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A Reproducing Kernel Hilbert Space
Approach for Q-Ball Imaging

Enrico Kaden and Frithjof Kruggel*

Abstract—Diffusion magnetic resonance (MR) imaging has en-
abled us to reveal the white matter geometry in the living human
brain. The Q-ball technique is widely used nowadays to recover the
orientational heterogeneity of the intra-voxel fiber architecture.
This article proposes to employ the Funk–Radon transform in a
Hilbert space with a reproducing kernel derived from the spherical
Laplace–Beltrami operator, thus generalizing previous approaches
that assume a bandlimited diffusion signal. The function estima-
tion problem is solved within a Tikhonov regularization frame-
work, while a Gaussian process model allows for the selection of
the smoothing parameter and the specification of confidence bands.
Shortcomings of Q-ball imaging are discussed.

Index Terms—Diffusion magnetic resonance (MR) imaging,
Funk–Radon transform, Gaussian process model, Laplace–Bel-
trami operator, reproducing kernel Hilbert space.

I. INTRODUCTION

T HE white matter of the human brain consists of a com-
plex system of nerve fibers that connect neural popula-

tions in the central nervous system. These long axons allow
a rapid information exchange between distant brain modules,
thereby integrating the diversity of cortical areas and subcortical
nuclei with their specialized functional roles. Diffusion mag-
netic resonance (MR) imaging [1] is a unique tool to reveal the
microgeometry of nervous tissue noninvasively and to explore
the connectional neuroanatomy in the individual living human
subject. This technique measures the Brownian dynamics of the
spin-bearing water molecules in the underlying sample material.
Depending on the direction from which the diffusion process is
observed, the tissue geometry, especially the orientation of the
axonal membranes, may hinder the diffusing molecules differ-
ently. If the examination period is sufficiently long and the fiber
pathways are coherently oriented, the MR measurement exhibits
anisotropic diffusion patterns.

A distinctive feature of white matter tissue is the orienta-
tional heterogeneity of the intra-voxel fiber architecture [2].
Since the fiber orientations are neither regularly ordered nor
entirely arbitrary, it is interesting to know how the tangents at
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the fiber pathways are oriented. This knowledge is necessary
to reconstruct the course of the fiber tracts and to estimate the
structural connectivity of different brain regions. Until now,
the connectional architecture of the cerebral cortex is still far
from being known in full detail even at the systems level,
not least due to the anatomical variability between subjects.
Q-ball imaging [3], which is one of the methods that is most
widely used nowadays, attempts to obtain information about
the orientational structure in a voxel from diffusion-weighted
measurements. This approach is implemented without the
specification of a forward-generative model that maps the
geometry of nervous tissue onto the diffusion process of water
molecules and further onto the observable MR signal. The
simple idea is to approximate the orientation density function
of the diffusion propagator by integrating the diffusion signal
with a fixed -value over the equator normal to the direction
under consideration. This neuroimaging technique is particu-
larly applicable in the clinical domain due to a short acquisition
time. Recent methodological developments include the intro-
duction of the solid angle into the definition of the orientation
density function, assuming a (local) exponential decay along
all gradient directions (and a finite signal support, respectively)
[4]–[7]. However, these transforms of the diffusion signal do
not longer fulfil the superposition property. Khachaturian et al.
[8] presented a technique for multiple -values, which requires
a longer data acquisition, and Deriche et al. [9] proposed a
real-time recovery algorithm within a Kalman filtering frame-
work. For a review of alternative reconstruction methodologies
see, for example, [10] and references therein.

Our main objective is to develop a novel computational
method for the nonparametric estimation of the diffusion signal
and the orientation density function (as defined by Q-ball
imaging). To that end, we revisit the statistical problem of
estimating an unknown function, which is defined on the
two-dimensional sphere, from a finite set of noisy MR ob-
servations. The key question is here in which function space
this variational problem should be solved. Previous work
[11]–[13] suggested to truncate the Fourier decomposition of
the square-integrable functions on the sphere, thereby cutting
off the high frequency components. But is the truncation step
necessary for the estimation of the diffusion signal? We will
show that it is indeed possible to relax this assumption. More
specifically, we assume rather general conditions about the
integrability and the regularity of the spherical functions to be
estimated, which give rise to a reproducing kernel Hilbert space
that is infinite-dimensional but computationally manageable.
Considering generic functions being less constrained by our
prior belief enlarges the solution space, lets the data speak
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for themselves, and thus generates better evidence. Another
important aim of this work is to estimate rigorously all hyper-
parameters (e.g., the signal smoothness and the noise variance,
yielding the smoothing parameter) from the data or, if possible,
to avoid them completely (e.g., the truncation level if we do
not truncate the Fourier series expansion). Note that these
parameters significantly affect the nonparametric function es-
timation. For example, if the smoothing parameter approaches
infinity, the estimate is a constant function on the sphere. If
this hyperparameter is set to zero, the measurement noise
appears to be a part of the signal. Moreover, we propose several
improvements to Q-ball imaging: The MR signal without
any diffusion weighting (i.e., the -contrast) is integrated
into the regularization problem. We pay attention to the noise
variance modifications due to linear interpolation required for
the correction of subject motion and the co-registration with an
anatomical coordinate system. Further, the reproducing kernel
(with antipodal symmetry), which is derived from the spherical
Laplace–Beltrami operator, as well as the Funk–Radon trans-
form of this kernel function are given for the first time in a
closed-form expression.

The following section presents the nonparametric function es-
timation of the diffusion signal using a smoothing spline model.
For this purpose we make the vague assumption that the signal
is a suitably smooth function on the sphere whose harmonic
coefficients decay sufficiently fast. After revisiting the Q-ball
imaging formalism, the orientation density function of the diffu-
sion propagator is approximated by the Funk–Radon transform
of the diffusion signal, which is represented in a reproducing
kernel Hilbert space. Furthermore, we formulate a Gaussian
process model that defines a probability measure on this func-
tion space. The Bayesian paradigm enables the specification of
confidence bands and the setting of the smoothing parameter,
which is decomposed into the roughness of the diffusion signal
and the noise variance of the MR measurement. Next, we dis-
cuss results from a simulation study and exemplify the statistical
estimation of the orientation density function in various brain re-
gions, using a diffusion-weighted dataset featuring high angular
resolution. We conclude with a discussion of the limitations of
Q-ball imaging.

II. THEORY AND METHODS

A. Nonparametric Signal Estimation

Consider a pulsed gradient spin echo experiment in which
the temporal profile of the diffusion sensitizing gradients and
their magnitude are fixed, but the (normalized) direction

is variable. Let be noisy MR observations
at each site for the design points

with pairwise different . denotes
the constant diffusion weighting factor, which is calculated from

and the temporal profile of the diffusion encoding gradients,
and describes the Gaussian-distributed
noise with unknown variance . The factor represents the
noise variance modification caused by the linear interpolation
owing to the correction for subject motion and the co-registra-
tion with an anatomical coordinate system [14]. The diffusion

signal should not depend on the attenu-
ation due to the -relaxation process, where denotes the
MR signal in the absence of any diffusion weighting. Given the
sample mean of the signal with zero -value, the Tikhonov
regularization framework estimates the diffusion signal via a
smoothing spline model [15] that minimizes

(1)
with respect to the observed MR signals (compare also [13]).
This variational problem depends on the appropriately chosen
parameter balancing the smoothness of the solution (as

) against the fidelity to the data (as ).
The Laplace–Beltrami operator

is a linear map from a function space , which we will give
below, to the real-valued square-integrable functions on
the sphere that is defined by

(2)

in the polar coordinates and . The eigen-
values of this differential operator are for

and ; the corresponding eigenfunc-
tions, i.e., the real -normalized spherical harmonics

if

if

if

(3)

form an orthonormal basis representing a Fourier decomposi-
tion of [16]. The Legendre polynomials are
defined by for

and otherwise
with

(4)

on the interval [ 1, 1]. Note that the nonnegative eigenvalues
do not have an upper bound.

Before proceeding, we give a brief introduction to repro-
ducing kernel Hilbert spaces [17]. Let be a Hilbert space (i.e.,
a complete normed space with an inner product ) which
consists of real-valued functions defined on a set, here . A
reproducing kernel for is a function with
the following properties. 1) For all , as univariate
function belongs to . 2) The evaluation of a function
at a point can be rewritten as

(5)

If such a reproducing kernel exists in , then this kernel func-
tion is uniquely defined. Consider the linear map
with that evaluates a function at a point

. This evaluation functional is continuous if and
only if there exists an with for all
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. Since there exists a reproducing kernel for if and
only if all functionals , are continuous in ,
we arrive at the following definition [17]: A reproducing kernel
Hilbert space is a Hilbert space of functions such that all eval-
uation functionals are linear and continuous. If is a finite-di-
mensional Hilbert space, then is continuous and is thus a
Hilbert space with reproducing kernel. If the function space
is not finite-dimensional, then may or may not be contin-
uous.

Next, we define the function space in which the
regularization problem (1) is solved. The diffusion signal is
assumed to be a real-valued function with the property

, (antipodal symmetry). Further, we make the
assumption that all evaluation functionals with

are linear and continuous, where denotes the
gradient direction and specifies the diffusion weighting factor.
Then is a Hilbert space with reproducing kernel, which means
that for each there exists a unique with

. In this work we derive the re-
producing kernel from the Laplace–Beltrami
operator on the sphere, yielding the separable SO(3)-Hilbert
space formed by the direct sum of

(6)
and

(7)

whose harmonic coefficients decay
sufficiently fast. In comparison, previous methods [11]–[13]
truncate the spherical harmonic expansion. Note that due to
the antipodal symmetry, we need to take only coefficients
with even into account. The reproducing kernel for writes

with

(8)

and

(9)

which can be simplified to

(10)

[18]. Even though the latter equation is not defined for
, we have

as ex-
pected. In particular, the second-order differential operator

with

(11)

is well defined. The diffusion signal is
uniquely decomposed into a constant function and
a variable part , where

(12)

quantifies the roughness of the unknown function in terms of
the spherical Laplace–Beltrami operator. Hence, the regulariza-
tion term in the smoothing spline model (1) can be reformulated
using the subspace norm .

According to the representation theorem by Kimeldorf and
Wahba [19], there exists a unique solution for the pe-
nalized least squares problem (1), which may be represented by

with

(13)
for all in terms of the scalar and the real-valued

-vector . Note that for MR observations the es-
timated diffusion signal can be written as a finite sum, although

generally lies in the infinite-dimensional function space .
The signal in adjacent voxels is implicitly supposed to be in-
dependent. Setting this representation of into the quadratic
objective function (1), we obtain

(14)
and

(15)

where denotes the -vector , is the -vector ,
forms the -matrix as defined in (10),
is the -dimensional unit matrix, and denotes the -di-

mensional diagonal matrix with the entries . An equiv-
alent representation of the solution to this variational problem
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takes the form

(16)
which may be found more convenient for numerical computa-
tion. The minimization problem is linear in and .

Nonparametric Bayesian statistics provides an inferential
framework for statistical modeling and analysis, enabling the
differentiation between relevant features of the diffusion signal
and artifacts due to the measurement noise. We exploit the close
relationship between smoothing splines and Gaussian process
models [20]. The prior knowledge about the signal function
may be encoded by a Gaussian stochastic process

(17)

with the mean function ,
and the covariance function , where

is a scaling parameter and describes the model hy-
perparameters. Integrating out the prior distribution on the hy-
perparameter , the prior Gaussian process can be reformulated
as

(18)

[21]. The likelihood function updates this prior process by ex-
tracting the hidden information about from the noisy MR sig-
nals at the design points . According to Bayes’ theorem, we
obtain the posterior Gaussian process

(19)

[22]. To establish the correspondence with the Tikhonov regu-
larization framework proposed above, the prior distribution of
is assumed to be noninformative, i.e., ( irrelevant).
Then the mean function of the posterior Gaussian process
equals the smoothing spline solution. The posterior covariance
function writes

(20)

where denotes the -vector and
is a one-dimensional vector

function.
Thus far, we have assumed that is known,

which is typically not the case. To determine the hyperparame-
ters that best explain the observed phenomenon, the density
function of the marginal distribution

(21)

is maximized, which is, however, not appropriate in the limiting
case . Recall that denotes the MR signal in the ab-
sence of any diffusion weighting, is the -vector ,
forms the -matrix as defined in (10), and

denotes the -dimensional diagonal matrix with the noise

variance modifications . Consider the QR decomposi-
tion with the -matrix and the

-matrix , where is orthogonal
and denotes an upper triangular matrix. Setting and
noting that , we maximize the density of
the normal distribution

(22)

with respect to . For a constant independent of and
it can be shown that

(23)

where is normalized by to avoid degeneracy [23].
The regularization parameter is composed of the
noise variance of the MR measurement and the scaling
parameter of the prior covariance function controlling
the smoothness of the diffusion signal.

B. Q-Ball Imaging

Let denote the relative displacement of a water
molecule in spherical coordinates where is the ra-
dius and the direction. Q-ball imaging [3] attempts to
approximate the orientation density function (i.e., the radial pro-
jection that is defined without the Jacobian of the transfor-
mation from Cartesian to spherical coordinates)

(24)

of the ensemble-averaged diffusion propagator with the ob-
servation time using the Funk–Radon transform

(25)

of the diffusion signal with a fixed -value.
denotes the equator normal to the direction

. and are normalization constants such that these
functions integrate to one over the sphere.

First, we neglect the normalization factor. Since it holds
[12], [13], the Funk–Radon

transform of the reproducing kernel (10) writes

(26)

which can be simplified to

(27)
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Fig. 1. This simulation study compares the estimation error of the diffusion
signal (left) and the orientation density function with respect to the truncation
level of the spherical harmonic expansion for different numbers of gradient di-
rections. The sample mean of the root mean square error is shown for syn-
thetic signals simulated with different truncations� (indicated in the upper right
corner of the diagrams), where� �� corresponds to the reproducing kernel
Hilbert space approach.

[18]. denotes the dilogarithm for . Assuming
that is represented by (13), the orientation density function
may be described by with

(28)

for all in terms of the scalar and the
real-valued -vector . Note that the Funk–Radon trans-
form is a continuous linear operator in the Hilbert space

. Again, we exploit the correspondence between the
smoothing spline solution and the posterior Gaussian process

, assuming that

the prior distribution of is noninformative, i.e.,
( irrelevant). Then the mean function equals . The
posterior covariance function takes the form

(29)

where denotes the -vector ,
is a one-dimensional vector func-

tion, and

(30)

Finally, the normalization constant is computed by
.

C. Data Acquisition and Preprocessing

The diffusion-weighted MR dataset, which was kindly
provided by the 2009 Pittsburgh Brain Connectivity Com-
petition [24], online available at , was acquired by a 3T
Magnetom Trio scanner (Siemens, Erlangen) equipped with a
32-channel phased-array head coil. A spin echo EPI sequence
measured 256 diffusion gradient directions with a -value
of 1500 . These directions and their antipodal points
were uniformly distributed on the sphere. Further, 30 images
without diffusion weighting were acquired. The sequence
timing with an echo time and the repetition time

was fixed in this MR experiment. The diffusion
images were reconstructed by a 6/8 partial Fourier encoding
scheme. The measurement of 68 slices with 2 mm thickness
(no slice gap) and a 128 128 image matrix (with a field of
view ) covered the whole brain, resulting in
an acquisition time of about 55 min. A male volunteer (aged
27 years) participated in this study. The dataset was corrected
for subject motion with respect to the images having a -value
of 0 and co-registered with a -weighted MR volume
using rigid-body transformations [25], as implemented in FSL
[26]. For this purpose the diffusion-weighted images, which
have an isotropic voxel resolution of 2 mm, were resampled
by linear interpolation. As a consequence, the noise variance is
modified by the factor

(31)
at the location , assuming that the original dataset
is spatially uncorrelated [14]. is the step size of the uniform
sampling, denotes the hat function with for

and otherwise. The -weighted anatomical
dataset was aligned with the stereotactic coordinate system [27]
without spatial normalization.

1Available online at http://www.braincompetition.org.
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Fig. 2. The diagrams show for two examples the sample mean including the
95% confidence interval for the estimation of the scaling parameter �� and the
noise variance �� with respect to the number of voxels, which was repeated
1000 times. The quantities without hat, i.e., � and � , denote the true value.
See text for further details on this simulation study.

III. RESULTS

A. Simulations

First, we compare the estimation error of the diffusion signal
and the orientation density function between a previous recon-
struction method which truncates the spherical harmonic expan-
sion [13] and the reproducing kernel Hilbert space approach
proposed in this work. The signal is simulated using different
signal models where the Fourier decomposition is truncated at
the levels , 4, 8, and (no truncation). If

, then the Fourier coefficients with and
are drawn from a normal distribution whose variance is

weighted by , with the exception of which is
fixed. In the case of no truncation , the Gaussian
process model generates the synthetic signals. We run 1000
trials for each signal model to simulate MR measurements for
64, 128, and 256 gradient directions that are disturbed by Ri-
cian noise. In an effort to make the results from different algo-
rithms comparable, the smoothing parameter , which has to be
user-defined in [13], is selected by an oracle estimator which
minimizes the predictive mean square error. The computation
time depends on the chosen truncation : If
is smaller than the number of measurements , then the previous
reconstruction methods which cut off the high frequency com-
ponents are faster. In the case of with
a spatially dependent regularization parameter, the reproducing
kernel Hilbert space approach requires less computation time.
Fig. 1 shows the sample mean of the root mean square error be-
tween the original and the recovered diffusion signal (left) and
orientation density function with respect to the truncation level
of the applied algorithm. This simulation study suggests that if
the signal model is known, the recovery method with the same
truncation level yields the smallest estimation error. If the signal

Fig. 3. The first two rows illustrate the estimation of the scaling parameter
� (top) and the noise variance � in the 26-neighborhood of a voxel. On the
left-hand side the variance modifications due to the linear interpolation are ne-
glected, whereas in the right section the modification factor is taken into account.
The bottom row exemplifies an MR image without any diffusion weighting (left)
and the diffusion signal for one of the gradient directions with a �-value of
1500���� .

complexity is underestimated, i.e., is chosen too small, then
the root mean square error is rather high. Even if more and more
data are acquired, that is, the number of gradient directions ap-
proaches infinity, the estimation error cannot be smaller than a
certain threshold greater than zero. Further, Fig. 1 demonstrates
that if the truncation level of the reconstruction algorithm is
greater than the signal complexity, then the root mean square
error is higher than the optimal one, but only slightly. Note that
a log scale is used to depict the estimation error in these dia-
grams. Since it is commonly unknown whether the Fourier de-
composition of the observed signal is truncated, the reproducing
kernel Hilbert space approach seems to be the better strategy for
the statistical estimation of the diffusion signal and the orienta-
tion density function: On average, the root mean square error is
minimized in the case of no truncation, or the estimation error
is slightly increased, but significantly smaller than the resulting
error if the truncation level is underestimated.

The accurate determination of the hyperparameters (i.e.,
the scaling parameter of the prior covariance function
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Fig. 4. The estimation of the diffusion signal and the orientation density function (without normalization) is exemplified, from top to bottom, for the three voxels
(0,�35, 15), (�22,�16, 13), and (20,�16, 34) in the stereotactic coordinate system [27]. Their fractional anisotropy, � -weighted signal, scaling parameter, and
noise variance are estimated at {0.887, 76.0, 1.54, 136.6}, {0.694, 242.0, 0.37, 113.6}, and {0.409, 184.8, 0.26, 92.2}, respectively. The first and the third column
depict the penalized least squares estimates for a great circle on the sphere, which is shown as dotted line in the second and the fourth column. The shaded area
displays the 95% Bayesian confidence band. Abbreviations: left (L), right (R), inferior (I), superior (S), anterior (A), posterior (P).

describing the roughness of the diffusion signal and the noise
variance of the MR measurement) is an integral part of
nonparametric function estimation. In the following simulation
study the scaling parameter and the noise variance are
set to 0.5 and 100 in example A, and to 2.0 and 200 in example
B, respectively. Note that the former example corresponds to
a typical average case, while the latter is rather a worst-case
scenario. The factors , which quantify the noise variance
modifications due to the linear interpolation, are picked at
random from the diffusion dataset. We run 1000 trials to study
the estimation of the hyperparameters and for a finite set
of voxels in which these parameters are assumed to be fixed.
The spin echo signal in the absence of any diffusion weighting is
generated by with a mean of 200, which
is in the range of the observed -weighted MR signals for
white matter. denotes the Gamma distribution with
the density function
for and . The expectation of
is . The scaling parameter is chosen to be governed by

with the mean in example A and
in example B, thereby considering that the signal may

have various shapes in different voxels. The mean diffusion
signal follows with the average 0.4,
which corresponds to the mean signal typically measured
for a -value of 1500 . Using the acquisition protocol

presented earlier, the Gaussian process model simulates the
diffusion MR measurements that are disturbed by Rician noise

. The Rician distribution is defined by
,

where denotes the observed signal, the true magnitude
signal, is a parameter characterizing the noise level, and

the zeroth-order modified Bessel function of the first kind.
Fig. 2 depicts the sample mean including the 95% confidence
interval for the estimation of the scaling parameter and the
noise variance with respect to a finite set of voxels. We note
that the sample variance rapidly decreases for greater numbers
of voxels. Further, in example B there is a slight bias in the
estimation of the hyperparameters due to the Rician noise.

B. Data Analysis

Next, we estimate the model parameters that
balance the smoothness of the solution against the fidelity to the
data. Fig. 3 maps the scaling parameter of the prior covari-
ance function and the noise variance of the MR measurement
in the 26-neighborhood of a voxel. According to the simulation
study, the estimation error is expected to be rather small. On the
left-hand side of the first and the second row the factors that
quantify the variancemodifications due to linear interpolation are
neglected. The noise variance, which may be reduced up to 1/8
of the original value, shows wave patterns that are induced by the
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correction for subject motion and the alignment with an anatom-
icalcoordinatesystem.Incomparison, therightcolumnshowsthe
scaling parameter and the noise variance where the modification
factor is taken intoaccount.Highervarianceestimatesobservable
insomeregionsoriginate fromcompartmentswithahigh fraction
of cerebrospinal fluid or are caused by artifacts due to magnetic
susceptibility differences on material interfaces. The scaling pa-
rameter, which is much less influenced by the variance modifi-
cations, shows significantly higher values in the corpus callosum
and the internal capsule, since in these brain regions the diffusion
signal is highly anisotropic. The bottom row exemplifies an MR
image without any diffusion weighting and the diffusion signal
for one of the gradient directions with a -value of 1500 .
Note that this dataset has lower signal intensities in the posterior
portion of the brain, which is also visible in the noise variance,
but not in the scaling parameter and the diffusion signal, as the

-contrast is normalized.
Fig. 4 exemplifies the reconstruction of the diffusion signal

and the orientation density function (without normalization)
in three voxels taken from different brain regions, namely the
corpus callosum, the internal capsule, and the crossing of the
callosal fibers with the corona radiata. The first and the third
column show the penalized least squares estimates including
their 95% Bayesian confidence bands (conditional upon , ,

, , and ) for great circles on the sphere. These bands,
which reflect the uncertainty about or after we have
observed the data at the gradient directions , are given by

that specifies the
confidence interval at the point . denotes the cumu-
lative density function of the standard normal distribution and
the posterior covariance function is formulated in (20)
or (29), respectively. The directional functions are shown in
polar coordinates and, because these functions are antipodally
symmetric, it is sufficient to display them in one hemisphere.
For example, the bottom row provides evidence that the fiber
population is composed of two fiber bundles, i.e., the crossing
of the radiating callosal fibers (from left to right) and the corona
radiata (from inferior to superior).

Fig. 5 demonstrates the orientation density field of white
matter, which is estimated from a diffusion MR dataset with a
-value of 1500 . The orientation density function is vi-

sualized by the quasi-spherical surface .
Red denotes a left-right orientation, green an anterior-posterior
direction, and blue a superior-inferior orientation. It is common
practice that the minimum of the orientation density function
is subtracted, but we do not normalize with respect to the
maximum value. The underlying map shows the fractional
anisotropy provided by the diffusion tensor model. Recall that
the callosal fibers (cc) are commissural fibers which inter-
connect the two hemispheres, whereas the corona radiata (cr)
includes, for instance, the pyramidal tract which is a projection
fiber bundle primarily linking the motor cortex with the spinal
cord. The figure uncovers the intermingling of these two nerve
fiber systems in the coronal plane.

IV. DISCUSSION

Q-ball imaging is widely used nowadays to exploit the direc-
tional dependence of the water diffusion process to uncover the
fiber architecture in the human brain white matter. This method

Fig. 5. The orientation density field exposes the radiation of the corpus cal-
losum (cc), the corona radiata (cr), and their crossing. The underlying map de-
picts the fractional anisotropy. The number in the upper right corner indicates
the coronal slice in the anatomical coordinate system [27]. Abbreviation: supe-
rior longitudinal fasciculus (slf).

is based on the narrow pulse assumption and a Stejskal–Tanner
experiment [28], which consists of two diffusion sensitizing
gradient pulses with infinitesimally short duration but finite
diffusion weighting. This approximation allows to establish a
Fourier relationship between the diffusion propagator and the
observable MR signal. However, short gradient pulses with
high intensity are difficult to achieve in human subjects due to
safety concerns. Diffusion encoding gradients are switched on
for a considerable time and hence the diffusion process during
the application of the gradient fields may not be negligible.
Under the narrow pulse assumption, Tuch [3] argues that the
orientation density function of the diffusion propagator and the
Funk–Radon transform of the diffusion signal differ in a term
including a zeroth-order Bessel function of the first kind, which
exhibits high oscillations. If the timing of the MR sequence is
kept fixed, we expect that the orientation density function of
the diffusion propagator is invariant with respect to the strength
of the diffusion encoding gradients. However, the Funk–Radon
transform of the observed signal depends not only on the
diffusion process as suggested by Q-ball imaging, but also on
the gradient magnitude. Although the diffusion propagator is
the same in this experimental setting, the effective or apparent
orientation density function is varying.

Generally, the (local) maxima of the orientation density func-
tion of the diffusion propagator do not agree with the number of
fiber bundles and their orientation. Note that even the modes of
the fiber orientation density generally do not correspond to the
respective directions of the fiber subpopulations [29]. Consider
a mixture of two univariate Gaussian distributions. Depending
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Fig. 6. The fiber orientation distribution (top) is convolved with the impulse
response of a fiber segment, yielding the diffusion signal shown in the middle
row. The orientation density function as defined by Q-ball imaging (with nor-
malization, bottom) is obtained from the Funk–Radon transform of the diffusion
signal.

on their mean and variance, there may be either one or two
maxima, which in most cases do not agree with the respective
means of the two normal densities. Obviously, this argument
generalizes to fiber populations composed of two or more fiber
bundles. Provided that noise artifacts are negligible, a better in-
terpretation might be that the number of modes is a lower bound
for the number of fiber bundles. Although there are many ex-
amples with a good agreement (especially for voxels with one
fiber bundle), we cannot be sure whether the fiber population
is accurately reflected by the orientation density function, as
shown in simulations [30] and in a phantom study [31]. Another
example is given in Fig. 6. Assume that the impulse response
of a fiber segment is described by the diffusion tensor model
with the water diffusivity parameters par-
allel to a nerve fiber and perpendicular to
it. The spherical convolution with the fiber orientation distri-
bution which consists of two fiber subpopulations represented
by a mixture of two Bingham distributions (with an angular
separation of 66.5 [29]) yields for a -value of 1500
the diffusion signal displayed in the middle row. It is apparent
that the Funk–Radon transform of the signal, which is depicted
with normalization in the bottom section of this figure, does
not show close similarity with the fiber orientation distribu-
tion (top). The latter can be recovered from diffusion-weighted

MR measurements by using spherical deconvolution techniques
[32], [33], for instance, a maximum entropy method [34], the
parametric description of the fiber population via a finite mix-
ture of Bingham distributions [29], or the nonparametric repre-
sentation of the fiber orientation density in a reproducing kernel
Hilbert space [35].

In conclusion, Q-ball imaging computes a summary statistics
of the diffusion propagator, namely the apparent orientation
density function. This technique relies on the nonparametric
function estimation of the diffusion signal. We propose to
solve the variational problem in a reproducing kernel Hilbert
space, which is dense in the infinite-dimensional space of the
real-valued antipodally symmetric square-integrable functions
on the sphere. Previous approaches [11]–[13] are special cases,
since these methods truncate the spherical harmonic expansion,
assuming that in the observed signal the harmonic coefficients
greater than a specified order are zero. This assumption is
weakened here, so that these coefficients decay sufficiently
fast, which may reduce ringing and blurring artifacts. The
corresponding Gaussian process model allows the rigorous
voxel-by-voxel estimation of the hyperparameters, which are
the roughness of the diffusion signal and the noise variance of
the MR measurement. Note that the noise in the magnitude of
the complex-valued signal is well approximated by a Gaussian
distribution for relatively low -values and sufficiently high
signal-to-noise ratios. If the diffusion dataset does not meet
these experimental conditions, a Rician noise model might be
considered [36]. Our novel approach is easy to implement and
does not require user-defined parameters, which are estimated
from the data or, if possible, are avoided completely. Thus,
Q-ball imaging is particularly valuable in clinical environments,
also due to the short acquisition time.
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