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Abstract— The topologically correct and geometrically ac-
curate reconstruction of the cerebral cortex from magnetic
resonance (MR) images is an important step in quantitative
analysis of the human brain structure, e.g. in cortical thickness
measurement studies. Limited resolution of MR images, noise,
intensity inhomogeneities, and partial volume effects can all
contribute to geometrical inaccuracies and topological errors in
the model of cortical surfaces. For example, unresolved touching
banks of gray matter (GM) in narrow sulci pose a particular
challenge for an automated algorithm, requiring specific steps
for the recovery of separating boundaries. We present a method
for the automated reconstruction of the cortical compartment
from MR images. The method is based on several partial
differential equation (PDE) modelling stages. First, a potential
field is computed in an electrostatic model with GM posing as
an insulating dielectric layer surrounding a charged conductive
white matter (WM) object. Second, geodesic distances from
WM along the streamlines of the potential field are computed
in a Eulerian framework PDE. Third, a digital skeleton surface
separating GM sulcal banks is derived by finding shocks in the
distance field. At the last stage, a geometric deformable model
based on the level set PDE is used to reconstruct the outer
cortical surface by advection along the gradient of the distance
or potential field. The rule preserving the digital topology, and
the skeleton of the distance field resolving fused adjacent banks
in sulci, constrain the deformable model evolution. In addition,
the deformable model may use the distance field as a constraint
on thickness of the reconstructed cortical layer.

I. INTRODUCTION

Digital reconstruction of the cerebral cortex from magnetic

resonance (MR) images is an important step in quantitative

analysis of the human brain structure, e.g. in analysis of

cortical folding patterns, in brain morphometry, and partic-

ularly in cortical thickness measurement studies. Cortical

reconstruction, i.e. the derivation of a computerized repre-

sentation of the cortical layer based on three-dimensional

(3D) images of the brain, must be geometrically accurate and

topologically correct in order to provide valid and accurate

quantitative measures of brain structure. The cerebral cortex

is a thin layer of neural tissue, called gray matter (GM), on

the outer side of the white matter (WM). The cortex has a

3D geometry of a highly-folded layer with spatially varying

curvature and thickness (1-5 mm, average thickness around

2.5 mm [1]). In theory, the cortical layer can be represented

as the inner space between two cortical surfaces, each

surface being topologically homeomorphic to a 3D sphere.

In practice, limited spatial resolution of MR images, noise,

intensity inhomogeneities, and partial volume effects can all

be the sources of geometrical inaccuracies and topological
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errors in the reconstructed cortical model. In particular, the

opposite banks of gray matter in deep sulci are not always

resolved as separate, and can appear fused together, leading

to invalid models of the cortical layer and propagating

errors further into quantitative measurements, e.g. of cortical

thickness. This may present a particular challenge for an

automated reconstruction algorithm, requiring specific means

for an automatic detection and correction of topologically

and geometrically problematic cases.

Reconstruction of cortical surface models received consid-

erable attention in biomedical image analysis research. Fischl

et al. in [2] provide an overview of topology-enforcing and

topology-correcting methods for the construction of cortical

models, and present a surface mesh based algorithm for

finding and correcting the topological defects. Kim et al. in

[3] present a deformable mesh algorithm, called constrained

Laplacian anatomic segmentation using proximity (CLASP).

The algorithm computes a Laplacian field mapping between

the GM/WM interface and the skeleton of the partial volume

classification of the cerebrospinal fluid (CSF). The Laplacian

map is then integrated into the the deformable model’s

objective function, driving mesh vertices into locations with

higher values of the Laplacian field, and simultaneously

serving as a constraint on the distance from the GM/WM

initial surface. The method in [3] depends on accurate

extraction of the CSF skeleton, which may be compromised

at locations, where the fused GM sulcal banks are not

resolved even by partial volume CSF voxels. Zeng et al.

in [4] provide a different approach to the distance-constrained

reconstruction of the inner and outer cortical surface, using

the distance-coupled evolution of two implicit surfaces in

the level set framework. However, this approach does not

constrain topological changes in the evolving coupled sur-

faces, and in some cases, the distance coupling may be too

strong, resulting in geometrical inaccuracies. Han et al. [1]

describe a method for automatic reconstruction of cortical

surfaces, called CRUISE, which is built around a deformable

model using the level set method. To help resolve the cortical

banks in sulci, a thin digital separating barrier is constructed

using the Anatomically Consistent Enhancement (ACE) al-

gorithm [1], [5], which finds a skeleton of the weighted

distance function computed from the Eikonal equation with

a speed function modulated by the CSF class membership.

At the core of the CRUISE method is a topology-preserving

geometric deformable surface model (TGDM) [1], [5], [6],

which models evolution of a level set function under the

influence of signed pressure forces computed from tissue

class membership values, and curvature forces defined by

the surface geometry. Optionally [1], the TGDM can include
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the advection forces determined by a gradient vector flow

(GVF) derived from an image intensity edge map, which is

often used in snake models (see [7]).

We found that available software is not suitable for dealing

with the analysis of MR imaging data at a much higher res-

olution and a different image contrast than standard images.

We present a method for the automatic reconstruction of

the cortical compartment from MR images, which is based

on several partial differential equation (PDE) modelling

stages. Our method is inspired by the work of Han et al.

[1], but introduces a different perspective, consolidating all

algorithmic stages around the key model of the potential

field. The method proceeds as follows: First, a potential

field is computed using an electrostatic model, where WM

poses as a charged conductive object, and GM poses as

a dielectric insulating layer with permittivity proportional

to GM class probability values. Second, distances from

WM along the streamlines of the potential field are found

in Eulerian framework as a solution of a PDE, without

explicitly constructing the streamline trajectories. Third, a

binary skeleton separating GM banks is derived by finding

shocks in the distance field, similarly to skeletonization in

the ACE algorithm in [1]. At the last stage, a geometric

deformable model based on the level set PDE is used to

reconstruct the outer cortical surface by advection along the

gradient of the potential or distance field computed at earlier

stages. The evolution of the deformable model is constrained

topologically by a simple-point based rule preserving the

digital topology (similarly to the TGDM in [1]), and by

the skeleton of the distance field, which helps to resolve

the touching GM banks. In addition, the distance field itself

may be used as an optional constraint on the thickness of

the reconstructed cortical layer.

II. METHODS

The method is described in 3D, but can be applied to

2D images as well. Let ~r = (x,y,z) denote a point in the

discretized 3D space R
3, Ω⊂ R

3 denote the image domain,

and Γ(Ω) denote the domain boundary. The input to our

algorithm consists of the following data derived from a raw

MR image: 1) WM and GM tissue class probability images,

Pw(~r) and Pg(~r); 2) a refined segmentation of WM, Bw(~r);
(~r ∈ Ω). The refined WM segmentation can be supplied in

the form of a binary image, an edited class membership, or a

level set function. Let Ωw ⊂Ω denote the binary domain of

the WM object (Bw(~r) = 1 ⇐⇒ ~r ∈Ωw). Image preprocess-

ing, tissue classification, and WM segmentation/editing steps

have been described elsewhere (e.g. see [1], [8] for details).

A. Electric field model

A potential field is found as a solution to the PDE

modelling an electric field around a charged conductive WM

object insulated by a dielectric GM layer having spatially

inhomogeneous electric permittivity proportional to Pg(~r).
In such a model, it is qualitatively expected that the flux

of the electric field will be confined in regions of higher

permittivity, i.e. where GM class probability is higher, there-

fore trajectories following the streamlines of the electric

field will trace through the GM layer before exiting into

the background space. Let ϕ(~r) denote a potential field, a

scalar function defined over Ω. The gradient of the potential
~E(~r) =∇ϕ is a conservative vector field, which is irrotational

(∇×~E = 0). Let ε(~r) denote another scalar function, which

will be called permittivity. Permittivity can be computed

from class probabilities as follows:

ε(~r) = 1+(εmax−1)(Pw(~r)+Pg(~r)), (1)

where εmax is the maximum permittivity of the insulating

layer. Thus permittivity is close to εmax when WM and/or

GM class probabilities are high, and is close to 1 when

they are low. The potential field is found as a solution of

Maxwell’s equation for an electric field inside inhomoge-

neous dielectric medium in the absence of free charges:

∇(ε(~r)~E(~r)) = ∇ε∇ϕ + ε∆ϕ = 0. (2)

The above equation (2) assumes that the dielectric medium

has linear and isotropic properties, therefore ε is a scalar, not

a tensor. Boundary conditions are specified as ϕ(~r ∈Ωw) =
Vmax and ϕ(~r ∈ Γ(Ω)) = 0, where Vmax is the potential of

the WM object. The solution of the PDE ϕ(~r ∈Ω\Ωw) can

be obtained as a steady state solution (
∂ϕ
∂ t
→ 0) of a non-

stationary equation:

∂ϕ

∂ t
= ∇ε∇ϕ + ε∆ϕ. (3)

The equation (3) can also be viewed as describing the diffu-

sion in inhomogeneous medium, where ε(~r) is a spatially

varying but stationary diffusion coefficient, and ϕ(~r, t) is

the concentration of the diffusing substance. This allows for

a different physical interpretation of the model: we seek a

steady state spatial distribution of ”particles” diffusing from

WM source into the medium without sinks and with dif-

fusivity proportional to GM class probability. Qualitatively,

it is expected that ”particles” would diffuse more freely in

GM, therefore the streamlines of the ∇ϕ field would tend to

concentrate in the GM compartment. The equation (3) can

be discretized and solved iteratively as described in [9], e.g.

using the Jacobi method [10].

B. Streamline distance field

Streamlines of the potential field ϕ are defined as a family

of curves that are at each point tangent to the gradient

∇ϕ . Let d(~s,~r) denote the length of a streamline segment

originating at some point in WM boundary ~s ∈ Γ(Ωw) and

ending in point~r ∈Ω\Ωw. If for any point~r there is one and

only one streamline passing through it, then d(~r) defines a

distance field. While such one-to-one correspondence always

holds for an incompressible flow defined by a Laplacian

field φ (∆φ = 0), it does not hold for compressible flows

in general. Fortunately, in our case of the potential flow

in linear, isotropic, inhomogeneous medium without sinks

and impenetrable barriers, it can be shown that the distance

field can be defined. It is possible to compute the distance
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field without explicitly finding the streamline curves and

integrating trajectories in a Lagrangian framework. Using the

method described in [11], the distance field can be found as

a solution of a PDE in an Eulerian framework on a fixed

grid. We note that ∇ϕ/‖∇ϕ‖ is the unit tangent field of the

potential field ϕ . Then it can be shown that the distance field

d must satisfy the following PDE:

∇ϕ

‖∇ϕ‖
·∇d(~r) = 1, (4)

with the boundary condition d(~r ∈ Γ(Ωw)) = 0. The PDE

(4) can be solved using the numerical implementation de-

scribed in [11]. In principle, finite spatial discretization may

violate the bijective property of the flow by clamping several

streamline paths into one grid point, so the solution d(~r) may

experience numerical convergence problems in some grid

locations. In practice, we found that such problematic points

are very sparse, and do not impede numerical convergence in

the computational domain at large. These points are usually

detected among other ”shocks” in the distance field by a

skeletonization method, which is described next.

C. Skeleton of the distance field

Shocks, or singularities of a distance field d are defined

as a set of points, where spatial derivatives of the field are

not well-behaved, i.e. the gradient ∇d is not well defined.

Such shocks appear as discontinuities or sinks in the field.

Note that even though the potential field in our model should

be, in theory, free from the sinks, they may appear in the

distance field due to numerical discretization. Let S⊂Ω\Ωw,

called a skeleton of the distance field, denote a set of grid

points, where shocks are detected by a numerical procedure.

Such numerical procedure can be based on finite difference

approximations to ∇d, as described in the ACE method

in [1]. The observation is that a centered finite difference

numerical scheme will produce values of ‖∇d‖ that are

significantly lower than 1 on the shock points, and are

close to unity elsewhere. Then the skeleton can be detected

as S = {~r | (~r ∈Ω\Ωw)∧ (d(~r)> dmin)∧ (‖∇d(~r)‖< T )},
where dmin is a minimum distance parameter, and T is a

specified threshold value (T < 1). Alternatively, the distance

field skeleton can be detected with the Hamilton-Jacobi

skeleton algorithm [12], [13], which is based on the idea

that the flux of the vector field ∇d should be close to zero

for points away from shocks, and has large negative/positive

values at sink/source shock points, respectively. The algo-

rithm allows efficient numerical implementation [12], where

for each grid point~r the flux of ∇d is computed as a sum of

~nri ·∇d over all neighbouring grid points~ri, where~nri denotes

an outward normal vector at ~ri to a unit sphere centered

at ~r. Since derivatives are not well-behaved in locations

close to shocks, numerical approximations of ∇d must be

computed using Hamilton-Jacobi essentially nonoscillatory

(ENO) or weighted ENO (WENO) interpolants (see [12],

[14] for details). As illustrated in Fig. 4, a skeleton of the

distance field can be used to guide the cortical reconstruction

algorithm in places where the boundary between cortical

banks is otherwise not clearly detectable.

D. Geometric deformable model

The geometric deformable model uses an implicit repre-

sentation of a surface, embedding it into a so-called level

set function, which is a real valued function defined, in our

case, on the 3D domain Ω. Let φ(~r, t), ~r ∈Ω denote a level

set function. Then the evolving interface embedded in the

zero level set is D(t) = {~r ∈ Ω | φ(~r, t) = 0} (see [14]). In

our model, evolution of the level set function is described

by the following PDE:

∂φ(~r, t)

∂ t
+~V (~r) ·∇φ(~r, t) = wκ κ(φ)‖∇φ(~r, t)‖, (5)

where ~V is the advection velocity vector field, κ is the mean

curvature, and wκ is the weight of the curvature term (wκ >
0). The mean curvature of the interface embedded in the level

set function is [14]:

κ = ∇ ·

(

∇φ

‖∇φ‖

)

. (6)

The advection velocity vector field ~V (~r) is derived from

the gradient of the potential field ϕ (see sect. II-A) or the

distance field d (see sect. II-B):

~V (~r) =















−β (~r)
(

∇ϕ(~r)
‖∇ϕ‖

)

or

β (~r)
(

∇d(~r)
‖∇d‖

)

, (7)

where β (~r) is a stopping/direction-reversal factor computed

from the GM/WM class probabilities. For example, the stop-

ping/reversal factor can have a form of a logistic function:

β (~r) =
2

1+ exp(−K [Pgw(~r)−P0])
−1, (8)

where K is the constant controlling the steepness of the

slope of the sigmoid curve, and P0 is the GM class prob-

ability threshold value determining the capture range of the

deformable model. For spatial regularization, the combined

GM and WM class probability Pgw(~r) can be calculated as a

weighted sum over the 18- or 26-connected neighbourhood

Nn of the point ~r:

Pgw(~r) = ∑
~ri∈{~r,Nn(~r)},~ri /∈S

wi (Pg(~ri)+Pw(~ri)) , (9)

where wi are the neighbourhood weights, and the binary

skeleton of the distance field S is used for masking of the

class probability values in the separating barriers. As an

option, the stopping factor β in Eq. (7) can be modified

to include the distance-constraining factor:

β1 = |β (~r)||γ(~r)|sgn(β ,γ), (10)

where the sign function is an ”OR” combination of two signs:

sgn(a,b) =

{

−1 if a < 0 or b < 0

1 otherwise
, (11)
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and the distance-constraining factor γ can also have a form

of a logistic function:

γ(~r) =
2

1+ exp
(

−K
[

1
2
− min(d(~r),2dmax)

2dmax

]) −1. (12)

In the equation (12), dmax is a parameter constraining the

maximum distance of advection along the streamlines of the

gradient field.

Our numerical implementation for solving the level set

Eq. (5) is based on the narrow-band algorithm [6], [14],

[15]. The initial level set function is computed as a signed-

distance function (SDF) of the initial interface, supplied in

the refined WM image Bw, using the fast marching method

(FMM) [14], [16]. By standard convention, the ”inside”

points are represented by negative values of the SDF. During

the evolution, the level set function φ(~r, t) is maintained

close to the SDF by periodic reinitialization with the FMM.

The advection term in Eq. (5) is discretized based on the

upwind differencing scheme (see [14] for details), and the

curvature term is discretized along the lines of Eq. (6)

using the central differencing scheme [10]. A pseudo-code

outlining the narrow-band algorithm is described elsewhere

(e.g. in [6], [15]). In the Algorithm 1 below, we focus

on the algorithmic core part, which deals with the update

of the level set function. The update algorithm uses the

skeleton of the distance field (sect. II-C) to create barriers

for the evolving interface. In addition, the algorithm has a

built-in rule preserving the digital topology of the deformed

model, similarly to the TGDM in [1], [6]. The topology

preserving rule is based on the concept of simple point [17].

By definition, the removal of a simple point does not change

the topology of a binary image. Bertrand in [17] provides the

algorithm for boolean characterization of 3D simple points

based on checking of five basic configurations in the local

neighbourhood of a point. Since the digital topology of a

binary image depends on the chosen connectivity model,

the connectivity must be explicitly stated in the simple

point characterization. Let B(~r,φ) =

{

1 if φ(~r, t)≤ 0

0 otherwise
,

denote the foreground binary object, and B denote its com-

plement, or the background binary object. As in [17],

foreground/background objects use the 26-/6-neighbourhood

connectivity, respectively. Let φ̂ denote the level set function

that has been updated to the value φnew at the point ~ri. Then

the IsSimplePoint(φ(~r, tk),φnew,~ri) function returns true if ~ri

is a foreground point (φnew≤ 0) and is a 26-connected simple

point in B(φ̂), or is a background point (φnew > 0) and is 6-

connected simple point in B(φ̂), and otherwise returns false.

III. EXPERIMENTAL RESULTS

Our algorithm is implemented in C++ in the Linux en-

vironment. The algorithm was evaluated on simulated test

cases with a simplified geometry, simulated MRI datasets

(BrainWeb [18]), real T1-weighted MR images with typi-

cal resolution (1 mm3 voxel), and high-resolution (sub-mm

voxel size) images of explanted brains. The running time on

Algorithm 1 The level set function update algorithm.

{Compute time step for each point in the narrow band}
for all ~ri ∈ NarrowBand do

{1. Compute the updated value}
φnew← φ(~ri, tk)+∆t∆φ(~ri, tk)
{2. Check if there is a sign change}
if sgn(φnew) == sgn(φ(~ri, tk)) then

{3.1 No sign change}
φ(~ri, tk+1)← φnew {apply the update}

else if ~ri ∈ S then {Check if is in the barrier}
{3.2 Is in the barrier, do not allow sign change}
φ(~ri, tk+1)← ε {set to a small positive value}

else {3.3 Is clear; check for topology change}
if IsSimplePoint(φ(~r, tk),φnew,~ri) then

{3.3.1 No change in topology}
φ(~ri, tk+1)← φnew {apply the update}

else {3.3.2 Do not allow topology change}
φ(~ri, tk+1)← ε · sgn(φ(~ri, tk)) {set to a small value

of the same sign}
end if

end if

end for

a 2.6GHz AMD64 CPU with 4GB RAM was ≈ 10 min/1

hr for normal/high-resolution data respectively (similar to

our implementation of ACE/TGDM). The algorithm runs

significantly faster than the automatic topology fixer in

FreeSurfer [2] (1-9 hr per hemisphere in normal-res.; N/A for

high-res.). The following default parameters were used in all

tests: (sect. II-A) maximal permittivity εmax = 100 (must be

≫ 1, we tested 100 and 1000 with similar results), maximal

potential Vmax = 100 (arbitrary normalization); (sect. II-C)

shock detection threshold T = 0.8 (determined empirically,

similar to [5]), dmin = 1.5 mm (∼ minimum expected cortical

thickness); (sect. II-D) probability threshold P0 = 0.6 (can

be tuned for a particular segmentation), sigmoid slope factor

K = 40 (a steep sigmoid), curvature-term weight wκ = 0.1
(may be increased for smoother surfaces), and 18-neighb.

weights wi = 0.5/18, w0 = 0.5.

A. Simulated test cases

A simulated test image represents a spherical core (”WM”,

in darker gray) with two deep rectangular troughs (”sulcal

folds”), overlayed by a layer of ”GM” (in lighter gray) having

unequal thickness at the opposing banks inside a trough;

in one case (Fig. 1, left) GM banks are fully separated by

background, and in another case (Fig. 2, left) the banks are

fused at the periphery. Figures 1 and 2 show cross-sectional

images of the Laplacian field (uniform permittivity ε = 1)

in the middle, and images of our electric field model on

the right. It can be seen that the ridge of the electric field

(brighter pixels) is close to the ”sulcal” center line, whereas

the ridge of the Laplacian field is at the geometric center.

Where the ”sulcal” banks are fused, the ridge of the electric

field follows a geometrically plausible path separating them

(Fig. 2, right).
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Fig. 1. Fragments of cross-sectional images of a test case representing a
simulated sulcal fold (Left: two banks of unequal thickness, separated by
background; Middle: the Laplacian field; Right: the electric field model).

Fig. 2. Fragments of cross-sectional images of a test case representing a
simulated sulcal fold (Left: two banks of unequal thickness, fused at the
periphery; Middle: the Laplacian field; Right: the electric field model).

B. Simulated brain data

Simulated brain phantom MR images were generated

for various image noise and intensity inhomogeneity

conditions using the BrainWeb interface [18]

(http://www.bic.mni.mcgill.ca/brainweb). Cortical

reconstruction results showed good reproducibility across

simulated noise and intensity artefacts conditions, as

illustrated in Fig. 3. Figure 4 shows a zoomed in portion

of an axial slice where the unresolved sulcal banks appear

fused together, illustrating the separating skeleton and

the resulting segmentation. In general, visual inspection

demonstrated that the skeleton of the distance field is

consistent with the skeleton generated by the ACE method,

and in some areas has smoother properties.

C. Real MR images

Several T1-weighted MR images from a database of

healthy adult subjects were used to test the algorithm per-

formance on typical-resolution (1 mm3 voxel) data (Fig. 5).

In addition, the algorithm was evaluated on three high-

resolution (0.25-0.35 mm3 voxel size) images of explanted

left brain hemispheres. Images in Fig. 6 show segmentation

results for two different maximum distance constraint dmax

values. The distance-constrained reconstruction allows ex-

traction of ”intermediate” surfaces at the specified maximum

thickness level. This is illustrated in Fig. 7 by the example

of the cortex in the central sulcus, where the primary

Fig. 3. Example axial slice of brain phantom images (Left column:
source image; Middle column: overlayed with distance field skeleton; Right
column: binarized cortical segmentation; Top row: noise 3%, inhomog. 20%;
Bottom row: noise 5%, inhomog. 40%;).

Fig. 4. Fragment of an axial slice of brain phantom images (Left to
right: source image; overlayed with distance field skeleton; binarized cortical
segmentation; overlayed with the ACE-generated skeleton).

motor cortex on the precentral bank is known to be thicker

(mean 2.8 mm, sample range 2.5-3.5) than the primary

somatosensory cortex on the postcentral bank (mean 1.9

mm, sample range 1.2-2.4) [19]. When the dmax parameter is

gradually increased from 1.5 to 6 mm, distance-constrained

reconstruction results show increasingly thicker bands in both

banks, up to the point when the dmax reaches the local

cortical thickness, in a manner consistent with the known

neuroanatomy.

IV. CONCLUSION AND FUTURE WORK

We presented a novel PDE-based method for the recon-

struction of the cerebral cortex from MR images. Although

the algorithmic building blocks of our method were previ-

ously known to medical image processing community (e.g.

[1], [9], [11]), the model of the potential field introduced here

employs a novel combination of the algorithms, opening a

different modelling perspective, and consolidating all algo-

rithmic stages around one central aspect. The results show

that the method is capable of reconstructing the outer cortical

boundary with good geometric fidelity, while guaranteeing

the preservation of the initial surface’ topology. The algo-

rithm is well suited for high-resolution images that can not be

processed with the freely available software [2]. In addition,
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Fig. 5. Example of an axial slice of a real MR image (Left to right:
source image; overlayed with distance field skeleton; binarized cortical
segmentation).

Fig. 6. Example of an axial slice of a high-resolution MR image (Left:
source image; Middle and Right: binarized cortical segmentation with
dmax = 1.5 mm and dmax = 6 mm, respectively).

it admits an optional constraint on cortical thickness, allow-

ing generation of ”intermediate” surfaces. Future work will

address the accuracy and precision analysis of our method

quantitatively, for example by cross-validation with other

accepted cortical reconstruction methods like CRUISE [1],

FreeSurfer [2], and CLASP [3].
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