
Medical Image Analysis 16 (2012) 876–888
Contents lists available at SciVerse ScienceDirect

Medical Image Analysis

journal homepage: www.elsevier .com/locate /media
Nonparametric Bayesian inference of the fiber orientation distribution
from diffusion-weighted MR images

Enrico Kaden a, Frithjof Kruggel b,⇑
a Department of Computer Science, University of Leipzig, Johannisgasse 26, 04103 Leipzig, Germany
b Department of Biomedical Engineering, University of California, Irvine, 204 Rockwell Engineering Center, Irvine, CA 92697-2715, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 24 July 2011
Received in revised form 10 January 2012
Accepted 17 January 2012
Available online 1 February 2012

Keywords:
Spherical deconvolution
Lebesgue decomposition
Dirichlet process mixture
Reversible jump MCMC
Diffusion MR imaging
1361-8415/$ - see front matter � 2012 Elsevier B.V. A
doi:10.1016/j.media.2012.01.004

⇑ Corresponding author.
E-mail addresses: enrico.kaden@gmail.com (E. K

Kruggel).
Diffusion MR imaging provides a unique tool to probe the microgeometry of nervous tissue and to explore
the wiring diagram of the neural connections noninvasively. Generally, a forward model is established to
map the intra-voxel fiber architecture onto the observable diffusion signals, which is reformulated in this
article by adopting a measure-theoretic approach. However, the inverse problem, i.e., the spherical
deconvolution of the fiber orientation density from noisy MR measurements, is ill-posed. We propose
a nonparametric representation of the tangential distribution of the nerve fibers in terms of a Dirichlet
process mixture. Given a second-order approximation of the impulse response of a fiber segment, the
specified problem is solved by Bayesian statistics under a Rician noise model, using an adaptive reversible
jump Markov chain Monte Carlo sampler. The density estimation framework is demonstrated by various
experiments with a diffusion MR dataset featuring high angular resolution, uncovering the fiber orienta-
tion field in the cerebral white matter of the living human brain.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The human brain forms a complex neural network with a con-
nectional architecture that is still far from being known in full de-
tail, even at the systems-level scale. Diffusion-weighted magnetic
resonance (MR) imaging has enabled us to probe the microgeome-
try of nervous tissue noninvasively and to explore the wiring
scheme of the neural connections in the individual living subject
(Le Bihan et al., 1986). This technique measures the diffusion pro-
cess of the spin-bearing water molecules in the underlying sample
material. Depending on the direction along which the Brownian
motion is observed, the microscopic tissue structure, especially
the orientation of the axonal membranes, may hinder the diffusing
molecules differently. As a result, the MR measurement exhibits
anisotropic diffusion patterns if the nerve fibers are coherently ori-
ented and the examination time is chosen sufficiently long. More-
over, a distinctive feature of brain organization is that the white
matter fiber pathways are neither regularly ordered nor entirely
arbitrary, but are grouped into coherent bundles. Therefore, it is
interesting to know how the tangents at the fiber streamlines are
oriented within a small environment. This knowledge about the in-
tra-voxel tissue architecture allows to reconstruct the course of the
nerve fibers. Subsequently, we can study the neural circuitry by
ll rights reserved.
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means of interregional connections, which integrate the diversity
of cortical areas and subcortical nuclei with their specialized func-
tional roles.

For this purpose a biophysical model is established that maps
the tissue geometry of white matter onto the diffusion process of
water molecules and further onto the observable MR signals. Let
us consider a population of nerve fibers located within a voxel.
Assuming that the impulse response of a fiber segment is known
up to its orientation, the spherical convolution with the tangential
distribution of the fiber pathways yields the diffusion signal (von
dem Hagen and Henkelman, 2002). The objective is then to esti-
mate the fiber orientation distribution from a finite sample of noisy
MR observations via spherical deconvolution (Tournier et al., 2004;
Anderson, 2005), which is an ill-posed problem. Henceforth, we
shall focus on recovery techniques that preserve the characteristic
properties of a density function, which is nonnegative and inte-
grates to one. For instance, Alexander (2005) proposed a maximum
entropy method to solve the inverse problem. The fiber orientation
density may be also represented by a finite mixture of Bingham
distributions (Kaden et al., 2007), which provides an explanatory
parameterization of the intra-voxel fiber architecture (e.g., the
spread of the fiber direction within a bundle). Alternatively, the
solution to this variational problem is found in a reproducing ker-
nel Hilbert space of square-integrable functions on the sphere
whose harmonic coefficients decay sufficiently fast (Kaden et al.,
2008). This nonparametric function estimation generalizes previ-
ous linear methods truncating the spherical harmonic expansion
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and preserves the defining properties of the density function (i.e.,
its nonnegativity and normalization). Most recently, Patel et al.
(2010) developed a mesh-based deconvolution framework. We
refer the reader to Ramirez-Manzanares et al. (2007), Jian and
Vemuri (2007), Tournier et al. (2007), Leow et al. (2009) and Yeh
et al. (2011) for related reconstruction techniques, which may
not guarantee all characteristic properties and/or estimate spheri-
cal functions only loosely connected to the fiber orientation distri-
bution. See also Assemlal et al. (2011) for a comprehensive review.

The present article revisits the forward model by adopting a
measure-theoretic perspective. In particular, we shall ask for an
appropriate mathematical structure in order to describe the tan-
gential distribution of the fiber streamlines. Indeed, measure the-
ory (Bogachev, 2007) provides a rigorous definition of the fiber
orientation distribution as a measure normalized with one, show-
ing that previous approaches constitute special cases which are
generalized in this work. The Lebesgue decomposition then allows
us to categorize the measure into discrete, absolutely continuous,
and singular continuous components, which each are illustrated
by examples found in the existing literature. Additionally, we at-
tempt to clarify the meaning of the (fiber orientation) density func-
tion and that the tangential distribution of the nerve fibers is not a
probability measure, although this misconception about the fiber
orientation distribution has gained some acceptance. Another
objective is to define a dictionary in terms of which the measure
is represented, since the general measure space is by far too large
in order to be computationally manageable. In this paper we pro-
pose a nonparametric description of the fiber orientation distribu-
tion via a Dirichlet process mixture (Ferguson, 1973; Lo, 1984),
which models a probability space on the measure space. Its con-
structive representation shows that these random distributions
are absolutely continuous and fulfill the antipodal symmetry prop-
erty. Thus, we will be able to generate synthetic fiber orientation
distributions that closely resemble the observed microgeometry
of white matter. More importantly, the Dirichlet process mixture
encodes our prior knowledge about the tangential distribution of
the nerve fibers.

After the exact definition of the fiber orientation distribution, a
novel computational method is developed for the nonparametric
estimation of the unknown spherical density. Given a second-order
approximation of the impulse response of a fiber segment with
specified diffusivity parameters, we formulate a statistical model
that maps the intra-voxel tissue geometry onto the observable dif-
fusion signals. The inverse problem aims to estimate the fiber ori-
entation density, that is, an absolutely continuous measure
described by a Dirichlet process mixture, from a finite set of noisy
MR measurements, which is performed by Bayesian inference un-
der a Rician noise model. The spin echo signal without diffusion
weighting (i.e., the T2-contrast) is integrated into the estimation
framework. We also pay attention to the noise alterations due to
the linear interpolation that is required for the correction of subject
motion and the co-registration with an anatomical coordinate sys-
tem. Subsequently, our paper introduces an original approach to
sampling the posterior of this Bayesian model. The proposed tech-
nique consists of a finite approximation of the Dirichlet process
through a discrete multivariate distribution (Ewens, 1972) and
an adaptive version of the reversible jump Markov chain Monte
Carlo (MCMC) sampler (Green, 1995), which might be interesting
beyond the statistical analysis of diffusion MR images. Note that
all characteristic properties of the fiber orientation distribution,
namely its antipodal symmetry, nonnegativity, and normalization,
will be ensured.

This article is organized as follows. Section 2 reformulates a
recently proposed spherical convolution model from a measure-
theoretic viewpoint. A major contribution presents the Lebesgue
decomposition of the fiber orientation distribution. Section 3
focuses on the absolutely continuous component of the measure,
which is here modeled by a Dirichlet process mixture. More tech-
nically, the stochastic process is represented through a stick-break-
ing model with bipolar Watson densities. Additionally, we sample
from the Dirichlet process mixture and illustrate the simulated fi-
ber orientation densities, which are very similar to the observable
tissue geometry. Section 4 introduces the nonparametric density
estimation via Bayesian inference. Weakly-informative priors are
chosen that make as few assumptions about the tangential distri-
bution of the nerve fibers as possible, in an attempt to let the data
speak for themselves. An appendix addresses the computational is-
sues of Bayesian nonparametrics. The Results section demonstrates
the reliable estimation of the fiber orientation field even for three
crossing fiber bundles, namely the corona radiata, the callosal fi-
bers, and the superior longitudinal fasciculus, using a diffusion
MR dataset featuring high angular resolution. We conclude with
a discussion of the proposed models and computational methods,
including a thorough comparison with parametric Bayesian infer-
ence and Gaussian process models.
2. Spherical convolution

Diffusion MR imaging aims to reveal quantitative information
about the directional structure of nervous tissue. The task may
be divided into two parts, that is, data synthesis and data analysis.
In this section we establish a forward-generative model that maps
the intra-voxel tissue geometry onto the observable diffusion
signal.

2.1. Biophysical model

Human brain white matter is composed of (myelinated) axons,
which are organized in bundles called fascicles, and an extraaxonal
compartment including glial cells such as oligodendrocytes. Con-
sider the infinitesimal neighborhood of a nerve fiber at the point
x 2 R3 that is oriented by the tangent vector x(x) 2 S2, where
S2 ¼ fx 2 R3 : kxk ¼ 1g denotes the two-dimensional unit sphere.
If the fiber pathways are sufficiently smooth, a small fiber section
(in the range of micrometers) resembles a portion of a cylindrical
tube which is rotationally symmetric. Under the Gaussian phase
assumption (Neuman, 1974), the diffusion signal of this fiber seg-
ment—including the surrounding volume typical of an axon, which
is always present, even when the fibers abut—may be approxi-
mated by

hbðg;xÞ ¼ expð�b½ðkk � k?Þhg;xi2 þ k?�Þ ð1Þ

up to the second order. kk and k\ denote the effective longitudinal
and transverse diffusion coefficients, respectively, with the con-
straint kkP k\ P 0, as the axonal membranes perpendicular to
the fiber orientation x 2 S2 form the major structural barriers that
confine the diffusing water molecules which explore the biological
tissue by random walk. The MR experiment, whose sequence timing
(i.e., the temporal profile of the diffusion sensitizing gradients) is
kept fixed, is controlled by the diffusion weighting factor b P 0
and the normalized gradient direction g 2 S2. The impulse response
function hb takes its values in the interval [0,1] and is antipodally
symmetric, that is, hb(g,x) = hb(�g,x) for all g, x 2 S2. The apparent
diffusivity parameters kk and k\ of a single fiber should not vary too
much throughout the cerebral white matter. Compare also Kaden
et al. (2008) for a generalization of this constant diffusivity
assumption.

Henceforth, we assume that the impulse response hb of a small
fiber segment is known up to its orientation x 2 S2. An important
remark is that this function does not depend on the particular loca-
tion of the fiber within a voxel. Let the two-dimensional unit
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sphere S2 be equipped with the Borel r-algebra B. The fiber orien-
tation distribution l : B ! ½0;1� defines a measure with l(S2) = 1
(Bogachev, 2007) which quantifies the relative frequency of spe-
cific fiber orientations over a given Borel set. Note that l resembles
a probability distribution from a mathematical point of view, but
has a different, namely biophysical meaning. Consider a population
of nerve fibers within a voxel. Since the diffusion process between
different compartments, whose T2-relaxation should be similar, is
supposed to be in slow exchange, the spherical convolution of
the response function hb with the fiber orientation distribution l,

EbðgÞ
E0
¼ Piso expð�bkisoÞ þ ð1� PisoÞ

Z
S2

hbðg;xÞdlðxÞ; ð2Þ

yields the observable MR signal for this voxel (cf. von dem Hagen
and Henkelman, 2002). Eb(g) is the spin echo signal with the diffu-
sion weighting b P 0 and g 2 S2, E0 denotes the signal in the absence
of diffusion encoding, which is required for the normalization of the
T2-contrast. The diffusion signal eb(g) = Eb(g)/E0 lies in the interval
[0,1] and is antipodally symmetric, i.e., eb(g) = eb(�g) for all g 2 S2.
The first term on the right-hand side approximates the isotropic sig-
nal for the space between the nerve fibers (excluding the extracellu-
lar space in the immediate neighborhood of an axon), which is filled
with glial cells, interstitial fluid containing the extracellular matrix,
etc. Piso 2 [0,1] denotes its volume fraction and kiso is the apparent
diffusion coefficient. Therefore, anisotropic patterns observable in
the MR signal are a consequence of the coherent orientation of the
nerve fibers within a voxel, the dense packing of the (myelinated)
axons in the white matter, and that the transverse diffusion coeffi-
cient of a fiber segment is smaller than the longitudinal diffusivity
parameter due to the barriers formed by the axonal membranes.

2.2. Lebesgue decomposition

Next, we decompose the fiber orientation distribution into
three different types of measures. If a distribution does not consists
of any two of these principal components, it can be shown that the
tangential distribution of the nerve fibers has to be of the remain-
ing type. Let k denote the Haar measure k : B ! ½0;1� normalized
with k(S2) = 4p, which is invariant with respect to the orienta-
tion-preserving rotations. According to Lebesgue’s decomposition
theorem (Bogachev, 2007), the fiber orientation distribution may
be uniquely decomposed as l = ld + lac + lsc with respect to k.
These components are defined as follows:

(i) The discrete measure ld forms the pure point component
with a countable collection
ldðS
2Þ ¼

X
x2S2

ldðfxgÞ;

which means that ld takes all its mass at individual points.
For example, a Dirac measure dx describes the situation
where the fibers in a voxel run parallel to each other, thus
have the same tangent vector x(x) at each point x. See Sec-
tion 3.1 for the Dirichlet process model, but compare also Ra-
mirez-Manzanares et al. (2007) who proposed a related
approach.
(ii) lac is absolutely continuous with respect to k if k(A) = 0
implies lac(A) = 0 for every Borel set A 2 B. According to
the Radon–Nikodým theorem, there exists a nonnegative
Borel-measurable function p such that
lacðAÞ ¼
Z

A
pðxÞdx

for all A 2 B. p 2 L1(S2) is also called (fiber orientation) den-
sity. Whereas lac is unique, the density function, which ful-
fills p(x) P 0, x 2 S2 and

R
S2 pðxÞdx ¼ 1, is only unique up
to a set of Haar measure 0. Making further assumptions on
the shape of this function, the literature suggests different
approaches to recovering the fiber orientation density (e.g.,
Alexander, 2005; Kaden et al., 2007, 2008). See Section 3.2
for the Dirichlet process mixture.
(iii) lsc is the singular continuous measure with lsc({x}) = 0 for
all x 2 S2, but there exists a set A � S2 with Haar measure
k(A) = 0 and lsc(Ac) = 0. Ac denotes the complement of A in
S2. An example for the singular continuous part is a bundle
of parallel running fibers that is smoothly arched in a spe-
cific direction. Savadjiev et al. (2006) proposed to model
the fiber pathways using a helicoidal model, which results
into a fiber orientation distribution that is singular
continuous.

Since the sign of the orientation of a fiber segment is arbitrary,
the two opposite points x and �x on S2 may be identified. The
quotient manifold RP2 ffi S2=� Id of the two-dimensional unit
sphere under the antipodal involution x ´ �x is the real projec-
tive plane. Without loss of generality, l is set to be antipodally
symmetric, which means that a fiber segment is described as a line
without any marked direction. Obviously, the fiber orientation
density is also antipodally symmetric, i.e., p(x) = p(�x) for all
x 2 S2.

3. Dirichlet process mixture

The space of all measures is by far too large in order to be com-
putationally manageable, even though the previous categorization
of the fiber orientation distribution gives us important insight into
its principle types. This section proposes two different dictionaries
in terms of which the measure may be represented, choosing their
support as large as possible.

3.1. Stick-breaking representation

The objective is to define a probability measure on the space of
all fiber orientation distributions. In this work we propose that the
tangential distribution of the nerve fibers

l � DPða;HÞ

follows a Dirichlet process on the two-dimensional unit sphere S2

equipped with the Borel r-algebra B. A stochastic process is called
Dirichlet (Ferguson, 1973) if for any finite partition A1; . . . ;An 2 B of
the sphere (i.e., the Ai are measurable, disjoint, and

Sn
i¼1Ai ¼ S2) the

random vector

ðlðA1Þ; . . . ;lðAnÞÞ � DðaHðA1Þ; . . . ;aHðAnÞÞ

has an n-dimensional Dirichlet distribution. a > 0 denotes a concen-
tration parameter and H the spherical base measure, which is as-
sumed to be nonatomic (i.e., H({x}) = 0 for all x 2 S2), for
example, the uniform distribution US2 . For every Borel set A 2 B
the expectation is E½lðAÞ� ¼ HðAÞ and the variance writes var[l(A)] =
H(A)(1 � H(A))/(a + 1). Note that l is a discrete measure with
probability one and thus describes the pure point part of the fiber
orientation distribution. However, the realizations of the Dirichlet
process are generally not antipodally symmetric, which is a charac-
teristic property of the tissue microgeometry. Let G = {e,g} be a
finite group of measurable transformations with the identity ele-
ment e(x) = x and the antipodal involution g(x) = �x for each
x 2 S2. Following Dalal (1979),

l � DPGða;HÞ

is governed by a G-invariant Dirichlet process if the base measure H
is invariant with respect to the action of G and for any finite
G-invariant partition the resulting random vector has a Dirichlet



1 Compare also Kaden et al. (2008) who proposed to model the fiber bundles
through a finite mixture of Bingham distributions (i.e., a generalization of the bipolar
Watson densities). Here, the mixture components are merely base elements for the
close approximation of a generic density function, which is discussed further in
Section 6.

E. Kaden, F. Kruggel / Medical Image Analysis 16 (2012) 876–888 879
distribution as defined above. Hence, the random measure l is
antipodally symmetric.

An equivalent description of the Dirichlet process is the stick-
breaking representation (Sethuraman, 1994), which takes the form

l ¼
X1
i¼1

pidxi

with the random weights pi ¼ Xi
Qi�1

j¼1ð1� XjÞ and Xi � Beð1;aÞ. The
directions xi � H are distributed according to the base measure
independent of pi, where Be denotes a Beta distribution and dxi

the Dirac measure at xi 2 S2. A G-invariant version writes

l ¼
X1
i¼1

pi
dxi
þ d�xi

2
; ð3Þ

which pays attention to the fact that the tangential distribution of
the nerve fibers is antipodally symmetric. The two weighted sums
of point masses highlight the almost sure discreteness of the Dirich-
let process. Further, it is easy to see that the characteristic proper-
ties of the fiber orientation distribution, namely antipodal
symmetry (for the G-invariant version only), nonnegativity, and
normalization, are fulfilled. Setting this model of the tangential dis-
tribution into the spherical convolution model (2), we obtain the
forward model

EbðgÞ
E0
¼ Piso expð�bkisoÞ þ ð1� PisoÞ

X1
i¼1

pi expð�b½ðkk � k?Þ

� hg;xii2 þ k?�Þ ð4Þ

with the random weights pi 2 [0,1] and
P1

i¼1pi ¼ 1, which yields
the observable MR signals. Note that both versions of the stick-
breaking representation give the same diffusion signal, since the
impulse response of a fiber segment is antipodally symmetric.

3.2. Infinite mixture model

Another approach is to model the fiber orientation distribution
as an absolutely continuous measure (with respect to Haar mea-
sure). Consequently, there exists a fiber orientation density
p 2 L1(S2) with the following properties: antipodal symmetry
p(x) = p(�x), x 2 S2, nonnegativity p(x) P 0, x 2 S2, and normal-
ization

R
S2 pðxÞdx ¼ 1. Before proceeding, we introduce the Wat-

son density which is defined as

fWðx; m;jÞ ¼ 1
cWðjÞ

expðjhx; mi2Þ

on the sphere x 2 S2 with the mean orientation m 2 S2 and the scal-
ing parameter j 2 R (Watson, 1965). The normalization constant
writes cWðjÞ ¼ 4p1F1ð1=2; 3=2;jÞ, where 1F1 denotes the confluent
hypergeometric function of a scalar argument. The Watson density
fWð�; m;jÞ can be regarded as a trivariate Gaussian distribution with
a zero mean and the covariance matrix �1/2(jmmt)�1 conditional
upon S2. Obviously, this density function is antipodally symmetric,
nonnegative, and integrates to one over the sphere. We may differ-
entiate the following cases with respect to the scaling parameter j. If
j is greater than zero, the distribution is bipolar. In the case of
j < 0; fW denotes an equatorial density around the axis m. If j = 0,
then we obtain the uniform distribution on S2. In this work we con-
strain the scaling parameter j P 0 and consider only bipolar Watson
densities. To define a fiber orientation distribution that has a density
function, we propose a Dirichlet process mixture (Lo, 1984)

pðxÞ ¼
Z

S2�Rþ
fWðx; m;jÞdqðm;jÞ; ð5Þ

where q � DPða;HÞ follows a Dirichlet process with the base
measure H, here the product measure formed by the uniform
distribution US2 for the parameter m and the inverse Gamma distri-
bution IGðaj; bjÞ for the parameter j. Although q is a discrete ran-
dom measure, the integration with a continuous function gives rise
to a prior on the space of all fiber orientation densities. Note that
both versions of the Dirichlet process, that is, the unconstrained
and the G-invariant realization, yield the same tangential distribu-
tion due to the antipodal symmetry of the Watson density.

Since the Dirichlet process has a stick-breaking representation,
the fiber orientation density model (5) can be rewritten as

pðxÞ ¼
X1
i¼1

pifWðx; mi;jiÞ; ð6Þ

which is a countably infinite mixture of Watson densities. The pi are
given in the previous section, while mi � US2 and ji � IGðaj;bjÞ are
distributed according to the base measure. Under the topology of
weak convergence, the proposed mixture model includes all tan-
gential distributions of the nerve fibers in its closure (Bogachev,
2007), which particularly means that any antipodally symmetric
density function can be approximated by the Dirichlet process mix-
ture as closely as desired. Therefore, the mixture model (5) with its
stick-breaking representation forms a probability measure on the
space of all fiber orientation distributions whose support is as large
as possible with respect to the weak topology. It is easy to see that
the characteristic properties of the fiber orientation density (i.e.,
antipodal symmetry, nonnegativity, and normalization) are ful-
filled. Setting this model of a density function into the spherical
convolution model (2), we obtain the forward model1

EbðgÞ
E0
¼ Piso expð�bkisoÞ þ ð1� PisoÞ expð�bk?Þ

X1
i¼1

pi

� 1F1ð1=2; 3=2;jimimt
i � bðkk � k?ÞggtÞ

1F1ð1=2; 3=2;jiÞ
; ð7Þ

which generates the observable MR signals. 1F1 is the confluent
hypergeometric function of a matrix argument, here the real 3-
by-3 symmetric matrix jimimt

i � bðkk � k?Þggt . See Appendix A.1 for
more information about the special function. Note that the non-
parametric description of the fiber orientation density yields a
closed-form expression for the diffusion signal. In the case of
ji ?1, the infinite mixture model (6) reduces to the G-invariant
Dirichlet process (3) and the diffusion signal (7) simplifies to Eq.
(4). Fig. 1 exemplifies three samples of the fiber orientation density
drawn from the Dirichlet process mixture with the parameters
a = 1.5, aj = 17.5, and bj = 184.8 (with maximum density at
jmode = 10 and P½j 6 20jaj; bj� ¼ 0:99). The lower row shows the
simulated diffusion signal with a b-value of 1500 s/mm2. As a result,
the proposed mixture model presents an appropriate method to
simulate fiber orientation distributions that closely resemble the
observed tissue geometry of white matter.
4. Nonparametric Bayesian inference

Henceforth, we assume that the fiber orientation distribution is
an absolutely continuous measure that has a density function. This
is a reasonable assumption because histological studies with con-
focal laser microscopy (Axer et al., 2001) suggest that the fiber
architecture of white matter is rather heterogeneous, even in the
body of the human corpus callosum. In the following we estimate
the tangential distribution of the nerve fibers via Bayesian data



Fig. 1. Simulation of the fiber orientation density using a Dirichlet process mixture, which is exemplified for three samples. The bottom row shows the corresponding
diffusion signal with a b-value of 1500 s/mm2. The nonfiber compartment is neglected (Piso = 0). The water diffusivity parameters of a fiber segment are set to kk = 0.0018 and
k\ = 0.0002 mm2/s. Abbreviations: left (L), right (R), inferior (I), superior (S), anterior (A), posterior (P).
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analysis, using a finite approximation through a discrete multivar-
iate distribution and an adaptive reversible jump MCMC sampler.

4.1. Ewens distribution

Bayesian statistics often give rise to a number of computational
issues. In this work we have to deal with the infinite-dimensional
character of Dirichlet process mixtures. Consider the infinite ran-
dom vector

p ¼ ðp1;p2; . . .Þ

with 0 6 pi 6 1 and
P1

i¼1pi ¼ 1, which represents the partition
structure of the interval [0,1]. Note that p is independent of the data
sequence hi = (mi,ji) for i = 1, 2, . . ., which is drawn from the base
measure. The objective now is to find a finite-dimensional approx-
imation to p that enables Bayesian density estimation in a numer-
ically convenient manner. Let h = (h1, . . . ,hn) be a finite sample of a
random distribution that is drawn from a Dirichlet process
DPða;HÞ with the concentration parameter a > 0. Even though the
base measure H is assumed to be absolutely continuous, the proba-
bility of the event {hi = hj} for two samples with indices i – j is great-
er than zero, which can be easily seen from the Pólya urn scheme
(Blackwell and MacQueen, 1973). So we may construct a finite dis-
crete-valued version of p as follows: Suppose that there are exactly
k 6 n distinct values in the sample h. The finite random vector

p½n� ¼ p½n�1 ; . . . ;p½n�k

� �
counts the number npi

[n] (for i = 1, . . . ,k) of how many times the ith
value appears in h. This quantization with p½n�i 2 fq=n 2
Q : q ¼ 1; . . . ;ng satisfies

Pk
i¼1p

½n�
i ¼ 1, where 1/n is the smallest

fraction that can be represented. The finite discrete-valued random
vector p[n] converges to p with probability one if the sample size n
approaches infinity, which means that for any desired accuracy we
can choose a number n such that p[n] approximates p within a cer-
tain threshold.
Alternatively, the sample h of size n may be described by the fi-
nite-dimensional vector Cðm1; . . . ;mnÞ of nonnegative integers
which quantify that m1 distinct values appear only once in h, m2

distinct values occur exactly twice, and so on. Then n ¼
Pn

i¼1imi

provides the number of samples and k ¼
Pn

i¼1mi the partition size.
In the following we are interested in the probability that a sample h
of size n and thus the random vector p[n] belong to the class
Cðm1; . . . ;mnÞ, which is invariant with respect to the permutation
of the indices in h and p[n]. The event fp½n� 2 Cðm1; . . . ;mnÞg is gov-
erned by a discrete multivariate distribution (Ewens, 1972; Anto-
niak, 1974), also known as Ewens measure, which is defined by

fEðCðm1; . . . ;mnÞ; a;nÞ ¼
ak

aðnÞ
Yn

i¼1

i
imi mi!

;

where a > 0 denotes the concentration parameter, n is the number
of samples, and a(n) = a(a + 1) � . . . � (a + n � 1) defines the Pochham-
mer symbol. The probability that we observe exactly k distinct val-
ues in a sample of size n is given by

P½kja;n� ¼ ak

aðnÞ
jSðkÞn j:

jSðkÞn j is the absolute value of a Stirling number of the first kind.
The expectation writes E½kja;n� ¼ aðWðaþ nÞ �WðaÞÞ, where W
denotes the digamma function. It can be shown that
limn!1a lnð1þ n=aÞ=E½kja; n� ¼ 1 holds, which means that the ex-
pected partition size k, and hence the required storage space for
p[n], grows logarithmically with the sample size n. As a conse-
quence, we arrive at the discretized version of the Dirichlet process
mixture (6), that is,

pðxÞ ¼
Xk

i¼1

p½n�i fWðx; mi;jiÞ; ð8Þ

where mi � US2 and ji � IGðaj;bjÞ are drawn from the base mea-
sure. The other stochastic processes and the corresponding diffu-
sion signals are approximated in a similar way.
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4.2. Statistical model

The Bayesian paradigm provides an inferential framework for
statistical modeling and analysis, enabling the differentiation be-
tween relevant features of the tissue geometry and unwanted arti-
facts due to the measurement noise. Our objective is to estimate
the packing density 1 � Piso 2 [0,1] of the fiber pathways and their
tangential distribution p 2 L1(S2). A pulsed gradient spin echo
experiment measures the diffusion-sensitized MR signals at a finite
number of gradient directions g 2 S2 with a diffusion weighting
factor b > 0. In the present work we assume that the noise in the
magnitude signal follows a Rician distribution, which is defined by

fRðS; E; 12Þ ¼ S
12 exp � S2 þ E2

212

 !
I0

SE
12

� �
:

S denotes the observed signal, E the true magnitude signal, 12 is a
parameter characterizing the noise level, and I0 the zeroth-order
modified Bessel function of the first kind. Note that the noise distri-
bution is altered by the correction for subject motion and the co-
registration with an anatomical coordinate system due to linear
interpolation (Rohde et al., 2005). While under a Gaussian noise
model these variance modifications w can be easily taken into ac-
count (Kaden and Kruggel, 2011), the situation is much more com-
plicated for Rician noise. Here the noise alterations are considered
in terms of S � RðE;w12Þ, which is a reasonable approximation
when the signal-to-noise ratio is sufficiently high.

We choose weakly-informative priors that make as few
assumptions about the hidden quantities as possible. The prior
knowledge on the fiber orientation density is encoded by a dis-
crete-valued version of the Dirichlet process mixture. The finite
random vector p½n� � Eða;nÞ follows an Ewens distribution as de-
scribed above, where the concentration parameter a � Ga is gov-
erned by a Gamma density and the sample size is set to n = 128
in our experiments. The base measure is formed by a uniform dis-
tribution mi � US2 on the sphere and we choose the scaling param-
eters with ji = 10 for all indices i (compare Section 3.2 for the
rationale behind our prior belief). The volume fraction of the non-
fiber compartment Piso � U½0;1� follows a uniform distribution on
the interval [0,1]. We set the prior distribution of the noise level
to 12 � IG, which is an inverse Gamma density with appropriately
chosen hyperparameters. The MR signal E0 without diffusion
weighting, which normalizes the T2-contrast, is estimated by a
maximum likelihood approach using a Rician noise model (Sijbers
and den Dekker, 2004). The likelihood function with the discrete
version of the forward model (7) then updates our prior knowledge
by extracting the information on the fiber orientation density from
the noisy MR observations. The tangential density in adjacent vox-
els is implicitly supposed to be independent. According to Bayes’
theorem, we obtain the posterior distribution that reflects the
uncertainty about (not a possible variability in) the fixed but un-
known density function after we have seen the diffusion-weighted
signals. This distribution is approximately sampled by an adaptive
version of the reversible jump Metropolis–Hastings algorithm. See
Appendix A.2 for more details about the Monte Carlo sampler.

5. Results

5.1. Data acquisition and preprocessing

The diffusion-weighted MR dataset, which was kindly provided
by the 2009 Pittsburgh Brain Connectivity Competition (Schneider,
2009), available online at http://www.braincompetition.org, was
acquired by a 3 T Magnetom Trio scanner (Siemens, Erlangen)
equipped with a 32-channel phased-array head coil. A spin echo
EPI sequence measured 256 diffusion gradient directions with a
b-value of 1500 s/mm2. These directions and their antipodal points
are uniformly distributed on the sphere. Further, 30 images with-
out diffusion weighting were acquired. The sequence timing of
the MR experiment was fixed with an echo time tTE = 108 ms and
the repetition time tTR = 11.6 s. The diffusion images were recon-
structed by a 6/8 partial Fourier encoding scheme. The measure-
ment of 68 slices with 2 mm thickness (no slice gap) and a
128 � 128 image matrix (with a field of view 256 � 256 mm2) cov-
ered the whole brain, resulting in an acquisition time of about
55 min. A male volunteer (aged 27 years) participated in this study.
The dataset is corrected for subject motion with respect to the
images having a b-value of 0 s/mm2 and co-registered with a T1-
weighted MR volume using rigid-body transformations (Jenkinson
et al., 2002), as implemented in FSL (2008). For this purpose the
diffusion-weighted images, which have an isotropic voxel resolu-
tion of 2 mm, are resampled by linear interpolation. As a conse-
quence, the noise variance is modified by the factor

wðx; y; zÞ ¼
X

i;j;k2Z
Kðx=T � iÞ2Kðy=T � jÞ2Kðz=T � kÞ2

at the location ðx; y; zÞ 2 R3, assuming that the original dataset is
spatially uncorrelated (Rohde et al., 2005). T is the step size of the
uniform sampling, K(s) denotes the hat function with K(s) = 1 � jsj
for jsj 6 1 and K(s) = 0 otherwise. The T1-weighted anatomical data-
set is aligned with the stereotactic coordinate system (Talairach and
Tournoux, 1988) without spatial normalization.
5.2. Simulations

In the following we demonstrate the reliability of the Dirichlet
process mixture for the nonparametric estimation of the fiber ori-
entation density from noisy MR measurements. Henceforth, the
water diffusivity parameter of the nonfiber compartment is fixed
at kiso = 0.0012 mm2/s, and the effective diffusion coefficients of a
fiber segment are set to kk = 0.0018 and k\ = 0.0002 mm2/s (cf.
Pierpaoli et al., 1996). Additionally, we consider different subsets
of the acquired 256 diffusion encoding gradients. Various results
are reported for 32, 64, and 128 gradient directions, which together
with their antipodal points are distributed as uniformly as possible
on the sphere. Using the acquisition protocol presented in the pre-
vious section, we simulate the diffusion-weighted MR signals for
64 gradient directions from the density function shown in Sample
3 of Fig. 1. After a period of 50,000 burn-in transitions, the revers-
ible jump MCMC algorithm draws 50,000 samples from which
every fifth is subsampled. Fig. 2 exemplifies the mixing efficiency
of the Monte Carlo sampler, which approximately computes the
posterior distribution conditional upon the synthetic data that
are disturbed by Rician noise. The top row of this figure shows a
trace plot of the model indicator k for 10,000 samples, indicating
that the transdimensional MCMC sampler is capable of moving be-
tween different parameter spaces. The bottom panel depicts the
histogram of the partition size (left) and a box-and-whisker plot
of the concentration parameter a > 0 with respect to the number
of mixture components. The latter diagram illustrates that if a is
increased, the Ewens distributed random vector p[n] has a finer
partition structure. In Bayesian nonparametric techniques, how-
ever, the model indicator k is not of much interest. The mixture
components should be interpreted as base elements required to
represent the unknown density function. In particular, the parti-
tion size k does not quantify the number of fiber bundles. The
drawn sample may then be used to compute the probability of cer-
tain events or to estimate the expectation of a function with re-
spect to the posterior distribution.

To assess the accuracy of the Bayesian density estimator, we
conduct a simulation study. The biophysical model (7) generates

http://www.braincompetition.org


Fig. 2. Mixing efficiency of the reversible jump MCMC sampler. The top panel
exemplifies a trace plot of the model indicator k for 10,000 samples. The bottom
row shows the histogram of the partition size (left) and a box-and-whisker plot of
the concentration parameter a with respect to the number of mixture components
(with 1.5 times the interquartile range).

Fig. 3. Estimation error of the posterior mean with respect to the true density
function. The top section shows the error based on the L1-metric, while the bottom
row depicts the root mean square error. From left to right, the reconstruction error
is displayed for different numbers of gradient directions N and various levels of
Rician noise 12. See text for further details on this simulation study.
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the diffusion-weighted MR signals for a b-value of 1500 s/mm2

using a Dirichlet process mixture. See also Section 3.2 for more
information about the hyperparameters of this statistical model.
We fix the spin echo signal E0 = 200 (in the absence of diffusion
weighting), which is in the range of the observed T2-weighted
MR signals for white matter, and the volume fraction of the nonfi-
ber compartment is set to Piso = 0.1. The factors w(i), which quantify
the noise variance modifications due to linear interpolation, are
picked at random from the diffusion dataset. Fig. 3 shows the
estimation error of the posterior mean with respect to the original
fiber orientation density. For this purpose we define the distance
between two density functions f, g 2 Lp(S2) as

dpðf ; gÞ ¼
1

4p

Z
S2
jf ðxÞ � gðxÞjp dx

� �1=p

for p 2 {1,2}. The top row of this figure depicts the error based on
the L1-metric, while the bottom section displays the root mean
square error. We run 2500 trials to study the reconstruction error
of the fiber orientation density under various scenarios. From left
to right, the box-and-whisker plots (with 1.5 times the interquartile
range) show the estimation error in dependence on the number of
diffusion gradient directions N and the level of Rician noise 12.
The fixed parameter is indicated in an upper corner of the diagrams.
Note that this simulation study is an average-case analysis over the
density functions drawn from the Dirichlet process mixture. Not
surprisingly, the reconstruction error decreases when more gradi-
ent directions N are measured and/or the Rician noise level 12 is
reduced.

5.3. Data analysis

Next, we showcase a statistical analysis of the acquired MR
dataset using a subset of the gradient directions, here N = 64.
Fig. 4 demonstrates the reconstruction of the diffusion signal
eb(g), g 2 S2 and the fiber orientation density p(x), x 2 S2 in three
voxels taken from different brain regions. The posterior mean of
the unknown density function is approximated by the sample
average

p̂ðxÞ ¼ 1
T

XT

t¼1

XkðtÞ
i¼1

p½n�ðtÞi fW x; mðtÞi ;ji

� �

of T reversible jump MCMC iterations, where kðtÞ;p½n�ðtÞi ; mðtÞi

n o
de-

notes the t-th output of the simulated chain. Note that this posterior
expectation is defined over all models k 2 {1, . . . ,n}. The posterior
mean of the diffusion signal, which is depicted in the left column,
is also computed by model averaging. The directional functions
are shown in polar coordinates and, because these functions are
antipodally symmetric, it is sufficient to display them in one hemi-
sphere. The first row of Fig. 4 shows the tangential distribution of
the nerve fibers in the splenium of the corpus callosum (CC), which
consists of a single fiber bundle. The second and the third row pro-
vide evidence that the fiber population is composed of two and
three fiber bundles, i.e., the crossing of the callosal fibers with the
corona radiata (CR), and the crossing of the radiation of the corpus
callosum, the corona radiata, and the superior longitudinal fascicu-
lus (SLF), respectively. The fractional anisotropy of the latter voxel is
estimated at 0.235, which indicates an almost isotropic diffusion
process according to the classical diffusion tensor model (Basser
et al., 1994). The middle column of this figure depicts the posterior
mean including the 95% confidence band for a great circle on the
sphere, which is shown as dotted line in the right column. The
Bayesian credible regions are bounded by the 0.025- and the
0.975-quantile of the sample drawn from the reversible jump
MCMC algorithm and thus characterize the pointwise uncertainty
about the estimated fiber orientation density after we have ob-
served the diffusion-weighted MR signals for 64 and 256 gradient
directions, respectively.

Fig. 5 shows the Bayesian inference of the fiber orientation field
in the centrum semiovale for different numbers of gradient direc-
tions using the effective diffusion coefficients given in the previous
section. The voxelwise posterior mean of the fiber orientation



Fig. 4. Nonparametric Bayesian estimation of the diffusion signal and the fiber orientation density using 64 gradient directions, exemplified (from top to bottom) for the three
voxels (0,�35,15), (20,�16,34), and (�26,�16,38) in the stereotactic coordinate system (Talairach and Tournoux, 1988). Their fractional anisotropy is estimated at 0.887,
0.409, and 0.235, respectively. The second column depicts the posterior mean for a great circle on the sphere, which is shown as dotted line in the third column. The shaded
areas display the 95% Bayesian confidence intervals for 64 and 256 diffusion encoding gradients.
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density p̂ is visualized by the quasi-spherical surface S2 3 x #

p̂ðxÞx 2 R3. Red2 indicates a left–right orientation, green an ante-
rior–posterior direction, and blue a superior–inferior orientation.
The underlying map shows the fractional anisotropy. Recall that
the callosal fibers are commissural fibers which interconnect the
two hemispheres, whereas the corona radiata includes, for instance,
the pyramidal tract which is a projection fiber bundle primarily link-
ing the motor cortex with the spinal cord. This figure exposes the
intermingling of these two nerve fiber systems in the coronal plane.
In particular, it is apparent that the commissural fibers passing the
central part of the corpus callosum do not only project into the supe-
rior and medial areas, but also radiate towards the lateral regions of
the cerebral cortex (cf. Pandya and Seltzer, 1986). The narrow band
marked with a star consists of a set of white matter voxels that have
small fractional anisotropy values. The bottom right panel displays a
close-up of those voxels, which are composed of three distinct fiber
bundles, namely the callosal fibers (red), the corona radiata (blue),
and the superior longitudinal fasciculus (green). The latter pathway,
which points out of the image plane, is an association fiber bundle
that interconnects distant cortical areas within the same
hemisphere. Fig. 5 also illustrates that a subset of the acquired 256
gradient directions is sufficient to disentangle the major fiber
2 For interpretation of color in Figs. 1 and 4–6, the reader is referred to the web
version of this article.
bundles in the cerebral white matter. Here we show results with
32, 64, and 128 gradient directions. The proposed estimation frame-
work enables the analysis of the connectional neuroanatomy even in
patients, since the acquisition time for 64 diffusion encoding gradi-
ents is not longer than 15 min on a clinical MR scanner system. Of
course, a larger number of gradient directions improves the recon-
struction quality of the fiber orientation field.

Fig. 6 maps the posterior mean of the number of mixture com-
ponents k, the Rician noise level 12, the volume fraction of the fiber
compartment 1 � Piso, and the fractional anisotropy of the diffusion
tensor model using 64 gradient directions (from left to right, top to
bottom). The number in the upper right corner of these plots indi-
cates the axial plane in the anatomical coordinate system (Talai-
rach and Tournoux, 1988). The partition size in the discrete
approximation of the Dirichlet process mixture is significantly low-
er in the corpus callosum and the internal capsule, since in these
brain regions the diffusion signal is highly anisotropic. If the fiber
population is more complex, the number of mixture components
k exhibits higher values. The volume fraction of the fiber compart-
ment 1 � Piso, or equivalently the packing density of the nerve fi-
bers, seems to be rather heterogeneous in the human brain. This
parameter provides a good indicator for the cerebral white matter,
also in comparison with alternative approaches based on the frac-
tional anisotropy. Higher noise estimates observable in some re-
gions may originate in tissue compartments with diffusion



Fig. 5. The fiber orientation field uncovers the radiation of the corpus callosum (CC), the corona radiata (CR), and their crossing for different numbers of gradient directions.
The bottom right panel shows a close-up of the narrow band marked with a star. The underlying map depicts the fractional anisotropy. The number in the upper right corner
indicates the coronal plane in the anatomical coordinate system (Talairach and Tournoux, 1988). Abbreviation: superior longitudinal fasciculus (SLF).
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coefficients different from {kiso,kk,k\}, for example, cerebrospinal
fluid and the image background, or are caused by artifacts due to
magnetic susceptibility differences on material interfaces. The bot-
tom row exemplifies an MR image without diffusion weighting and
the diffusion signal for one of the gradient directions with a b-va-
lue of 1500 s/mm2. Note that this dataset has lower signal intensi-
ties in the posterior portion of the brain, which is also visible in the
Rician noise level. The acceptance rate of the transdimensional
Monte Carlo algorithm is shown in Fig. 7, which summarizes the
results of the computations for the axonal slice in the previous fig-
ure. Acceptance probabilities in the range of 0.1 and 0.6 are widely
believed to be efficient (cf. Roberts et al., 1997).
6. Discussion

In the following we discuss the simplifying assumptions made
to study complex biological systems such as the cerebral white
matter using diffusion MR imaging. The impulse response of a
small fiber segment may be modeled by a second-order approxi-
mation based on the Gaussian phase assumption (Neuman,
1974), which is a sensible choice especially under the low b-value
regime. The water diffusivity parameters of a fiber segment are as-
sumed to be invariant throughout the brain, which is obviously a
simplification. A broad range of axonal diameters and multiple
degrees of myelination are characteristic features of white matter



Fig. 6. The upper two rows show the estimation of the number of mixture components k, the Rician noise level 12, the volume fraction of the fiber compartment 1 � Piso, and
the fractional anisotropy of the diffusion tensor model. The bottom row exemplifies an MR image without diffusion weighting (left) and the diffusion signal for one of the
gradient directions with a b-value of 1500 s/mm2.

Fig. 7. Histogram of the acceptance rate for the reversible jump MCMC sampler.
Note that the target acceptance probability is 0.3 in our experiments.
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tissue, rendering the constant diffusivity assumption inappropriate
to a certain extent. Hence, {kiso,kk,k\} should be interpreted as
effective diffusion coefficients averaged over the brain. The pro-
posed estimation framework may be extended to alternative re-
sponse functions that describe the diffusion signal of a small
fiber section more adequately. To construct a prior on the space
of all fiber orientation densities, we suggest a Dirichlet process
mixture with bipolar Watson densities. This stochastic process
has various interpretations, for instance, the stick-breaking repre-
sentation and the Pólya urn scheme, which both are used in the
present work. The concentration parameter a of the Dirichlet
processDPða;HÞwith the base measure H has a somewhat compli-
cated meaning. On the one hand, if the variability of l � DPða;HÞ
should be maximized, we would let a go to zero because the
variance writes var[l(A)] = H(A)(1 � H(A))/(a + 1) for a Borel set
A 2 B (Ferguson, 1973). On the other hand, in case of a ? 0, l con-
verges in distribution to a Dirac measure. Furthermore, the
Dirichlet process used to model the tangential distribution of the
nerve fibers may be generalized to a greater class of stick-breaking
processes. An example is the two-parameter Poisson–Dirichlet
process (Pitman and Yor, 1997), whose sampling formula is a
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generalization of the Ewens distribution. Nonparametric Bayesian
inference then estimates the posterior distribution of the fiber ori-
entation density conditional on the noisy MR observations of an
integral transform. The uncertainty over the unknown density
function is expressed by Bayesian confidence bands, dissociating
between the neurobiological quantity, here the fiber orientation
density, and the probability thereof.

A noteworthy outcome is that the tangential distribution of the
nerve fibers is sparse within a small environment of white matter,
which suggests to cluster the intra-voxel fiber population. Kaden
et al. (2007) proposed to parameterize the fiber orientation density
through a finite mixture of Bingham distributions. The underlying
idea is to decompose the fiber population into a finite number of
subpopulations (also called fiber bundles), using the criterion that
the fibers within a bundle should be coherently oriented. This
parametric model gives an explanatory description of the fiber
architecture, for example, the number of fiber bundles, the spread
of the fiber orientation within a bundle, and the volume fraction of
the fiber subpopulations, solving the ill-posed spherical deconvo-
lution in the finite-dimensional world. In contrast, a Dirichlet pro-
cess mixture (with a bipolar Watson density) represents the
tangential distribution of the fiber pathways in a nonparametric
way. This infinite-dimensional approach makes as few assump-
tions on the shape of the unknown density function as possible,
in an attempt to maximize the solution space of the inverse prob-
lem. Whereas each mixture component of the parametric model
describes one fiber bundle with its structural properties, the com-
ponents of a Dirichlet process mixture are merely base elements
for the close approximation of a generic density function without
any particular meaning. Moreover, the modes of the fiber orienta-
tion density generally do not correspond to the respective direc-
tions of the fiber bundles (Kaden et al., 2007). The number of
(local) maxima cannot exceed the number of mixture components
and may be lower, which means that the number of modes in the
density function is a lower bound for the number of subpopula-
tions. Consequently, fiber tracking along the modes of the fiber ori-
entation density might introduce a systematic error.

Lastly, we compare the Dirichlet process mixture with a Gauss-
ian process model, which both may act as a prior of the fiber orien-
tation density before any diffusion MR signals have been observed.
These two methodologies are examples of Bayesian nonparamet-
rics, which do not assume that the tangential distribution of the
nerve fibers lies within a specific parametric family. Kaden et al.
(2008) suggested to solve the Fredholm integral equation of the
first kind in a generic function space, making the vague assumption
that the fiber orientation density is a suitably smooth function.
More specifically, the solution to this Tikhonov regularization
problem is found in an infinite-dimensional Hilbert space with a
reproducing kernel that is derived from the spherical Laplace–Bel-
trami operator. This function estimation framework imposes a dis-
cretized nonnegativity and an exact normalization constraint in
order to preserve the characteristic properties of a density func-
tion. The resulting convex optimization problem is solved by qua-
dratic programming, which requires less computational resources
(i.e., we find the global optimum within a short period of time)
compared to the other two techniques. To quantify the uncertainty
in the estimation of the fiber orientation density, the close relation-
ship between reproducing kernel Hilbert spaces and Gaussian pro-
cess models is exploited. Recall that a stochastic process is
Gaussian if the marginal distribution for any finite subset of ran-
dom variables is normally distributed. Thus, a Gaussian process de-
fines a probability distribution on the space of generic functions,
where the random functions drawn from this stochastic process
are almost surely not normalized and may be negative. The Dirich-
let process mixture, by contrast, is a probability measure on the
space of all fiber orientation densities. In particular, the drawn ran-
dom densities satisfy all intrinsic properties of a density function,
allowing for the specification of Bayesian confidence intervals
which respect that the fiber orientation density is nonnegative,
as shown in Fig. 4. In summary, none of the three approaches is
more favorable per se. Rather, it depends on the question to be an-
swered which method is preferable for studying the intra-voxel fi-
ber architecture in the individual living human brain.
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Appendix A

A.1. Confluent hypergeometric function

The confluent hypergeometric function 1F1 of a matrix
argument (Herz, 1955) depends only on its eigenvalues. The
real-valued eigenvalues of the 3-by-3 symmetric matrix B =
jmmt � b(kk � k\)ggt (see Eq. (7), neglecting the index i) write

f1;2 ¼
1
2

j� bðkk � k?Þ	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþ bðkk � k?ÞÞ2 �4bðkk � k?Þjhg;mi2

q� �

and f3 = 0. Consequently, we arrive at

1F1ð1=2; 3=2; BÞ ¼ 1F1ð1=2; 3=2; diagðf1; f2; f3ÞÞ

¼ 1
2p

X1
i;j;k¼0

Cðiþ 1=2ÞCðjþ 1=2ÞCðkþ 1=2Þ
Cðiþ jþ kþ 3=2Þ

fi
1f

j
2f

k
3

i!j!k!
;

where C denotes the Gamma function. Assuming f1 P f2 P f3

without loss of generality, Strelitz (1989) showed that this sum
can be simplified to

1F1ð1=2; 3=2; BÞ ¼ expðf3Þ
X1
i¼0

ðf1 � f3Þi

ð2iþ 1Þi!
Xi

j¼0

bi;j
f2 � f3

f1 � f3

� �j

with the recursive construction

bi;0 ¼ bi;i ¼ 1 and bi;jþ1 ¼
2jþ 1
jþ 1

i� j
2ði� jÞ � 1

bi;j:

For numerical computation the infinite sum is truncated in depen-
dence on the desired accuracy. Alternatively, the confluent hyper-
geometric function may be computed by a saddlepoint
approximation (Kume and Wood, 2005).

A.2. Reversible jump MCMC

The posterior of the fiber orientation density is approximately
sampled by Monte Carlo methods based on Markov chains. Note
that this probability distribution is only known up to a multiplica-
tive normalizing constant, which most likely does not exist in
closed form. An in-depth treatment of Markov chains may be found
in the seminal book by Meyn and Tweedie (1993). They showed,
for instance, that under certain conditions an MCMC sampler con-
verges to the target distribution (with respect to the total variation
norm) irrespective of its initialization. In this work the algorithm is
started with a fiber orientation density that is roughly uniform.
Hence, after setting the sample size n, we choose the number of
components k = 24 and fill the entries of the k-dimensional random
vector p½n�i 2 fq=n 2 Q : q ¼ 1; . . . ;ng with

Pk
i¼1p

½n�
i ¼ 1 as evenly as

possible. The other model parameters are either drawn at random
from the prior distribution or are set to the expected value of what
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is known prior to observing any diffusion MR signals. As the chain
is frequently started in a region of low probability, we skip over its
initial transient phase. Only the samples drawn after a sufficiently
long burn-in are used to approximate the probability distribution
conditional upon the measured data.

For the construction of a Markov chain we need to define an
instrumental distribution which explores the posterior distribution
via random walk and is easy to simulate. An urn model is employed
to describe a proposal distribution Q on the k-dimensional random
vector np[n] 2 {1, . . . ,n}. Let us assume that for i = 1, . . . ,k the
nonempty urn i contains np½n�i balls, where the number of balls in
all k urns sums up to

Pk
i¼1np½n�i ¼ n. A simple random step removes

a ball from one of the urns with equal probability. If this urn is not
empty after the removal, we add another urn to the model. Subse-
quently, the ball is randomly put back in one of these urns. After
removing possibly empty urns, we obtain a new discrete-valued
random vector q[n] with the sample size n that has a dimension
dim q[n] of either k � 1, k, or k + 1. In the following we outline
the transdimensional Monte Carlo sampler:

initialization;
while the chain is not converged do

simulate the proposal q½n� � Qðp½n�Þ;
if dim q[n] < dim p[n] then

reversible jump MCMC sampler: death step;
else if dim q[n] = dim p[n] then

fixed dimension Metropolis–Hastings sampling;
else (i.e., dim q[n] > dim p[n])

reversible jump MCMC sampler: birth step;
endif

done.

If the dimension of the finite random vector has been changed, we
proceed with reversible jump MCMC for across-model sampling. In
the case where the number of mixture components is unaltered, a
regular Metropolis–Hastings algorithm is used for within-model
sampling.

The proposed discretization (8) of the Dirichlet process mixture
gives rise to a variable dimension model, where the model indica-
tor k 2 {1, . . . ,n} counts the number of partitions in a sample of size
n and the parameter vector hk 2Hk takes its values in a given space
that has varying dimensions for different indices k. The posterior
distribution is defined on the union of disjoint spaces H ¼Sn

k¼1fkg �Hk, which is also the general state space of the simu-
lated Markov chain. Thus, we need to construct a sampler that is
capable of moving between different parameter spaces associated
with a finite collection of models. Without loss of generality, con-
sider two models k1 and k2 with the dimensional constraint k1 < k2

and the state vectors ðk1; hk1 Þ and ðk2; hk2 Þ, respectively. The revers-
ible jump MCMC method (Green, 1995) augments the vector ðhk1 Þ
with an auxiliary random variable uk1 so that both parameters
ðhk1 ;uk1 Þ and ðhk2 Þ have the same dimension. A diffeomorphism
ðhk2 Þ ¼ Wk1!k2 ðhk1 ;uk1 Þ, i.e., a differentiable bijective map whose in-
verse is also differentiable, then allows us to move between the
two models k1 and k2 seamlessly. Note that there is a wide variabil-
ity in the definition of the variable uk1 and the transform Wk1!k2 ,
indicating the universality of this approach. Here we suggest a
birth-and-death sampler. If a new random vector q[n] is proposed
that has a greater dimension than the current state, the partition
size k is increased accordingly and the model parameter mi of the
additional mixture component is drawn from the prior distribution
as proposal for the birth jump. Due to reversibility, the death step
is simply the inverse transform: The number of mixture
components k is decreased by removing the associated model
parameter mi if the proposed random vector q[n] has a lower dimen-
sion than p[n]. The birth respective death jump is taken with a cer-
tain acceptance probability which satisfies the detailed balance
condition and also involves the Jacobian of the transform Wk1!k2 .
Otherwise the proposal is rejected and we use the current state.
For further details, the reader is referred to Green (1995).

In addition, we employ a regular Metropolis–Hastings scheme
for each variable and fixed dimension move that explores the other
parameters (apart from the model dimension k and the random
vector p[n]) by random walk. These local jumps may be described
by a Watson distribution (for the parameters mi 2 S2), a beta density
(for Piso 2 [0,1]), and a normal distribution (for loga and log12),
conditional upon the current state. The scaling of the random walk
determines the speed at which the generated Markov chain
reaches its stationary regime. When the proposed moves are small,
the acceptance probability is high and the random walk explores
the posterior distribution only slowly. If the step size is large, the
acceptance rate is low (i.e., the proposals are often rejected) and
it takes a long time for the sampler to converge to the target distri-
bution. Roberts et al. (1997) showed that if the objective distribu-
tion is a normal density, the optimal scaling gives rise to an
acceptance rate of 0.44 for one-dimensional models and 0.234 for
models with infinite dimensions. Clearly, the obtained results may
hold for other distributions only approximately. In the present
work we implement an adaptation scheme that automatically opti-
mizes the scaling of the random walk while exploring the posterior
distribution (Roberts and Rosenthal, 2007). The step size is up-
dated based on the history of the simulated sequence with the
aim of an equilibrium acceptance rate of 0.3. Note that the adapta-
tion amount at the time step t vanishes as the chain proceeds. For
example, the scaling parameter may be modified by sufficiently
fast decreasing update values on the order of minf0:05;1=

ffiffi
t
p
g.

The scaling of the random walk is adapted only during the finite
period of burn-in, afterwards the adaptation process is stopped
and the step size is kept fixed. This finite adaptation scheme, where
each individual Markov kernel with a fixed scaling is ergodic, en-
sures the asymptotic convergence to the posterior distribution.
For more details, we refer the reader to Roberts and Rosenthal
(2007). The adaptive MCMC algorithm facilitates a significant
speed-up of the convergence rate, particularly if the scaling of
the model parameters is rather heterogeneous.
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