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A Simple Measure for Acuity in Medical Images
Frithjof Kruggel

Abstract— An automatic and objective assessment of image
quality is important in an era, where large-scale processing of
imaging data from multi-center studies becomes commonplace.
Based on a comprehensive statistical image model that includes
noise and blur, a measure for image acuity is derived here as
the ratio of the maximal gradient magnitude and the intensity
difference at a boundary. Acuity may be affected by the object
under study, the image acquisition, reconstruction processes, and
any post-processing steps. The acuity measure presented here is
post-hoc, intuitive to understand, simple to compute, and easily
integrates with other standard measures of image quality. Three
applications in medical imaging are included where our acuity
measure is useful in the objective and automatic assessment of
image quality.

Index Terms— Image quality, image artifacts, motion, medical
imaging.

I. INTRODUCTION

THE assessment of image quality is important in the devel-
opment of new imaging technology, image acquisition

and processing methods [11], [19], [26]. Before medium- and
large-sized image data bases (e.g., anatomical and functional
group studies in neuro-biology) are subjected to an image
processing chain, it is important to ensure that pre-defined
quality criteria are met, because later stages may fail or pro-
duce erroneous results. It is evident that image quality is
best optimized during image acquisition, by applying the best
imaging technology and protocol available for a specific task.
At any level of technology, quantitative metrics are useful
to rate and compare any effort to ensure or improve image
quality.

Noise is a well-known influence that degrades image
quality, and there is an abundance of literature on the origin
and estimation of noise in medical images [2], [17], [18],
[20], [36]. Most typically, the signal-to-noise (SNR) and
contrast-to-noise ratio (CNR) are widely employed as quality
measures [24]. While the SNR quantifies the amount of
random influences on the intensity statistics of a specific
region, CNR quantifies the contrast of two neighboring
regions in the presence of noise. Here, we introduce acuity as
another basic parameter of image quality, which is understood
as the ability of an imaging process to retain edges. If an
edge is sharp in the imaged object with respect to the image
resolution, any smoothing is understood as a loss of acuity
due to the imaging processing. A complementary term for
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acuity is image blur [37]. Acuity in medical images is affected
by (a) parameters and mode of image acquisition, (b) image
reconstruction method, (c) spatial, temporal, and intensity
resolution, (d) physiological noise, (e) object motion, (e) image
processing (e.g., filtering and interpolation). As we will
demonstrate below, our measure is largely independent of the
SNR and CNR, so can be used as a complementary measure.

Early approaches of analytically modeling edges blurred
by Gaussian kernels are described by Elder and Zucker [12]
and Kayargadde and Martens [21]. However, their intent was
to determine the precise location of an edge, not to esti-
mate acuity. In a different context, Panda and Rosenfeld [33]
demonstrated the usefulness of intensity × gradient magni-
tude histograms to distinguish regions of pure materials from
mixtures at edges. In this two-dimensional histogram, voxels
with pure materials map to low-gradient regions at a specific
intensity, while voxels with two-material mixtures map to
“arcs” between both materials (see Fig. 4). This idea was
picked up by Kindlemann and Durkin [23] and combined with
the mathematical edge model of Elder and Zucker [12] for
the semi-automatic generation of transfer functions in volume
rendering. Serlie et al. [39] provided an analytical form that
models the shape of the arcs. Finally, Chiverton [10] developed
an image segmentation method that rigorously incorporated
a noise and gradient model in a Bayesian framework for
estimating partial volume fractions from these histograms.

In the following section, we establish an image model with
noisy and blurred edges to derive a simple acuity measure and
discuss its properties in experiments on simulated and phantom
images. To illustrate the use of this measure, we include three
application examples in real medical images:

A. Detection of Motion-Corrupted Images in Large-Scale
Data Bases

Gross body and physiologic motion is a well-known source
of image degradation [31]. Unwanted motion is best mini-
mized during acquisition, e.g., by using restraining mecha-
nisms such as cushions, inflatable masks or mouth guards [34].
However, the application of such mechanisms may be limited
in specific subject groups (e.g., newborn children [30]) or find
limited tolerance (e.g., children with autism spectrum disor-
ders, elderly demented subjects). As an alternative, within-
scan correction schemes were developed that use information
from external trackers [15], [29] or image-based measures
to estimate and correct for motion [8], [15], [27], [41].
Such approaches require modification of the imaging pro-
tocol and/or upgrades to the hardware inventory that may
not (yet) be available in a specific setting. Post-hoc motion
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Fig. 1. Axial slices of a MRI data set of the human head with acceptable
quality (left, Acuity = 1.441, SNR = 47.8, CNR = 10.2), and a motion-
corrupted data set (right, Acuity = 1.057, SNR = 40.3, CNR = 9.31). While
SNR and CNR are similar, the much lower acuity indicates the presence of
motion blur.

correction schemes are widely applied in situations where
several short, repeated scans are acquired (e.g., in functional
MRI), such that within-scan motion is neglected and between-
scan motion corrected by image registration [25], [43]. In a
clinical setting, trained personnel will typically identify a
degraded scan immediately, and repeat or reorder an exam,
eventually while sedating the patient during the exam. In an
academic research environment, sedation is not feasible or
viable (e.g., in functional imaging), scan time scheduling often
does not allow for an immediate repeat, and re-invitations
may not be possible due to a limited budget. Due to the
huge amount of data acquired in specific protocols (e.g.,
in diffusion-weighted MRI), and their relatively low image
quality, motion may visually be difficult to detect. Given an
image data base, we consider as due diligence to check that
all data meet or exceed pre-defined quality criteria before any
further image processing is applied. Our application example
is based on a medium-scale data base of images acquired
in children with Autism Spectrum Disorder (ASD, see also
Fig. 1).

B. Differentiation of Moving and Stationary Boundaries
in an Image

We use a time-series of ECG-gated cardiac images as
an example and distinguish motion on the heart boundary
from a stationary region at the spine. Imaging technology
to detect and quantify heart motion is well developed these
days, and elaborate schemes exist for tracking motion [42],
e.g., during angiography [14]. Most easily, information about
moving boundaries could be sampled from difference images
in the time domain. However, we estimate regional motion
within a scan based on our acuity measure, as a post-hoc
measure, at a single time point. We include this example to
demonstrate that within-scan motion can be measured, where
the presence of moving and stationary regions is obvious.

C. Sampling of a Common Anatomical Template

The problem of generating a high-quality study-specific
anatomical template has been under considerable study,

given the huge popularity and wide application of voxel- and
tensor-based morphometry these days. The sampling process
of such a template is computationally demanding, due to
the high-resolution non-linear registration process underneath.
While early approaches used the full image set for template
generation [32], later publications demonstrated that sampling
from a subset is advantageous [13]. This strategy does not only
reduce the computational demand, but also yields a sharper
template, which improves the registration process for the full
set. Other authors emphasized the importance of including the
anatomical variability of the sample, and developed sampling
schemes to select specific cases. Our example demonstrates
an application of the acuity measure in a sampling scheme
that leads to a high-quality, sharp template. We note that our
process can be integrated with other objectives, such as the
population-based sampling above.

II. METHODS

Before deriving the acuity measure, statistical properties of
intensities and gradient magnitudes at edges in the presence
of noise and image blur are revised.

A. Gradient Magnitudes in Uniform Noisy Images

Consider a D > 1 dimensional image I discretized on a
regular lattice at sites s. Let the image consist of a single
region R with intensity μ, corrupted by independent Gaussian-
distributed noise with variance σ 2

i . The probability distribution
function (PDF) of the intensities x is given as:

x ∼ N (μ, σ 2
i ) = 1

σi
√

2π
exp

[
− (x − μ)2

2σ 2
i

]
. (1)

Convolution operators are employed to estimate the gradient
magnitude that uses a linear combination of local intensity
differences. e.g., for central differences:

gs = 1

2

[
D∑

d=1

(x(sl) − x(sr ))
2

]1/2

, (2)

where x(sl), x(sr ) denote the intensities of both the
N6-connected neighbors (for D = 3) of site s in direction d .
By definition, the gradient magnitude g follows a central
χ-distribution with k > 1 degrees-of-freedom (DOF):

g ∼ χk(0, σ 2
g ) = gk−1

σ k
g 2k/2−1�(k/2)

exp

[
− g2

2σ 2
g

]
. (3)

The mean of this distribution is E{g} =
√

2σ 2
g �(k/2 + 1/2)/

�(k/2), where �(·) denotes the Gamma function [1]. Let us
make the following remarks:

(a) Note that the DOF k of this distribution is related to the
number of summation terms of the gradient filter (Eq. 2), not
the dimensionality of the image.

(b) If x1 ∼ N (μ1, σ
2
i ) and x2 ∼ N (μ2, σ

2
i ), then d1,2 =

x2 − x1 ∼ N (μ2 − μ1, 2σ 2
i ). Thus, σ 2

g = 2σ 2
i .

(c) Any (directional) weighting factor applied in the con-
volution filter applies to σg . For the central difference fil-
ter above: σ 2

g = 1
2σ 2

i . The noise level σi in an image region
defined above can be estimated as: σi = E{g} √

π/2.
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Fig. 2. Left: Two-class synthetic image with equally-sized regions of
intensity μ1 = 50, μ2 = 150, with added normally distributed noise σi = 5.
Right: Histogram of gradient magnitudes, computed by central differencing.
A central χ3(0, σ 2

g ) distribution with E{g} = 2σi /
√

π = 5.6 corre-
sponds to homogeneous regions. The non-central χ1(λ, σ 2

g ) distribution with

λ = 1
2 (μ2 − μ1) ≈ 50 arises from voxels at the one-dimensional boundary.

(d) If filter weights wd depend on the direction, the resulting
distribution of the gradient magnitudes corresponds to a linear
combination of central χ-distributions χD(0, 2(wdσi )

2).

B. Gradient Magnitudes at Noisy Boundaries

Next, consider an image with two regions R1, R2 with mean
intensities μ1, μ2; μ1 < μ2, and the same noise level σi , sepa-
rated by a boundary parallel to one image dimension (Fig. 2).
Intensities in this image follow a mixture of two Gaussian
distributions (Eq. 1), weighted by the region size. Gradient
magnitudes determined within a region are χk-distributed,
as above. However, gradient magnitudes at the boundary fol-
low a non-central χ-distribution with k DOF and λ = μ2−μ1,
denoted as χk(λ, σ 2

g ). The PDF for k > 1 is given by [3]:

g ∼ χk(λ, σ 2
g ) = λ

σ 2
g

(g

λ

)k/2
exp

(
− g2 + λ2

2σ 2
g

)
I k

2 −1

(
λg

σ 2
g

)
,

(4)

where Iv (·) denotes the modified Bessel function [1].
For computational stability, it is advantageous to use the
equivalent form:

g ∼ λ

σ 2
g

(g

λ

)k/2
exp

(
− (g − λ)2

2σ 2
g

)
I ∗

k
2 −1

(
λg

σ 2
g

)
, (5)

where I ∗
v (·) denotes the exponentially scaled modified Bessel

function [1]. The mean of the non-central χ distribution is
given as (Fig. 3):

E{g} =
√

2σ 2
g

�(k/2 + 1/2)

�(k/2)
M

(
−1

2
,

k

2
,− kλ2

2σ 2
g

)
, (6)

where M(a, b, x) is the confluent hyper-geometric
(Kummer’s) function of the first kind. We note:

(a) If the non-centrality parameter λ is large (i.e., λ � σg),
then (i) the mean is independent of the noise: E{g} ≈ λ

√
k

(see Appendix), and (ii) I ∗
k
2 −1

(
λg
σ 2

g

)
→ 1, i.e., the distrib-

ution χk(λ, σ 2
g ) is approximated by a Gaussian distribution

N (λ
√

k, σ 2
g ).

Fig. 3. Mean value of the gradient magnitude of a non-central χ1(λ, σ 2
g )

distribution for λ = 50 and various signal-to-noise ratios λ
σg

. Note that

E{g} ≈ λ
√

k for λ
σg

> 5.

Fig. 4. Left: Two-class synthetic image with equally-sized regions of intensity
μ1 = 50, μ2 = 150, convolved with a one-dimensional Gaussian filter of
width τ = 3. Right: Gradient magnitude g vs. intensity x . Dots correspond to
the averaged gradient magnitude E{g}, computed by central differencing and
sampled at a given intensity x in the image. Due to the spatial discretization,
not all intensities are present in the image, so some intensity bins are empty.
The continuous line shows the gradient magnitudes predicted by the arch(·)
function (see Eq. 9). The maximum gradient magnitude is found at the mean
of (μ1, μ2) : g(μ1, μ2, τ ) ≈ 100

τ
√

2π
= 13.3.

(b) Suppose we construct an image with a complex bound-
ary by randomizing voxels in Fig. 2. The gradient filter
yields equal proportions of directional components centered
at �x = 0 and �x = 1

2 (μ2 − μ1). The resulting distribution
of gradient magnitudes follows a linear combination of χ3 dis-
tributions with proportions 1

8 χ3(0, σ 2
g ), 3

8 χ3(
1
2 (μ2 −μ1), σ

2
g ),

3
8 χ3(

√
2

2 (μ2 − μ1), σ
2
g ), and 1

8 χ3(
√

3
2 (μ2 − μ1), σ

2
g ).

(c) Applying a more complex gradient magnitude filter
(e.g., a Zucker-Hummel filter) will also result in a linear
combination of χk distributions, where k corresponds to the
number of directional terms of the gradient filter.

(d) It is possible to derive analytical solutions for linear
combinations of non-central χ-distributions [22]. These solu-
tions are complex, and coefficients depend on the interaction
of the boundary and the gradient filter. As we will demonstrate
later, it is not necessary to explicitly use an analytical solution
for our intended application.

C. Gradient Magnitudes at Blurred Boundaries
Now, we study the influence on image blur, first for the

noise-free case of the two-region image as shown in Fig. 4.
We model image blur by a convolving the image I along
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Fig. 5. Gradient magnitude g vs. intensity x computed in the image shown
in Fig. 4. Dots correspond to the averaged gradient magnitude E{g}, computed
by central differencing and sampled at a given intensity x in the image, and
the continuous line to the prediction. Left column: Varying the noise level
σi = 1 (top), σi = 5 (middle), and σi = 10 (below), at constant blur τ = 3.
Right column: Varying the blur τi = 2 (top), τi = 4 (middle), and τi = 6
(below), at constant noise level σ = 1.

coordinate d and boundary at db with a one-dimensional
Gaussian filter f (τ ) [12]:

I f (db, μ1, μ2, τ ) = I (db, μ1, μ2) × f (τ ) (7)

= μ1 + (μ2 − μ1)erf

(
d − db

τ
√

2

)
, (8)

where erf(·) corresponds to the error function [1]. The gradient
magnitude g in relation to the intensity x along the transition
from μ1 to μ2 is described by:

g(x |μ1, μ2, τ ) = μ2 − μ1

τ
√

2π
arch

(
x − μ1

μ2 − μ1

)
(9)

with arch(x) = exp
[
−{erf−1(2x − 1)}2

]
. (10)

For a fast approximation to erf−1(·), refer to [40]. Note that
the gradient magnitude is inversely proportional to the width of
the blurring filter: g ∝ 1

τ . Adding Gaussian-distributed noise to
the image in Fig. 4, we recognize that gradient magnitudes at a
given intensity x are now distributed according to a non-central
χ(λ, σ 2

g ) distribution, with means E{g} according to Eq. 6
(see Fig. 5). Note that the prediction by Eq. 9 does not depend
on the noise level, but on the blur τ only. For a reasonably high
SNR, the approximation in Eq. 13 (Appendix) still holds, i.e.,
E{g} ≈ λ

√
k. Adding noise followed by blurring introduces

spatial correlations in the noise, invalidating the image model
from Section II-A. However, we find that Eq. 13 is still valid
in the presence of correlated noise.

Fig. 6. Gradient magnitude g vs. intensity x computed in the image shown
in Fig. 4. Dots correspond to the averaged gradient magnitude E{g}, computed
by central differencing and sampled at a given intensity x in the image, and
the continuous line to the prediction. Images were corrupted by χ2-distributed
(Rician) noise (top row), χ16-distributed noise (middle row), and Poisson
noise (below), with var = 1 (left column) and var = 64 (right column).

D. Non-Gaussian Noise Distributions

Noise in reconstructed MR images follows a χn(0, σ 2)
distribution, where n corresponds to twice the number of
receiver coils. Common examples include the case of a single
receiver coil (n = 2, Rician noise), and an 8-channel head
coil (n = 16). A similar, albeit more involved theoretical
derivation can be made for images corrupted by this noise
distribution. We provide a simulation experiment to compare
the prediction according to Eq. 9 in images corrupted by χ2-,
χ16-, and Poisson-distributed noise. In Fig. 6, we compiled
simulation results for these three distributions, for a low noise
(var = 1, left column) and high noise (var = 64, right column)
scenario. We conclude that the prediction according to Eq. 9
still holds. Because these distributions have a non-zero mean,
μ1 and μ2 above correspond to the sample means in these
regions, not the un-corrupted intensities.

E. Image Acuity Measure

Now, the theoretical framework is assembled to define our
image acuity measure. From the simulation above, remember
that the gradient magnitude at a boundary is proportional to
the width of the blurring filter, i.e., g ∝ 1

τ . Thus, we propose
to use the ratio of the peak gradient magnitude and the
intensity difference at a boundary as the dimensionless acuity
measure A(·):

A(μ1, μ2) = E{g
[ 1

2 (μ2 + μ1)
]}

μ2 − μ1
, μ1 < μ2. (11)

Again, let us make some remarks:
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(a) Note that A → ∞ if the image blur τ → 0, reflective of
infinite acuity. Along such a boundary in a discretized image,
only voxels with pure intensities μ1 or μ2 are found. Let us
denote such a boundary as “sharp”.

(b) The acuity measure is (largely) independent of the noise
level, the absolute image intensity and contrast. Thus, acuity
can be used as a complementary measure of image quality,
independent of SNR and CNR measures.

(c) Note that image noise is often estimated from a gra-
dient magnitude image, as indicated in Section II-B. For the
estimation of SNR and CNR, the intensity of homogeneous
regions must be determined (e.g., from intensities of local
regions with low gradient magnitudes). If this information is
available, acuity can readily be computed according to Eq. 11.

(d) For one-directional boundaries and Gaussian blur,
the width τ of the Gaussian point spread function can be
estimated from the proportionality factor (see Eq. 9). We study
this relationship for more complex images, gradient filters, and
other blur in the next section.

(e) Noise in reconstructed MR images follows a χn(0, σ 2)
distribution, where n corresponds to twice the number
of receiver coils. We demonstrated in the experiment of
Section II-D that differences in the acuity measure between
images corrupted by different noise distributions at the same
variance are negligible.

(f) For other types of image blur, e.g. due to directed motion,
the Gaussian convolution model introduced in the previous
section does not hold. For real images such as studied in the
next section, intensity and gradient magnitudes still follow an
arch-like function with a maximum gradient magnitude at the
mean of both pure intensities.

(g) The “modulation transfer function” (MTF) is used to
quantify properties of an imaging process, and is defined
as the quotient (frequency-dependent) image contrast and
object contrast [6], similar to this definition of acuity. The
“subjective quality factor” is obtained by integrating the MTF
over a specified frequency range, and is used as a quantitative
property of imaging systems that correlates with human visual
perception [16]. Both MTF and acuity aim at quantifying
image degradation using image properties at edges. However,
acuity is defined here as a post-hoc measure for which the
true object contrast is not available, at least in the example
use cases in medical imaging discussed here.

III. EXPERIMENTS AND RESULTS

The analytic framework developed above is first studied in
simulated data and then applied to real images to demonstrate
the use of the proposed acuity measure.

A. Relationship of Acuity and Blur

First, we used an image with a one-directional boundary
(see Fig. 4), simulated blur by convolution with a Gaussian
filter of width τ , and added Gaussian-distributed noise of
level σi . As shown in Fig. 7 left, the proportionality fac-
tor

√
2π is approximately found for a considerable range of

image blur and noise. The deviance for low image blur is due
to the approximation error of the gradient magnitude on the

Fig. 7. Left: Relationship of image blur τ and the reciprocal of image
acuity 1/A for different noise levels (σi = 0: circle; 2: plus, 4: star).
Right: Relationship of image blur τ and the reciprocal of image acuity 1/A
for different gradient magnitude filters (central gradient magnitude: circle;
Zucker-Hummel: plus, Gaussian derivative, σ = 1.0: star, Gaussian derivative,
σ = 2.0: square).

Fig. 8. Left: Orthogonal sections of the brain web phantom [7]. The gray and
white matter compartments were selected for the following simulation. Right:
Relationship of image blur τ and the logarithm of image acuity log A for a
Zucker-Hummel filter at noise levels of σi = {0, 2, 4, 6, 8, 10}, for Gaussian
noise: circle, χ2-distributed noise: plus, and χ18-distributed noise: star.

discretized spatial grid, the deviance for high blur/high noise
due to the approximation error on the mean of the gradient
magnitude for low SNR. Next, we tested the influence of the
type of gradient magnitude filter on the proportionality in Eq. 9
(Fig. 7, right) at a constant noise level σi = 2.0. We conclude
that the amount of (Gaussian) image blur can be estimated
if simple gradient magnitude filters are used. The application
of more complex edge filters (with a higher stability against
noise) is not required.

Next, we used the brain web phantom [7] as an example
for a realistic image with complex boundaries. We assume
that the provided image is free of noise and “sharp” as
defined above. Image acuity was determined for regions cor-
responding to the gray and white matter of the human brain,
with mean intensities μG M = 110, μW M = 150, and an
isotropic spatial resolution of 1 mm. As examples of image
deterioration, the provided image was convolved by a Gaussian
filter of different widths, simulating an increase in image blur.
Gaussian-, χ2-, χ18- and Poission-distributed noise was added,
corresponding to a SNR between 13 and 65. Image acuity was
determined by the procedure described in Section II-E.

Empirically, we found a log-linear relationship of the form
log(A) ≈ −0.568τ − 0.563 in the interval of τ ∈ [0.6, 3.0].
The difference between data points corresponding to different
noise levels were too small for visualization, so the average is
shown in Fig. 8. We understand this relationship as arising
from a linear combination of arch-like functions (Eq. 9)
with higher-order terms τ, τ 2, τ 3 in the denominator, due
to blurring at one-, two-, and three-directional boundaries.
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Fig. 9. Top left: Axial slice of the brain web phantom [7], corrupted by
image blur τ = 1.5 and Gaussian noise σ = 4. Top right: Image restored
by deconvolution. Below left: Segmentation of the corrupted image into three
classes (NMI = 0.548). Below right: Segmentation of the restored image
(NMI = 0.732).

Although coefficients of these models depend on the configura-
tion of the boundaries, i.e., the imaging content, we have delib-
erately chosen the simple two-parameter model above. The
relationship between blur and acuity is (almost) independent
of the noise level. Given an example image that is sufficiently
close in image content (e.g., the similar MR image of the
human head), the equation above can be used to estimate the
amount of blur in a real image of the same spatial resolution.

Finally, we wanted to assess the use of acuity in image
restoration by deconvolution [9]. The brain web phantom was
corrupted by image blur τi = {0, 0.5, 1, 1.5, 2, 2.5, 3} and
Gaussian noise σi = {2, 4} (Fig. 9, top left), then restored
(Fig. 9, top right). Corrupted and restored images were seg-
mented into three classes based on a Gaussian mixture model,
roughly corresponding to 1: Cerebro-spinal fluid and skull;
2: Gray matter and connective tissue; 3: White matter and fat.
Example results are shown in Fig. 9, for a corrupted image
(bottom left) and its restored version (bottom right). Label
confusion matrices were computed w.r.t. the reference seg-
mentation of the un-corrupted phantom. To rate the restoration
quality, we used the normalized mutual information (NMI) of
the confusion matrix as a similarity metric, which ranges from
0 to 1 (perfect correspondence). The improvement in acuity
and similarity are shown in Fig. 10 for different levels of noise
and image blur. At each iteration of the restoration process,
measures acuity, SNR, CNR, and the segmentation similarity
were determined. Most interestingly, the quotient of acuity
and similarity reached a constant level after 15-20 iterations,
indicating that acuity can be used as a convergence criterion
of the restoration process if the ground truth is unknown. The
computation of these quality measures adds a computational

Fig. 10. Left: Acuity of the phantom, corrupted by image blur τ and
Gaussian noise (low noise: square, high noise: plus) and restored by
deconvolution (low noise: circle, high noise: star). Right: Similarity of
a three-class segmentation with reference segmentation for the corrupted
images (low noise: square, high noise: plus) and restored images (low noise:
circle, high noise: star).

overhead of about 20% per iteration, and is largely due to
the fact that a segmentation must be computed in order to
determine the class-wise intensities and gradient magnitudes
to estimate the noise level. The additional time required
to compute acuity is negligible. It must be added that the
restoration quality (according to the similarity metric) depends
much on the setting of the damping factor. Thus, acuity cannot
be used to optimize this parameter.

B. Application Examples

In the following, we demonstrate the use of acuity in three
application examples that were described in the introduction.

1) Detection of Motion-Corrupted Images in Large-Scale
Data Bases: A straightforward application of the acuity
measure is to detect images corrupted by motion blur.
A typical scenario involves the analysis of a pre-clinical
neuro-imaging study where individual anatomical head data
sets were acquired to be used as an anatomical reference.
As discussed in the introduction, subject motion cannot always
be avoided (refer to Fig. 1 for an example). We consider an
initial quality check as helpful before later stages of an image
processing chain fail or produce erroneous results.

We selected a data base of head images selected from a
study that aims at finding possible differences in brain macro-
anatomy in young subjects with autism spectrum disorder
(ASD). We received 20 structural MRI examinations of sub-
jects with a behavioral diagnosis of ASD (5 female, 15 male,
age 12–20), and an age-matched control group of 10 nor-
mally developing children (1 female, 9 male, age 12–18).
T1-weighted MR images were acquired on a Philips Achieva
3T scanner, equipped with an 8-channel phased array coil,
using a TFE sequence with TR 11 ms, TE 3.7 ms, flip angle 18
degrees, 150 sagittal slices with a matrix of 240 ×240 voxels,
corresponding to an isotropic resolution of 1.0 mm. Images
were analyzed by the procedure described above (Section II-E)
to obtain measures of image acuity, SNR, and CNR, based on
the white and gray matter compartments of the brain (Fig. 11).
These quality measures are helpful to identify data sets that
may be considered for exclusion (Fig. 1). In the whole sample,
SNR (resp. CNR) are found to be statistically independent
of acuity, conforming our initial notion of a complementary
measure. A principal component analysis of the measures can
be used to map measures onto a single dimension that can
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Fig. 11. Plots of acuity vs signal-to-noise ratio (SNR, left) and contrast-to-
noise ratio (CNR, right) for all data sets of the study. Acuity is independent
of SNR (Pearson correlation, p = 0.11) and CNR (p = 0.43).

Fig. 12. Top: Example slice from the dynamic CT heart study. Boxes mark
the heart and chest region. Below left: Acuity vs. acquisition time point for the
heart region (dots) and the spine region (crosses). Note that the heart region
has a lower acuity and a considerable dependency on the heart cycle. Below
right: Intensity difference between consecutive time points vs. acquisition time
point for the heart region (dots) and the spine region (crosses). The intensity
difference is used as a simple detector for motion between consecutive time
points. Similar to the panel on the left, the heart region shows a considerable
motion during the cycle, while the spine regions remains mostly stationary.

loosely be denoted as “image quality”. We suggest to visually
inspect data sets in one tail to decide if a specific case should
be excluded from further evaluation.

2) Differentiation of Moving and Stationary Boundaries in
an Image: We received a dynamic CT study of the human
heart, obtained from a publicly available data base [35].
ECG-gated CT images were acquired in a healthy volunteer
at 20 time steps throughout the R-R cycle on a Siemens Syngo
scanner (matrix 512 × 512 voxels, 66 slices, 0.43 × 0.43 mm
in-plane resolution, 3 mm slice thickness). We selected a
region enclosing the heart (which is presumably moving
throughout the cycle) and a region enclosing the spine
and posterior chest (presumably stationary; Fig. 12, top).
We measured the acuity at the border between soft tissue and
air in both regions and at all time points (Fig. 12, below left).

Fig. 13. Left: Axial section of the optimal template. Right: Relationship of
acuity A and the number of images n in the template set T .

In contrast to the spine region, the acuity in the heart
region is shows a dependency on the heart cycle. We interpret
this lower acuity as due to the higher motion-related within-
scan blur at the tissue-air boundary. As a simple verification,
we computed difference images of consecutive time points,
and determined the variance within the ROIs, as a simple
surrogate of motion. We found that the variance in the heart
ROI shows a considerable dependency on the cycle while the
variance in the spine ROI is mostly independent of the cycle,
but not always lower than the heart (Fig. 12, below right).
From the difference images, we understand that lung nodules
in the spine ROI contribute to the detected motion. Thus,
the acuity measure can be used to differentiate stationary and
moving regions in an image. Note that our motion estimation
is based on the assessment of motion-related blur at single
time points.

3) Sampling of a Common Anatomical Template: In the
context of voxel or tensor-based morphometry (VBM, TBM),
it is common practice to develop a study-specific anatomical
template to which all data sets are registered before statistical
analysis. There has been some discussion about the optimal
number and selection of data sets to be included in the
formation of the template [5], [38]. We propose to use the
set of images that yields the highest acuity of the template.
A simple greedy approach was used to accomplish this task.
We formed two sets of images, the set of candidate images C
(initially, n = 30), and the set of template images T (initially,
n = 0). The image with the highest acuity was selected from
C and moved to T . Next, we selected the image from C that
yielded the template with the highest acuity when combined
with T . This procedure was repeated until C was empty. The
set of images in T with the highest overall acuity was used to
generate the template.

We used the children’s data base described above, and
registered images via the nonlinear diffeomorphic demon
approach, with cross-correlation as image similarity metric [4].
We found a maximum around n = 10 data sets with a maximal
acuity of 1.35 (Fig. 13). Note that the combined set had a
considerably higher acuity than any single data set, while the
acuity of the maximal set n = 30 was much lower and similar
to the best image alone.

IV. DISCUSSION

The statistical properties of intensities and gradient magni-
tudes at region boundaries in the presence of noise and image
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blur were examined and discussed in this work. A simple
measure of image acuity (Eq. 11), based on the ratio of
the maximal gradient magnitude and intensity difference at
a boundary, was established and applied to both simulated
and non-simulated data. Assuming that image blur can be
modeled by convolution with a Gaussian filter of width τ ,
the filter width can be estimated from the acuity measure by a
log-linear relationship (Fig. 8), within a range of image noise
and blur typically found in medical images. Three use cases
demonstrated applications of this measure, the detection of
motion corrupted data sets, the detection of moving regions
in an image, and the selection of the best set of images
in the generation of a common anatomical template. Further
application areas for this acuity measure are conceivable but
were not tested here:

• Optimizing the efficiency of procedures for within-scan
motion correction (e.g., prospective motion correction,
cardiac gating).

• Assessing and optimizing the spatial resolution of sta-
tistical image reconstruction algorithms (e.g., in PET
imaging).

• Assessing and comparing the spatial resolution of non-
linear image registration procedures.

• Employing the statistical context developed here for seg-
mentation to better resolve mixtures in partial-volume
voxels.

We emphasize that our acuity measure can be determined
post-hoc, i.e., a phantom with known properties is not needed.
As discussed above, we assume that the imaged object has
a sharp boundary (with respect to the spatial and temporal
image resolution) between two regions of (approximately)
homogeneous intensity. This condition is often fulfilled in
medical images, at least in sub-sections of a scene. We are
aware of a few caveats in the application of the acuity measure
that are discussed in the following.

A. Multiple Neighboring Regions

Suppose we have three regions R1, R2, R3 with mean
intensities μ1 < μ2 < μ3 in an image with boundaries
B1,2, B1,3, B2,3. The gradient magnitude distributions from
voxels at boundaries B1,2 and B2,3 do not overlap, however,
the distributions at B1,2, B1,3 and B2,3, B1,3 may overlap if the
intensity differences are small and/or the image blur and noise
are large. Thus, we suggest to select a sub-image with just two
regions. As an alternative, the tracing procedure described for
accumulating LH-histograms [39] can be used to discriminate
voxels due to different boundaries.

B. Non-Uniform Regions

The presence of (large) intensity inhomogeneities in the
image invalidates assumptions made above. Thus, we suggest
to either correct inhomogeneities first or select an (approxi-
mately) homogeneous sub-image. Likewise, the presence of
texture in a region is not in accordance with our simple image
model. For small-scale texture with small intensity variations
(e.g., as in anatomical MR images of the brain’s white matter),
texture will be accounted for as an increase in noise in our

model. Regions with strong texture violate the assumption of
a uniform region intensity, so that acuity cannot be estimated
in this image area based on our approach.

C. Blur Model

We assumed that image blur can be modeled by
a convolution with a Gaussian filter. This assumption
approximately holds for a variety of causes that influence
image acuity, e.g., filtering, interpolation, (non-linear)
registration, and small-scale motion. Images corrupted by
large, directed motion or ghosting may not have a lower
acuity as defined here.

D. Correlated Noise

Our statistical image model considers the case of additive
noise that is uncorrelated in space. While this simplification
is often made in medical image analysis, it is important
to note that either properties of the imaged object (e.g.,
texture), the image acquisition and reconstruction method
(e.g., CT tomographic reconstruction), or any post-processing
(e.g., spatial filtering) violate this assumption. Considering the
case that two neighboring region may have different spatial
correlation statistics, it may not be feasible to derive closed-
form description for the distribution of intensity and gradients
in the vicinity of a boundary. Instead, Monte-Carlo simulations
could be used to study the influence of correlated noise on
acuity [28]. In a cursory repetition of the experiment in
Section II-C, we added noise first, then blurred the image, thus,
introducing spatial correlation in the noise. Here, we found that
the arch-shaped relationship is still retained.

Our image acuity measure is simple to understand and
straightforward to implement. We demonstrated applications
in medical imaging where our acuity measure is useful in the
objective and automatic assessment of image quality.

APPENDIX

MEAN OF GRADIENT MAGNITUDE

We were interested in approximating the mean E{g} of the
gradient magnitude for λ � σ , e.g., if the intensity difference
at an edge is much larger than the noise. Recall that:

E{g} =
√

2σ 2 �(k/2 + 1/2)

�(k/2)
M

(
−1

2
,

k

2
,− kλ2

2σ 2

)
. (12)

We used Kummer’s transformation M(a, b, z) = ez M(b −
a, b,−z) [1] and identify a = k/2 + 1/2, b = k/2, and
z = (kλ2)/(2σ 2). For a > b and z � 0, Kummer’s function
is approximated by M(a, b, z) ≈ (�(b)/�(a)) ez za−b [1].
Insertion yields:

E{g} ≈
√

2σ 2 �(a)

�(b)
e−z �(b)

�(a)
ezza−b (13)

=
√

2σ 2

(
kλ2

2σ 2

)1/2

= λ
√

k. (14)

Thus, the mean is independent of the noise level, and pro-
portional to the intensity difference at the edge, given the
dimensionality of the image.
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