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a b s t r a c t

Lesions of the brain’s white matter are common findings in MR examinations of elderly subjects. A fully
automatic method for segmenting white matter lesions is proposed here. The joint probability of multi-
modality MR image intensities is used as a feature to segment lesions, because lesion intensities usually
are outliers of the normal tissue intensities and the lesions’ joint intensity probability appears much
smaller than those of normal brain tissues. The v2 random field theory is used to determine the signifi-
cance of a detected lesion and provides a strict statistical analysis to exclude small-sized false-positive
lesions. Experimental results show that the automatic segmentation of lesions is in high agreement with
manual segmentation, and the v2 random-field-based statistical analysis greatly improves lesion seg-
mentation results.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Diffuse white matter (WM) lesions are characterized (mostly)
by a loss of myelin and an increase of extracellular space and re-
vealed by magnetic resonance imaging (MRI) techniques due to
their higher water content. These lesions are considered as a sign
of pathological aging (Deary et al., 2003). The demyelinization of
WM fibers may affect their conduction properties and lead to a de-
crease in cognitive performance, such as a subtle memory loss, a
slower processing speed, or an early fatigue (Gunning-Dixon and
Raz, 2000; de Groot et al., 2000). Obviously, the presence of WM le-
sions worsens the cognitive performance of patients suffering from
other neurodegenerative processes such as Alzheimer’s disease
(Skoog et al., 1996; Leys et al., 1990; Hirono et al., 2000).

Brain lesion segmentation approaches can be classified as man-
ual, semi-automatic (Zijdenbos et al., 1994; Udupa et al., 1997;
Hojjatoleslami and Kruggel, 2001), and fully automatic (Anbeek
et al., 2004; Lao et al., 2006; Kruggel et al., 2008; Dyrby et al.,
2008; Herskovits et al., 2008; Admiraal-Behloul et al., 2005; van
Leemput et al., 2001; Yang et al., 2004). Due to the large amount
of work required for manual segmentation, and the considerable
inter- and intra-rater variability of the results, semi- and fully
automatic brain lesion segmentation methods are preferred. In
semi-automatic methods, the user marks a seed location for a re-
gion growing algorithm that segments a lesion (Hojjatoleslami
and Kruggel, 2001) or accepts/rejects fuzzy-connected candidate
ll rights reserved.
regions as brain lesions (Udupa et al., 1997). Semi-automatic ap-
proaches are not adequate for projects involving large databases
because of the amount of manual work required. All of the above
methods depend mainly on a voxel’s intensity to segment lesions.
Taking a different approach, Gerig et al. (2000) explored time do-
main features to classify lesions, but two or more MR scans of
the same subject must be available.

Fully automatic algorithms for WM lesion segmentation can be
grouped into two classes: supervised approaches (Anbeek et al.,
2004; Lao et al., 2006; Kruggel et al., 2008; Dyrby et al., 2008; Her-
skovits et al., 2008), in which classifiers such as K-nearest neigh-
bors, support vector machines, neural networks, or Bayes
classifiers are used to distinguish lesions from normal brain tis-
sues, and unsupervised methods (Admiraal-Behloul et al., 2005;
van Leemput et al., 2001; Yang et al., 2004). The first group of ap-
proaches requires neuroradiologists to manually segment lesions
in datasets of training subjects. Often, intensity normalization
across scans is necessary which may have an adverse effect on le-
sion segmentation. Most approaches of these two types do not take
spatial lesion information into account or apply heuristics to re-
move spurious small lesions (Admiraal-Behloul et al., 2005; Yang
et al., 2004). Spatial autocorrelations in the data are ignored, unless
the intensity of neighboring voxels is taken into account in the
classification process (Lao et al., 2006; Zhang and Chen, 2004; Chen
and Zhang, 2004).

In this paper, we propose an unsupervised approach for WM le-
sion segmentation. As proposed by van Leemput et al. (2001), we
model lesions as outliers in the multivariate intensity distribution
of healthy tissues. We compute the joint feature occurrence
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probability as revealed by multi-sequence MR images. Because
WM lesions are small and inhomogeneous, the joint intensity
probability of lesion voxels is much smaller than that of healthy
brain tissues. The resulting probability map is modeled as a v2 ran-
dom field in a second step, and we consider lesions as ‘‘unusual
events” in this random field and attach a probability to a cluster
of voxels for being a lesion (Cao, 1999). Thus, larger clusters of out-
liers are more likely to be classified as lesions. This statistically rig-
orous context for WM lesion detection is the core contribution of
this work.

2. Theory

Lesions are considered outliers of a multiple, multivariate inten-
sity distribution that represent the major tissue components in the
image, measured by the intensity joint occurrence probability.
Clusters of outlier voxels are rated for their probability of being a
true lesion using random field theory.

2.1. Intensity joint occurrence probability

Let Iv denote the intensity vector associated with voxel v in co-
registered multi-sequence MR images. Suppose a subject image
volume is composed of NC classes denoted by C1; . . . ;CNC . The joint
probability of the occurrence of the intensity vector Iv can be ex-
pressed as:

PðIvÞ ¼
XNC

k¼1

Pðv 2 CkÞPðIv jv 2 CkÞ: ð1Þ

We assume that intensities of healthy compartments in multi-se-
quence MR images are multivariate Gaussian distributed, in which
the variance is partially due to the structural variability of the com-
partment itself, partially due to the partial volume effect at bound-
aries, and partially due to additive white noise:

PðIv jv 2 CkÞ ¼ ðð2pÞdjRkjÞ�1=2 exp �1=2ðIv � lkÞ
TR�1

k ðIv � lkÞ
� �

;

ð2Þ

where lk represents the mean, Rk is the covariance matrix of (tis-
sue) class k, and d is the dimension of the intensity vector Iv , or here,
the number of imaging sequences. Most commonly, model param-
eters lk;Rk are determined by maximum likelihood estimation
(MLE) (Lehmann and Casella, 1998):

lk ¼
1
n

X
v

Iv and Rk ¼
1

n� 1

X
v
ðIv � lÞTðIv � lÞ; v 2 Ck:

ð3Þ
The breakdown point (defined as the proportion of samples

tending to infinity also makes the estimation go to infinity) of
the approach is 0. Estimating model parameters of healthy tissues
in the presence of lesions (with unusual or extreme intensity val-
ues) requires a robust method. Therefore, we use the minimum
covariance determinant (MCD) estimator (Rousseeuw, 1985). The
basic idea of this robust method is to estimate the mean and
covariance from a fraction f (usually 0:5 6 f < 1) of the whole
set of n voxels by minimizing the determinant of the covariance
matrix jRj with respect to the selection of n� f samples.

Because MCD estimation becomes very time-consuming if n is
large, Rousseeuw and van Driessen (1999) proposed a fast variant:
First, we randomly select ns subsets U1; . . . ;Uns with a small sample
size l (note that nsl < n), and determine their model parameters
using Eq. (3). Then, the following process for a set of samples U de-
noted as C-step is performed for each subset Uj:

1. Compute the Mahalanobis distance of each sample in the subset
using current parameter estimates l;R.
2. Sort the VðUÞ (the number of samples in set U) samples by their
Mahalanobis distance in ascending order.

3. Re-estimate the model parameters using the first VðUÞ � f sam-
ples in the list by Eq. (3).

4. Repeat steps 1–3 until the change in jRj falls below a pre-set
limit.

Thus, we obtain ns estimates lj;Rj. Now, we merge all the initial
subsets U1; . . . ;Uns into a larger one U� (note that U� does not in-
clude all the n samples but only nsl samples), and repeat the C-step
ns times with lj;Rjðj ¼ 1; . . . ;nsÞ as the starting estimates of the
parameters to find ns refined model parameter estimates with this
larger sample set U� denoted by l̂j;

cRjðj ¼ 1; . . . ;nsÞ. Finally, l�;R�

are determined for the full set of n samples by performing the C-
step ns times with the ns refined parameters l̂j;

cRjðj ¼ 1; . . . ;nsÞ
as the starting points and selecting the parameters with the small-
est covariant matrix determinant.

We model the brain extracted from T1-weighted MR images as
composed of three classes, roughly, white matter (WM), gray mat-
ter (GM), and cerebro-spinal fluid (CSF). Images are first segmented
using an algorithm based on hidden Markov random fields (Zhang
et al., 2001). Then, the fast MCD method is applied to robustly esti-
mate the mean and covariance matrix of the three classes. The
prior probability Pðv 2 CkÞ for each class is assumed to be equal
resulting in Pðv 2 CkÞ ¼ 1=NC . Finally, the joint occurrence proba-
bility PðIv Þ is computed for each voxel.

2.2. Modeling the joint probability distribution

For convenience, let us use the logarithm uv ¼ � logðPðIvÞÞ of
the joint probability (Eq. (1)) in the following. Because lesion vox-
els have an unusual joint intensity probability compared with nor-
mal brain tissues, larger values of uv indicate a higher probability
for being a lesion voxel.

Because uv corresponds to a logarithm of a multiple, multivari-
ate Gaussian distribution, deriving a closed-form expression for the
distribution of uv is not straightforward. Here we demonstrate that
there is an upper limit of uv , which is v2-distributed. Let us con-
sider the case of a single class first. For Nc ¼ 1;uv is related to
the squared Mahalanobis distance, denoted by r2

v :

uv ¼ 0:5ðIv � lkÞ
TR�1

k ðIv � lkÞ þ bk ¼ 0:5r2
v þ bk; ð4Þ

where bk corresponds to the sum of all log-transformed class-
dependent constants in Eqs. 1 and 2. The squared Mahalanobis dis-
tance r2

v is v2-distributed with degrees of freedom (DOF) d, the
number of components in the intensity vector Iv .

For the multi-class case Nc > 1, we exchange the summation in
Eq. (1) and the log-transformation when computing uv . Using Jen-
sen’s inequality and the fact that the negative logarithm (� logðxÞ)
is a convex function and

PNC
k¼1Pðv 2 CkÞ ¼ 1, we find:

uv ¼ � log
XNC

k¼1

Pðv 2 CkÞPðIv jv 2 CkÞ
 !

ð5Þ

6 �
XNC

k¼1

Pðv 2 CkÞ logðPðIv jv 2 CkÞÞ: ð6Þ

Because the class-wise prior probability Pðv 2 CkÞ is often assumed
to be 1=NC , it follows:

uv 6�
1

NC

XNC

k¼1

logðPðIv jv 2 CkÞÞ ð7Þ

¼ 1
2NC

XNC

k¼1

ðr2
v þ 2bkÞ ð8Þ

¼ 1
2NC

XNC

k¼1

r2
v þ b; ð9Þ
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Fig. 1. A QQ-plot of experimental values of u against a scaled and shifted v2 distribution verifies the distributional assumption.
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where b ¼
PNC

k¼12bk is a constant and
PNC

k¼1r2
v is a sum of Nc v2-dis-

tributed values (for each class), which itself follows a v2-distribu-
tion with Nc d DOF. In our problem, d equals the number of
included imaging modalities only if their information is completely
independent. If all modalities contain the same information, then
d ¼ 1. So the effective DOF ranges in Nc 6 m 6 Nc d. Thus, there is
an upper limit of uv which is v2-distributed after proper shifting
and scaling. As a consequence of this derivation, followed by exper-
imental verification (see Section 3), we model uv as a scaled and
shifted v2-distributed random variable:

uv � av2ðmÞ þ b; ð10Þ

and determine a; b; m by minimization using Powell’s method (Pow-
ell, 1964):

O ¼
Z 1

0
FuðtÞ � ðaFv2 ðt; mÞ þ bÞ
� �2dt; ð11Þ

where FuðtÞ is the experimental cumulative density function (CDF)
of u and Fv2 ðt; mÞ is the v2 CDF with m DOF, i.e., the regularized gam-
ma function. Computed values uv are corrected by the optimized
parameters â; b̂ to yield a field of v2-distributed values with m
DOF. As can be seen from the QQ-plot of an example (Fig. 1), our dis-
tributional assumption is sufficiently accurate.
2.3. Finding lesions

Accepting a specific type I error p, we can determine a threshold
ut ¼ F�1

v2 ð1� pÞ from the inverse v2 CDF to find all lesion voxels.
However, this simple approach assumes an (unrealistic) statistical
independence of neighboring voxels. In analogy to similar consid-
erations in the statistical analysis of functional imaging data, we
perform a second-level analysis using the size of lesion voxel clus-
ters above ut . This approach is based on random field theory.
Rather than repeating basics of this well-developed theory, we re-
fer to the work of Adler (1981) for a thorough introduction, and
will focus on the details relevant to our problem.
We consider our 3D spatial map of transformed joint probabil-
ity values u as a random field of v2-distributed values. We want to
attach a significance P value to each cluster of voxels above ut that
it represents a ‘‘true” lesion. The probability of finding a cluster of
at least k voxels by chance is given by:

Pðsmax P kÞ ¼ 1� exp½�EðmÞPðs > kÞ� � exp½�EðmÞ�
1� exp½�EðmÞ� ; ð12Þ

where EðmÞ corresponds to the expected number of voxel clusters
above ut . If this probability is small, we consider the cluster a signif-
icant detection, i.e., a ‘‘true” lesion.

The expected number of voxel clusters EðmÞ above ut can be
approximated by the expectation of the Euler characteristic of
the random field (Worsley, 1994). Roughly speaking, the Euler
characteristic corresponds to the number of clusters minus the
number of holes plus the number of hollows in a 3D random field.
For large ut , holes and hollows tend to disappear (Adler, 1981), and
the Euler characteristic approximates the number of clusters. For a
v2 random field in R3 with m DOF, the expected number of clusters
is approximated by Worsley (1994):

EðmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jKjum�3

t

ð2pÞ3 2m�2

s
n expð�0:5utÞ

Cð0:5mÞ ½u2
t � ð2m� 1Þut þ ðm� 1Þ

� ðm� 2Þ�; ð13Þ

where C denotes the gamma function, and n corresponds to the
number of voxels in the field. The spatial smoothness jKj of the ran-
dom field is given as (Worsley, 1994):

jKj ¼ 1
n� 1

Xn

v¼1

ðdv dT
vÞ where dv ¼

ð@u=@tÞv
ð2 ffiffiffiffiffiffi

uv
p Þ ; ð14Þ

and ð@u=@tÞ is approximated by central differences in each
dimension.

The probability for finding a cluster of size k is, according to Cao
(1999):
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Pðs > kÞ ¼ exp �0:5
kEðmÞY

EðnÞ

� �2
m

 !
; ð15Þ

where the integral Y ¼
R1

0 ym=2 expð�0:5yÞdy can be computed by
discrete integration techniques.

Finally, the expected total number of voxels EðnÞ that have a value
greater than ut is determined by integrating the tail of the v2 prob-
ability density function (PDF) f ð�Þ beyond ut:

EðnÞ ¼ n
Z 1

ut

fv2 ðxÞdx ¼ nð1� Fv2 ðut=2; m=2ÞÞ: ð16Þ

Note that the computation of a probability according to Eq. (12)
requires the cluster size k only. The threshold ut , DOF m, the expec-
tation of the total number of voxels n and the smoothness jKj are
constant for a given dataset, so EðmÞ; EðnÞ and Y can be pre-
computed.

We summarize the lesion detection process as follows: (1) Com-
pute uv for each voxel. (2) Determine a; b, and m according to Eq.
(11), and transform uv into a v2 random field. (3) Determine the
smoothness jKj according to Eq. (14) and compute EðmÞ; EðnÞ, and
Y for this field. (4) Find connected components for which uv > ut ,
where ut is a given threshold. (5) Use Eq. (12) to compute the prob-
ability P that the connected component occurs only by chance
based on the v2 random field. Here, we consider a supra-threshold
cluster in the probability map as a lesion if P < 0:05. By introducing
the v2 random field theory, we take the spatial extent of a lesion
into account.

2.4. Remarks

MR image preprocessing includes co-registration, skull strip-
ping, tissue segmentation, and intensity non-uniformity correction.
T1-weighted MR images were transformed into the T2-weighted
MR image space of the same subject by a co-registration procedure
based on mutual information (Maes et al., 1997), so both manual
and automatic lesion segmentation were performed in the T2-
weighted MR image space. Non-brain tissues (e.g., skull and skin)
6.5 7 7.5
6.5

7

7.5

8

8.5

9

Normal g

N
or

m
al

 w
hi

te
 m

at
te

r 
u v

Fig. 2. A QQ-plot of experimental values of u of normal gra
were removed by a fast and robust algorithm based on a deformable
model (Smith, 2002). For estimating the distribution parameters, a
prior segmentation into three classes (WM, GM, and CSF) was com-
puted using a segmentation approach based on hidden Markov ran-
dom fields (Zhang et al., 2001), and intensity non-uniformity was
corrected by a non-parametric method (Sled et al., 1998).

In essence, the lesion segmentation method is based on outlier
detection, but not all outliers indicate lesions. CSF voxels close to
GM often appear as outliers partially due to co-registration errors,
partially due to the partial volume effect. We add a constraint to
remove some false-positives: The T2 image intensity of lesion can-
didate voxels must be higher than the mean T2 image intensity of
WM, which is reasonable because lesions have high intensity in T2

images.
The algorithm was implemented using the C++ programming

language and tested on a Linux server with an AMD Athlon 64 pro-
cessor (2.21 GHz) and 4 GB of memory. It takes about 6 min to seg-
ment subject data including T1-weighted and T2-weighted MR
images, which is fast enough for studies involving large databases.
Note that the only relevant parameters of our procedure are the
threshold ut (which is related to an accepted voxel-wise detection
error), and the cluster-wise probability threshold Pt (chosen as
Pt ¼ 0:05 here).
3. Experimental results

Thirty subjects with mild or moderate dementia (10 males, 20
females, 78.27 ± 5.02 years old) were recruited from the Leipzig
Longitudinal Study of Aging (LEILA 75+) (Riedel-Heller et al.,
2000). Both T1-weighted and T2-weighted MRI brain data sets were
acquired on a Siemens Vision 1.5 T scanner. The acquisition param-
eters for the T1-weighted images were: TR 11.4 ms, TE 4.4 ms, ma-
trix 256� 256, 128 slices, voxel size 0:9� 0:9� 1:5 mm.
Parameters for the T2-weighted images were: TR 5016 ms, TE
132 ms, 19 slices, matrix 357� 512, voxel size 0:5� 0:5� 5 mm,
gap 1.5 mm. A neuroradiologist annotated WM lesions in both im-
8 8.5 9

ray matter u
v

y vs. white matter verifies the stationarity assumption.
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age series mainly based on T2-weighted images with T1-weighted
images available for reference.

We evaluated our unsupervised lesion segmentation algorithm
by comparing the computed lesions with manual annotations con-
sidered as ground truth. We computed the average true-positive
rate (ATPR), average false-positive rate (AFPR), and average simi-
larity index (ASI) of the automatically segmented lesions and the
ground truth. Suppose RA and RM are the two sets of voxels classi-
fied as lesions for a subject in two segmentations and RM is the
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connecting the data points.
ground truth, then the true-positive rate (TPR), false-positive rate
(FPR), and similarity index (SI) are defined as:

TPR ¼ VðRA
T

RMÞ
VðRMÞ ; ð17Þ

FPR ¼ VðRA
T

RMÞ
VðRMÞ

; ð18Þ

SI ¼ 2VðRA
T

RMÞ
ðVðRAÞ þ VðRMÞÞ ; ð19Þ
8 8.5 9 9.5 10
u

With spatial extent analysis
Without spatial extent analysis

proves the similarity with an expert’s segmentation. Note that curves are just lines



Fig. 5. Effect of rating the cluster extent: T1-, T2-weighted image (a, b), segmented lesions with (c) and without the application of cluster rating (d).
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where Vð�Þ corresponds to the number of elements in a set, and RM
the complementary set of RM. The values of TPR; FPR, and SI are in
the range of [0,1]. A TPR value of 1 indicates that all lesion voxels
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Fig. 6. Experimental CDF of the cluster size thresho
labeled in the ground truth segmentation were detected by the seg-
mentations RA. A FPR value of 0 means that no voxels were wrongly
detected as lesions by the segmentations RA. The SI indicates how
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sponding to p−value 0.05

ld for p ¼ 0:05 in the data sample of this study.
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much the segmentations overlap. Bartko (1991) pointed out that a
SI > 0:7 indicates a good agreement between two segmentations;
however, the SI values depend greatly on the volume of the seg-
Fig. 8. Lesion segmentation results: T1-, T2-weighted image
mentation viewed as ground truth (Anbeek et al., 2004). In general,
higher values of TPR and SI and smaller values of FPR indicate a bet-
ter performance of the automatic method.
(a, b), segmented lesions (c), and expert annotation (d).
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3.1. Validation of the assumed distribution of uv

In this section, we demonstrate that our simplification of the
distribution of uv as a v2 distribution is reasonable. For an example
subject, we computed the values of uv at all locations except those
labeled as lesions by the experienced rater. Fig. 1 shows a QQ-plot
of the experimental values uv against a shifted and scaled v2 distri-
bution and validates our distributional assumption. Next, we col-
lected experimental values uv in GM and WM separately. The
QQ-plot in Fig. 2 demonstrates that the assumed v2 random field
is stationary across normal WM and GM.

3.2. Validation of the intra-rater manual segmentation variation

Four subjects were arbitrarily selected from the 30 experimen-
tal subjects and manually re-segmented for lesions by the same
rater 3 months after the first manual segmentation to investigate
the intra-rater manual lesion segmentation variation. The SI be-
tween the two manual segmentations was 0.71, which verified
the reliability of the manual segmentation process.

3.3. Validation of the lesion segmentation accuracy

To demonstrate that the cluster size analysis improves perfor-
mance, we applied the algorithm with and without this option to
all datasets. Fig. 3 shows receiver-operating characteristics (ROC)
curves while varying the threshold ut . Though the maximum
ATPR with v2 random-field-based cluster size analysis is a little
smaller than those without the cluster size analysis, the AFPR
Fig. 9. Lesion segmentation results: T1-, T2-weighted image
greatly decreased with the cluster size analysis, which can be seen
from Fig. 4. The corresponding ASI is consistently and remarkably
improved when the size criterion is included. Note that the best
threshold is ut ¼ 8:5 at ASImax ¼ 0:81. To visualize the effect of
the cluster size analysis, slices of the original T1 and T2-weighted
MR images are shown in Fig. 5, showing the detected lesions with
and without cluster size analysis, from which we can see that the
statistical rating of a lesion’s spatial extent correctly removed sev-
eral false-positive detections.

We compiled the cluster size corresponding to p ¼ 0:05 for all
datasets as a CDF in Fig. 6 to demonstrate the range of the size
threshold for false-positive detections. Because this threshold var-
ies considerably across datasets, we conclude that the cluster size
threshold is dependent on characteristics of a specific dataset and
cannot be replaced by a simple (global) threshold. The v2 random-
field-based analysis provides a rigorous assessment of the lesion
cluster size, based on the smoothness of the statistical map.

Experiments were conducted to verify that our cluster size anal-
ysis based on random field theory yields better results than apply-
ing a simple global threshold on the cluster size. This global
threshold was varied from 1 to 101 voxels with a step of 2 voxels.
The maximum ASI ¼ 0:75 was found at a threshold of 76 voxels,
which is smaller than the maximum ASI ¼ 0:81 obtained by our
cluster size analysis. The SI range obtained in the 30 subjects was
[0.70,0.90] for the cluster size analysis, and [0.43,0.89] if the opti-
mal global threshold was applied. A paired t-test of the SI values
demonstrated the superiority of our cluster size analysis.

Next, we studied the influence of the parameter f in the MCD
estimator on the lesion segmentation result. We varied f from
(a, b), segmented lesions (c), and expert annotation (d).



Fig. 10. Lesion segmentation results: T1-, T2-weighted image (a, b), segmented lesions (c), and expert annotation (d).
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0.5 to 0.85 with a step size of 0.05. The ASI across all subjects is
shown in Fig. 7. The best fraction value was 0.6, corresponding to
the best ASI value of 0.81.

We also compared our lesion segmentation method with an ap-
proach based on a Bayesian classifier (Herskovits et al., 2008).
Although this classifier was effective and accurate when fluid-
attenuated inversion-recovery (FLAIR) MR images were available
(Herskovits et al., 2008), the ASI was only 0.14 when only T1 and
T2 MR images were used, while the algorithm described here
achieved a superior ASI value of 0.81.

Finally, manually and automatically segmented lesions are
compiled to illustrate the performance of our WM lesion segmen-
tation method with medium (Figs. 8 and 9) and small lesion loads
(Fig. 10).
4. Discussion

We proposed an automatic method for segmenting diffuse WM
lesions of the human brain. Lesion voxels are detected as outliers of
the intensity distribution of normal tissues in multi-sequence MR
images. The resulting probability map is modeled as a v2 random
field, and groups of connected voxels above a threshold are tested
for their detection significance using the random field theory.

Rating the significance of lesion detection using the random
field theory is the core contribution of this work. Our experiments
demonstrate that lesion detection is considerably improved. In
addition, it is easier and more meaningful to specify an accepted
error for false positives (here, we used p = 0.05) than assuming
an (arbitrary) global threshold for the cluster size. Note that this
approach can easily be integrated with other lesion segmentation
methods that yield probability maps (Kruggel et al., 2008; van
Leemput et al., 2001). Our framework can readily incorporate other
MR imaging protocols such as fluid attenuation inversion-recovery
(FLAIR) or proton density (PD) weighted MRI, which may further
improve detection accuracy.

At a first glance, the simplification made when assuming a v2

distribution for uv appears arguable. It is important to fit the long
tail well, since we focus on outlier detection here. Our choice of ut

can be compared with a similar threshold used in functional MRI
data analysis. Here, Gaussian random fields are used, and a thresh-
old ut ¼ 2:0 is often assumed, which corresponds to an error prob-
ability of p ¼ 0:05. For a v2 distribution with m ¼ 4, an error
probability of p ¼ 0:05 corresponds to a threshold of ut ¼ 9:48,
which is close to the optimal value of ut ¼ 8:5 derived from the
SI analysis above. This finding underlines that our simplification
of the distribution of uv is reasonable and experimentally corrobo-
rated. We also demonstrated that the empirical distribution of uv is
well approximated by a v2 distribution.

The automatic estimation of a subject’s WM lesion load is a
valuable alternative to visual rating. Especially in longitudinal
studies, automatically generated results are expected to be more
reliable.
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