.washington.edu/nnont.aspx (accessed: November 1, 2017).

Nie, J., Li, G., Wang, L., Gilmore, J.H., Lin, W., Shen, D., 2012. A computational growth
model for measuring dynamic cortical development in the first year of life. Cerebr.
Cortex 22, 2272–2284.

Nielson, G.M., 2003. On marching cubes. IEEE Trans. Vis. Comput. Graph. 9, 283–293.
Nijhuis, E.H.J., van Cappellen van Walsum, A.M., Norris, D.G., 2013. Topographic hub

maps of the human structural neocortical network. PLoS One 8, e65511. https://
doi.org/10.1371/journal.pone.0065511.

Oishi, K., Zilles, K., Amunts, K., Faria, A., Jiang, H., Li, X., Akhter, K., Hua, K., Woods, R.,
Toga, A.W., Pike, G.B., Rosa-Neta, P., Evans, A., Yhang, J., Huang, H., Miller, M.I.,
van Zijl, P.C.M., Mazziotta, J., Mori, S., 2008. Human brain white matter atlas:
identification and assignment of common anatomical structures in superficial white
matter. Neuroimage 43, 447–457.

Ono, M., Kubik, S., Abernathey, C.D., 1990. Atlas of the Cerebral Sulci. Thieme, Stuttgart.
Rakic, P., 1988. Specification of cerebral cortical areas. Science 241, 170–176.
Rakic, P., 2004. Genetic control of cortical convolutions. Science 303, 1983–1984.
Regis, J., Mangin, J.F., Frouin, V., Sastre, F., Peragut, J.C., Samson, Y., 1995. Generic

model for the localization of the cerebral cortex and preoperative multimodal
integration in epilepsy surgery. Stereotact. Funct. Neurosurg. 65, 72–80.

Regis, J., Mangin, J.F., Ochiai, T., Frouin, V., Riviere, D., Cachia, A., Tamura, M.,
Samson, Y., 2005. “Sulcal root” generic model: a hypothesis to overcome the
variability of the human cortex folding patterns. Neurol. Med.-Chir. 45, 1–17.

Ruigrok, A.N.V., Salimi-Khorshidi, G., Lai, M.C., Baron-Cohen, S., Lombardo, M.V.,
Tait, R.J., Suckling, J., 2014. A meta-analysis of sex differences in human brain
structure. Neurosci. Biobehav. Rev. 39, 34–50.

Segonne, F., 2008. Active contours under topology control–genus preserving level sets.
Int. J. Comput. Vis. 79, 107–117.

Shattuck, D.W., Mirza, M., Adisetiyo, V., Hojatkashani, C., Salamon, G., Narr, K.L.,
Poldrack, R.A., Bilder, R.M., Toga, A.W., 2008. Delineation protocols for the LONI
probabilistic brain atlas (LPBA40). Suppl. Doc. NeuroImage 39, 1064–1080.
630
Stylianou, G., Farin, G., 2004. Crest lines for surface segmentation and flattening. IEEE
Trans. Vis. 10, 536–544.

Swanson, L., 2015. Neuroanatomical terminology: A lexicon of classical origins and
historical foundations. Oxford University Press, Oxford, UK.

Talairach, J., Tournoux, P., 1988. Co-planar stereotactic atlas of the human brain: 3-
dimensional proportional system: An approach to cerebral imaging. Thieme Verlag,
Stuttgart.

Tatu, L., Moulin, T., Bogousslavsky, J., Duvernoy, H., 1998. Arterial territories of the
human brain. Neurology 50, 1699–1708.

Toriwaki, J., Yonekura, T., 2002. Local patterns and connectivity indexes in a three
dimensional digital picture. Forma 17, 275–291.

Toro, R., Burnod, Y., 2005. A morphogenetic model for the development of cortical
convolutions. Cerebr. Cortex 15, 1900–1913.

Tramo, J.D., Loftus, W.C., Thomas, C.E., Green, R.L., Mott, L.A., Gazzaniga, M.S., 1995.
Surface area of human cerebral cortex and its gross morphological subdivisions: in
vivo measurements in monozygotic twins suggest differential hemisphere effects of
genetic factors. J. Cognit. Neurosci. 7, 292–302.

van Essen, D.C., Glasser, M.F., Dierker, D.L., Harwell, J., Coalson, T., 2012. Parcellations
and hemispheric asymmetries of human cerebral cortex analyzed on surface-based
atlases. Cerebr. Cortex 22, 2241–2262.

Verbeek, P.W., Dorst, L., Verwer, B.J.H., Groen, F.C.A., 1986. Collision avoidance and
path finding through constrained distance transformation in robot state space. In:
Proceedings in Intelligent Autonomous Systems, pp. 634–641. Amsterdam, The
Netherlands, Dec. 1986.

Welker, W., 1990. Why does cerebral cortex fissure and fold? A review of determinants of
gyri and sulci. In: Jones, E., Peters, A. (Eds.), Cerebral Cortex, vol. 8b. Plenum Press,
New York, pp. 3–136.

Yang, F., Kruggel, F., 2008. Automatic segmentation of human brain sulci. Med. Image
Anal. 12, 442–451.

Yeo, B.T., Sabuncu, M.R., Vercauteren, T., Ayache, N., Fischl, B., Golland, P., 2010.
Spherical demons: fast diffeomorphic landmark-free surface registration. IEEE Trans.
Med. Imag. 29, 650–669.

http://braininfo.rprc.washington.edu/nnont.aspx
http://braininfo.rprc.washington.edu/nnont.aspx
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref41
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref41
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref41
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref41
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref42
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref42
https://doi.org/10.1371/journal.pone.0065511
https://doi.org/10.1371/journal.pone.0065511
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref44
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref44
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref44
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref44
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref44
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref44
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref45
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref46
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref46
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref47
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref47
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref48
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref48
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref48
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref48
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref49
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref49
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref49
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref49
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref50
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref50
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref50
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref50
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref51
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref51
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref51
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref51
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref52
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref52
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref52
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref52
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref53
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref53
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref53
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref54
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref54
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref55
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref55
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref55
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref56
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref56
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref56
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref57
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref57
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref57
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref58
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref58
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref58
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref59
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref59
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref59
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref59
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref59
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref60
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref60
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref60
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref60
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref61
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref61
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref61
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref61
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref61
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref62
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref62
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref62
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref62
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref63
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref63
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref63
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref64
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref64
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref64
http://refhub.elsevier.com/S1053-8119(18)30074-0/sref64

	The macro-structural variability of the human neocortex
	Introduction
	Methods and materials
	Subjects and imaging data
	Image processing
	Basin segmentation
	Neocortical variability
	Neocortical communities

	Results
	Neocortical surface and basins
	Neocortical variability
	Neocortical communities

	Discussion
	Methodology
	Neurobiology

	References


