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a b s t r a c t

The human brain cortex is a highly convoluted sheet of gray matter composed of folds (gyri) and fissures

(sulci). Sulci serve as important macroscopic landmarks to distinguish different functional areas of the

brain. The exact segmentation and identification of sulci is critical for human brain mapping studies

that aim at finding correspondences between structures and their function. In this paper, a sulcus

identification algorithm is introduced using shape, orientation, location, and neighborhood information.

Experimental results demonstrate that the method is efficient and accurate.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

The fissures (sulci) of the human brain (see Fig. 1) are
important macroscopic landmarks that allow distinguishing
different functional areas of the brain. An exact segmentation
and identification of sulci has many applications in brain mapping
studies: to build a brain atlas, to understand the individual
variation of the local cortical geometry, to localize activation sites
precisely in functional imaging, to describe morphological
changes of brains affected by diseases, and to provide landmarks
for nonlinear registration of brain image volumes.

However, segmenting and recognizing sulci is not a trivial task
due to their considerable and well-known variability across subjects
[24]. This variability can be broken down into three components: (1)
Structure: differences in position, extent, and orientation of a specific
sulcus are common. (2) Morphology: sulci may be continuous
(found as one segment) or interrupted (found as multiple segments).
In addition, some sulci are often connected. For example, the
superior portion of the precentral sulcus is connected with the
superior frontal sulcus in 100% on the left, in 92% on the right of
the cases studied by Ono et al. [24]. A simple one-to-one
correspondence between a segmented structure and an anatomically
defined sulcus is (almost) never found. (3) Expression: some sulci
may only be present in a subset of the population (refer to [24] for
examples), and may confound the recognition of other sulci.

This problem has been the topic of many studies, and many
algorithms were proposed to tackle this challenging identification
problem. Let us distinguish these approaches by different ways of
segmenting and representing the objects under study:
�
 Sulci segmented in 3D image space [9,18,20,28,29,41] or on a
surface mesh [27,3,40,35,6].
ll rights reserved.
�
 Sulci represented by points [20], curves [29,35,9,19], or regions
[27,40,3].

�
 Sulci modeled by iconic (image-based) entities [9,35,20] or

symbolic (feature-based) entities [28,3,29,33].
Initial approaches tried to segment and identify sulci in the
(original) image space as sets of voxels. To recognize sulci, an
iconic atlas isprovided, and nonlinear registration is used to match
sulci with anatomical labels. While image-based approaches offer
an advantage due to their simplicity, options for modeling the
variability of structures are limited. Thus, pure iconic approaches
(e.g., [9]) proved to be inefficient for dealing with the variability of
the human neocortex.

More recent approaches use a (triangular) mesh that repre-
sents the brain surface to segment sulci. Although additional pre-
processing steps are required, surface-based methods offer several
advantages: (1) sulci are surface structures, and constraining the
problem reduces the amount of data processing. (2) Surface
features (e.g., curvature, distance) are more reliably computed,
and multi-resolution schemes are much easier to implement that
increase the robustness and computational efficiency. (3) Topo-
logical constraints on the surface may be imposed that are
advantageous for sulcus segmentation and identification. (4) It is
easier to generate a surface that closely resembles an anatomi-
cally relevant interface than to achieve such a segmentation in
voxel space. Therefore, we use surface meshes that represent the
interface of the brain’s white and grey matter (WM/GM) that are
reliably segmented [21,13].

Considerably high recognition rates for major sulci were
achieved by a surface-based approach that uses a surface-based
atlas and a nonlinear registration method that takes curvature and
distance information on the cortical surface into account [6].
However, the problem of infrequently expressed sulci cannot
easily be dealt with in this environment.

www.elsevier.com/locate/neucom
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To overcome problems with example-based atlases, other
authors try to abstract from the iconic level and recognize sulci
at a higher abstraction level. Sulci were represented as locally
deepest points (‘‘sulcal roots’’) [26], regions around sulcal roots
(‘‘sulcal basins’’) [20], superficial curves on the convex hull of
the brain [29,35], bottom lines deep in the fissures [9,19], medial
walls in the sulci [28], or surface patches representing sulcal
segments [40]. The question is still open how much and which
information is necessary at this higher level to achieve a
successful identification, as no current method has provided
satisfying recognition rates.

A straightforward approach represents sulcal substructures as
points and their variance in a point distribution model [20] but
achieves recognition rates of only up to 80%. However, only
substructures of the sulci (‘‘sulcal basins’’) are recognized, and
their concatenation to anatomically relevant entities is unsolved.
Characterizing sulci (or their substructures) by additional para-
metric features (e.g., orientation and shape) [22] or parameters of
Haar transforms from sulcal lines [38] enhances recognition rates.

We represent sulcal (sub)segments by a rich structural context
here, including location, orientation, and shape (using geometric
moment invariants). Because the relative positioning of sulci is
highly invariant, using neighborhood relationships is very ad-
vantageous for identification. A straightforward option for
representing this information is a graph [39], in which nodes
contain structural features of a sulcus and edges correspond to
their neighborhood relationships. So the task of identifying sulci is
transformed here into a (incomplete) graph matching problem of
a graph derived from a specific subject with a model obtained
from training subjects. Graph matching allows recognizing a set of
sulci jointly instead of separately (using probabilistic boosting
trees [38]) or locally (using neuronal networks [28]) and, thus, is
less prone to propagate identification errors.

Our main contributions are: (1) We characterize brain sulci by
structural features and neighborhood information. (2) We intro-
duce a strategy to cut surface segments that span different sulci.
(3) We provide an approach for labeling sets of sulci, using a
symbolic representation in a graph, in which similarity measures
based on sulcal features between the subject cortical surface and
those of training models are jointly optimized using a genetic
algorithm. These methods are described in detail in the following
section. We demonstrate the performance of our algorithm in
Fig. 1. A cross section of the cortical surface composed of folds (gyri) and fissures

(sulci).
several experiments, and finally discuss our current results in
terms of our goal: to provide an automatic labeling of human
brain sulci.
2. Method

2.1. Overview

The flowchart of the main steps is shown in Fig. 2. We start
with a triangular surface that represents the WM/GM interface of
the human brain [15]. Sulcal patches are obtained by segmenting
the surface using information about local curvature and geodesic
depth [40]. However, there is rarely a one-to-one correspondence
between a patch and an anatomically defined sulcus. In some
cases, segments must be merged to form a specific sulcus, in
others, a segment must be split to separate connected sulci. First,
we try to detect these latter cases and introduce a segment split.
Then, we try to recognize a sets of segments as a specific sulcus in
a subsequent labeling process.

A neuroanatomist manually labeled sulci in the training cases
by sampling and cutting sulcal segments that were obtained
automatically from surface segmentation. Shape, orientation, and
location features were extracted that constitute the attribute
descriptor of a sulcus. The relationship between neighboring sulci
Training?

Recognize sulcus by
an expert 

Identified sulcus

Extract attribute and
neighborhood information

Sulcus graph model Gm 

Form candidate graph
Gc and optimize 

Identified sulcus

no 

yes 

Fig. 2. Overview of the sulcus identification method.
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was also extracted from the training set. All information is
represented as a model graph Gm in which each node contains the
attribute descriptors of a sulcus and edges indicate neighborhood
relationships between sulci. To identify sulci for a new subject, we
build a similar graph Gc from the subject’s candidate sulcal
segments and their neighborhood relationships. The similarity of
Gm and Gc is maximized by selecting suitable candidates from the
set of sulcal segments to form sulci in Gc . Finally, anatomical
labels in Gm are addressed to successfully detected structures in
Gc. Note that partial matches are possible, and some sulcal
segments may remain unlabeled.
2.2. Spatial map

A specific sulcus is located in a relatively constant region on
the cortical surface. We represent probabilistic information about
sulcus extent in a spatial distribution model on a spherical map.
At each location on this map, a vector contains the prior
probabilities that this location belongs to a specific sulcus. We
will take advantage of this knowledge to guide segment splits and
to speed up optimization.

To generate this spherical map, we used the surface meshes
from the training set, in which an expert labeled specific sulci. A
mapping from each surface mesh onto a common sphere was
computed. We employed a surface parametrization method to
find the transformation function by minimizing a metric combin-
ing both angle and area distortion [15]. Hereby, each vertex on the
set of manually labeled surface meshes received common
coordinates on the unit sphere.

Consider Nt training subject hemispheres, vertex v on the
common sphere, and j a sulcus under study. The probability that
vertex v belongs to j is defined as

PMðv 2 jÞ ¼
1

Nt

XNt

i¼1

XðT�1
i ðvÞ;jÞ; ð1Þ

where T�1
i corresponds to the transformation that maps the

vertex v in the spherical space to its corresponding in hemisphere
i, and Xðv;jÞ is a function defined as

Xðv;jÞ ¼
1 : v 2 j;
0 : v=2j:

(
ð2Þ

So each vertex on the common spherical map contains an array of
probability values. Each value denotes a prior probability that this
vertex belongs to a specific sulcus j (see Fig. 3).

For a new subject under study, we determine the prior
probabilities for all sulcal segments by mapping the WM/GM
mesh onto the probabilistic atlas. The prior segment probability P

that segment S belongs to a sulcus j is given by

PðS 2 jÞ ¼ 1

kS

XkS

i¼1

PMðTðviÞ 2 jÞ; ð3Þ

where kS corresponds to the number of vertices that make up
segment S, T is the transformation that maps vertex v onto the
atlas in the spherical space. So PðS 2 jiÞ for i ¼ 1; . . . ;nj indicates
in how much content segment S overlaps with the spatial
distribution of sulcus ji.

Note that our mapping approach [15] does not depend on the
selection of a pole and a split [1] that influence the final distortion
of the map. Likewise, an initial inflation [37] is not required, that
would result in an unspecified relation of the angles, distances,
and areas of the brain mesh vs. the spherical map.
2.3. Surface segmentation and its graph representation

In this section, we introduce the generation of a WM/GM
interface surface mesh, the segmentation of sulcal segments,
segment cutting, and graph representation of the sulcal segments.

2.3.1. Surface generation

Extracting the WM/GM interface as a polygonal mesh from MR
images of the human head is considered a complex but well
developed methodology in medical image processing [11]. In
principle, any published method may be used to compute a
triangulated mesh that represents the WM/GM interface. How-
ever, it must be ensured that (1) the surface mesh has a
topological genus of zero and (2) is free of self-intersections. It
is self-evident that self-intersecting surfaces are anatomically
invalid.

We briefly review our process for generating a WM/GM
interface [13] here. A T1-weighted volumetric MR image is
registered with the stereotaxic coordinate system [16] and
interpolated to an isotropical voxel size of 1 mm using a fourth-
order B-spline method [36]. The dataset is segmented into three
classes using a fuzzy c-means approach [25], and a raw
segmentation of the white matter (WM) compartment is
extracted, with the cerebellum and brainstem clipped away. The
raw white matter segmentation is further refined to have a zero
genus (i.e., no holes and handles) [31]. A triangulated surface
mesh is generated from the refined WM segmentation using a
topology-preserving variant of the ‘‘Marching Cubes’’ algorithm
[5]. Finally, this initial mesh is optimized to match the WM/GM
interface by treating it as a deformable model in the original
image space [13].

2.3.2. Sulcus segmentation

Our method for generating sulcal segments is described in
[40]. First, sulcal and gyral areas are classified using both geodesic
depth and mean curvature information under a Bayesian frame-
work. Then, a watershed region-growing method [23] is applied to
form sulcal segments on the surface mesh.

2.3.3. Segment splitting

It is well known that some sulci are often connected, such as
the superior portion of the precentral sulcus and the superior
frontal sulcus [24]. Based on surface properties alone, it is
impossible to separate such connected structures, but a proper
cutting mechanism is required for a correct segmentation and
recognition of sulci. It is not trivial to determine which segments
must be split, because this already requires a successful
identification. We use probabilistic information about the sulcal
extent (see Section 2.2) here: if a segment overlaps with more
than a single sulcus, it must be split.

Consider the simplified case of two connected sulci j1 and j2

(see Fig. 4) to illustrate our method. We aim at introducing splits
in order to recognize them as separate entities. The segment
under study is thinned to form a skeleton on the triangulated
mesh (the broken lines in Fig. 4). In analogy to algorithms for
hexahedral voxel meshes, a vertex is called simple if and only if its
one-ring neighborhood contains both segment and non-segment
vertices and each of the two sets forms one connected component
(see Fig. 5). A vertex of the sulcal segment is an end vertex if and
only if a single neighbor belongs to this segment. We also
compute the geodesic depth of each vertex using a constrained
distance transform (refer to [40] for details). Now, the steps to find
the skeleton are spelled out as:

Step 1: Construct a list L of vertices vi that belong to a sulcal
segment and sort them in ascending order by their geodesic depth.
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Fig. 3. A cortical surface (left) is mapped to a common unit sphere (right). A specific sulcus is mapped approximately to the same location on the sphere.
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Fig. 4. Demonstration of the segment cutting method.

Center vertex Segment vertex Non-segment vertex

Fig. 5. Determination of simple vertex. In (a) the one-ring neighbors only contain

object vertices, so the center vertex is not simple. In (b) the one-ring neighbors

belonging to the object do not form a connected component, so the center vertex is

still not simple. Only the center vertex in (c) is a simple vertex.
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Step 2: Traverse through L and identify simple points. Remove
these points from L.

Step 3: Repeat step 2 until no more simple points are found.
Step 4: Prune the skeleton based on length and connectedness

with its neighbors [30].
Step 5: Form a spanning tree [2] of the remaining vertices in L.
Step 6: Find the pair of leaf nodes v1 and v2 of the spanning

tree that has the maximum shortest path. Nodes between leaves
v1 and v2 form the main branch of the skeleton.

Steps 7: Find the longest sub-branch that sprouts from the
main branch, which together with the main branch form the
skeleton (the broken line in Fig. 4).

Next, we track the boundary of the segment (the thick black
outline in Fig. 4). The cross point v0 of the skeleton is unique,
because it has more than two neighbors, likewise, the three end
points v1;2;3 have a single neighbor only. Searching on the
boundary for the closest point, vE1, vE2, and vE3 are identified.
Then, we move v0 along the skeletal segments v0v1

��!
, v0v2
��!

, and v0v3
��!

by a half of the sulcus width to obtain points vS1, vS2, and vS3. Now,
point sets fvSi; vEig ði ¼ 1;2;3Þ are used to determine three paths
that split the segment into several sub-segments. The exact
number of the sub-segments depends on the relative positions of
the splitting points. Consider {vS3; vE3} as an example. We search
for the point on the boundary that has the shortest distance to VS3,
denoted as vC1. The other point vC2 of the splitting path vC1vC2

must be located on the opposite boundary segment vE3vE2 and
have the shortest distance to vS3 (illustrated by a thin black line in
Fig. 4). Note that the distance is measured on the vertex graph of
the WM/GM surface mesh [2]. A connected segment is usually
split into several sub-segments that do not necessarily correspond
to anatomical entities. A split is considered as successful if each
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Fig. 6. Example results of the segment cutting procedure. The blue segment in the white ellipse in (a) is the original segment and the corresponding split segment is shown

in (b). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

P
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r21

S1

Fig. 7. The ridge height between neighboring vertices of sulcal segments S1 and S2

is defined as the geodesic depth measured from the convex hull of the mesh.
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sub-segment belongs to a single sulcus only. In the later
recognition process, we will merge any sub-segments that belong
to the same sulcus. An example result of the splitting procedure is
shown inFig. 6.

Our method cuts segment at branches. While it is possible that
a long segment without ramifications spans over several sulci, we
did not encounter such a (anatomically unlikely) case yet. The
formation of long segments can be avoided by adjusting the
watershed threshold in the sulcal segmentation step [40], i.e., by
increasing the oversegmentation rate.

If sulci are represented as 3D curves, as in previous approaches
[21,10], a connection is readily detected as a junction point.
Because we deal with surface segments, the connection between
two sulci corresponds to a 3D curve.

2.3.4. Graph representation of sulcal segments

Now that we found a set of sulcal segments on the brain
surface, we construct a symbolic representation of this set as a
graph, in which each node corresponds to a sulcal segment and
edges indicate their neighborhood relationships.

Consider sulci mapped onto a sphere (see Fig. 3): sulcal
segments may be regarded as ‘‘islands’’ in an ‘‘ocean’’ composed of
gyral vertices. To find neighbors of a sulcal segment, we dilate
segments on the mesh until no gyral vertices are left. The
neighborhood relationship between two segments S1; S2 is
quantified by the weight w that is determined from the number
of dilation steps nd (until they touch) and their average ridge
height ha:

wðS1; S2Þ ¼ expð�ða1nd þ a2haÞÞ: ð4Þ

The average ridge height ha can be calculated as

ha ¼
1

Np

XNp

i¼1

ðri
12 þ ri

21 Þ; ð5Þ

where Np is the number of pairs of neighboring vertices between
the two sulcal segments. The definition of r12; r21 of neighboring
vertices belonging to different sulcal segments is illustrated in
Fig. 7.

Larger values of ha and nd yield a smaller weight wðS1; S2Þ. A
larger weight results in a higher probability that segments S1; S2

are merged to form a sulcus.

2.4. Sulcus model graph

The model graph Gm that represents prior knowledge about
structural features and neighborhood information of sulci is
constructed from the set of Nt expert-labeled datasets.
Let j1; . . . ;jnj
denote the nj sulci we want to recognize,

which form the nodes of the graph model Gm. For each sulcus ji in
each dataset of the training sample, we use location, orientation,
and shape features collected in a feature vector~f of dimension nf .
Because brain volumes are aligned with the stereotaxic coordinate
system, orientation, and position information can be used for
sulcus identification. To take account for brain size, positions are
normalized by scaling the brain to fit into a bounding box of
extent 1, centered at the origin of the coordinate system. We
assume that components of the feature vector are independently
Gaussian distributed, so we can represent node attributes for each
sulcus ji in Gm by their means m1; . . . ;mnf

and standard deviations
s1; . . . ;snf

. The edges of Gm indicates the neighboring relation-
ships of the sulci.

2.4.1. Location information

Each sulcus usually is located in a relatively constant region of
the cortical surface, so location is critical for the identification
task. We use the centroid cx, cy, cz of each segment to describe its
location.

2.4.2. Shape information

Shape features are useful to distinguish sulci, as first demon-
strated by Mangin et al. [22] and Sun et al. [34]. We use geometric
moment invariants as descriptors of the sulcus shape. From the
regular moments of order 0 to 2, 13 rotation-invariant moments
are derived [17]. Suppose the origin of the coordinate system was
shifted to the centroid of segment S composed of vertices vS.
A regular moment of order p, q, r for function rðx; y; zÞ is defined as

Mpqr ¼
X
v2xS

xp
v yq

v zr
v rðxv; yv; zvÞ: ð6Þ

Because we are interested in shape only, we simplify by setting
rðx; y; zÞ ¼ 1. The computation of the rotation-invariant descrip-
tors from these moments is quite involved. We list only the first
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Fig. 8. An illustration of the computation of the coefficient Wc. For the first-order

neighbor S1 of the center segment Sc , wS1
¼ wðS1; ScÞ, because there is only one link

between S1 and the center segment Sc . For the second-order node S3, there are two

links connecting it to the first-order neighbors S1 and S2. We select the larger one

of weights wðS3 ; S1Þ and wðS3; S2Þ as wS3
.
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four of them, and refer to [17] for complete information:

I1 ¼ M000;I2 ¼ M200 þM020 þM002;

I3 ¼ M200M020 þM200M002 þM020M002 �M2
101 �M2

110 �M2
011 ;

I4 ¼ M200M020M002 �M002M2
110

þ2M110M101M011 �M020M2
101 �M200M2

011 :

Note that M000 corresponds to the vertex count of segment S.

2.4.3. Sulcus orientation

We use the principal axes derived from the second-order
moments to characterize the sulcus orientation. They are
computed as the eigenvectors of the inertia tensor T:

T ¼

M020 þM002 �M110 �M101

�M110 M200 þM002 �M011

�M101 �M011 M200 þM020

2
64

3
75:

There are up to three principal axes, because a real symmetric 3D
matrix has up to three orthogonal eigenvectors. Denote ~u1;2;3 as
the unit eigenvectors with corresponding eigenvalues l1ol2ol3.
We select the most stable principal axis ~u1 to characterize the
orientation. Because vectors ~u and �~u are equivalent for sulcus
identification, we choose the direction in one training subject as
reference. Components of this vector are collected as the direction
feature dx;dy; dz.

2.4.4. Neighborhood information

To determine neighborhood information, sulcal segments
obtained from the surface segmentation steps are dilated in each
dataset of the training samples as described above. If two sulci j1

and j2 (made up of one or more sulcal segments) touch, they are
considered as neighbors, and an edge is formed between their
nodes with a weight e12 ¼ 1. For the model graph Gm, weights
between neighbors are averaged across the training samples:

e12 ¼
1

Nt

XNt

i¼1

e12ðiÞ: ð7Þ

2.5. Labeling sulci

In Section 2.3.4 we described the generation of a segment
graph Gs derived from the WM/GM mesh of an individual subject.
Note that Gs is fundamentally different from the model graph Gm,
because nodes in Gs are sulcal segments, and nodes in Gm expert-
recognized and labeled sulci. To perform a labeling process in Gs,
we need to assemble sulcus candidates from segments in Gs, and
compile them in a candidate graph Gc that is structurally
equivalent to Gm and can be compared using a similarity function.
So, the process of labeling segments in Gs is recast as an
optimization problem: find the set of sulcal candidates in Gc that
best match Gm. The objective function and the optimization
process are described in the following.

2.5.1. Objective function

Because a slight over-segmentation resulted from the surface
segmentation and splitting procedures, we need to collect
segments that make up a specific sulcus. Denote as j1; . . . ;jnj

the nj sulci that we want to recognize, represented by the model
graph Gm. c1; . . . ;cnj are the nj sets of sulcal candidate segments
of sulci j1; . . . ;jnj

, which form graph Gc . One segment S can only
belong to a single sulcus: ci

T
cj ¼ f; 8 ði; j ¼ ð1; . . . ;njÞ; iajÞ. The

objective function is defined as

Oðc1; . . . ;cnj
Þ ¼ OF ðc1; . . . ;cnj

ÞONðc1; . . . ;cnj
Þ; ð8Þ
where OF ð�Þ and ONð�Þ are unary feature- and neighborhood-based
similarity values that are computed from the node features and
edge connections of Gc and Gm. We assume the components of our
feature vector are independently Gaussian distributed, so OF ð�Þ can
be calculated as

OF ðc1; . . . ;cnj
Þ ¼

Ynj
i¼1

Wci

Ynf

j¼1

1ffiffiffiffiffiffi
2p
p sijexp �

ðfij � mijÞ
2

2s2
ij

 !2
4

3
5: ð9Þ

Here, fij corresponds to the j th component of feature vector ~fi of
candidate ci, and mij;sij are the mean value and standard
deviation of the j th component of feature ~fi of the sulcus ji in
the model graph Gm. Wci

represents an association measure,
obtained by maximizing the weights wS in the set of segments
that make up ci:

Wci
¼ arg max

SCE2ci

Y
S2ci ;SaSCE

wSðSCEÞ: ð10Þ

Here, SCE is a suitably chosen center segment, and wSðSCEÞ

corresponds to the largest weight w (see Eq. (4)) that connects
segment S with a neighbor one level closer to the center segment
node SCE in the segment graph Gs (see Fig. 8). Two neighboring
segments separated by high ridges and large distances receive
a small association weight, so this measure prevents merging
segments that do not belong to the same sulcus. Although
this also penalizes a (valid) connection of interrupted sulci, the
overall recognition accuracy is improved (see experimental
section).

The neighborhood-based similarity ONð�Þ compares the edge
information of the candidate graph Gc with the model graph Gm:

ONðc1; . . . ;cnj
Þ ¼ exp �b

Xnj
i¼1

Xnj
j¼1;jai

eijðGcÞ � eijðGmÞ
�� ��

0
@

1
A; ð11Þ

where eij are the weights between the i th and j th nodes in graph
Gc and Gm (see Eq. (7)), and b is a scaling factor. If two nodes are
not neighbors, then eij ¼ 0. A higher similarity in the weights
between graph Gc and Gm results in a higher value of ONð�Þ.
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Fig. 9. Influence of the setting of a1 (top) and a2 (below) in Eq. (4) on the

recognition rate.
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Substituting Eqs. (9)–(11) into (8), log-transforming and
dropping constants, we obtain our objective function:

Olog ¼
Xnj
i¼1

Xnf

j¼1

ðfij � mijÞ
2

2s2
ij

" #
þ
X
S2ci

wS

8<
:

9=
;

� b
Xnj
i¼1

Xnj
j¼1;jai

eijðGcÞ � eijðGmÞ
�� ��: ð12Þ

2.5.2. Optimization

Our sulcus identification strategy aims to select a group of
c1; . . . ;cnj

to form a candidate graph Gc that maximizes the
similarity with the model graph Gm via the objective function
equation (12). From the segmentation and splitting procedures,
we typically obtain 100 sulcal patches [40]. Suppose we try to
recognize nine sulci, and one label represents the background,
then the number of possible solutions is 10100. Prior knowledge
about the approximate location drastically reduces the search
space of the optimization problem. We exclude segments that do
not belong to any of the sulci we want to identify, i.e., if the prior
segment probability PðS 2 jiÞ ¼ 0 for all i ¼ 1; . . . ;nj, we exclude
S. Currently, we use a genetic algorithm (GA) [8] to solve this
complex combinatorial optimization problem. GA try to mimic the
biological evolution process. A solution of the optimization
problem that fits the objective function better has a higher chance
to survive and produce offsprings. Other optimization strategies
(e.g., probability relaxation [4]) are viable but untested alter-
natives.

Suppose we have ns candidate segments from which we want
to assemble nj sulci. A solution of the sulcus identification
problem can be represented as a string of ns genes ðg1; . . . ; gns Þ.
Each gene contains the current labeling of a candidate segment as
an integer label between 0 and nj, and 0 denotes a null
assignment. The optimization procedure is outlined as follows:
�
 Initialization: A population of Nc members is formed that
represent initial solutions. In each member, genes gi are
assigned an integer value k 2 ½0;nj� with a probability equal
to 1�

Pnj
j¼1 PðSi 2 jjÞ for k ¼ 0 and PðSi 2 jkÞ for k in ½1;nj�.

The value of the objective function (Eq. (12)) is computed for
each member and stored as its fitness.

�
 Selection: A subset of the current population is selected to

produce offspring solutions. We choose NcRp members from
the current population to form a temporary population, where
Rp is the replacement ratio. A member is selected with a
probability equal to its fitness divided by the sum of the fitness
of all members in the population.

�
 Crossover: The crossover operator exchanges a part of the

solution between member pairs. Randomly select NcRpPc=2
member pairs from the temporary population, where Pc is the
crossover probability. Exchange two substrings of the same
length in a pair at a randomly selected location in ½0;ns�.

�
 Mutation: The mutation operator modifies a single solution.

Randomly select NcRpPm members from the temporary popu-
lation,where Pm is the mutation probability. Select a gene i

randomly from ½1;ns� and assign a new label k with a
probability equal to 1�

Pnj
j¼1 PðSh 2 jjÞ for k ¼ 0 and PðSh 2

jkÞ for k in ½1;nj�.

�
 Update: Add the NcRp members in the temporary population to

the current population. Compute the fitness of the newly
created members. Remove the Nc Rp worst members to form
the next generation.

�
 Termination: If the fitness values of the best and worst

members of the current generation are equal, terminate. Else
go to step ‘‘selection’’.

We use a population size of 1000 members, a replacement ratio
Rp ¼ 0:4, a crossover probability Pc ¼ 0:9, and a mutation rate
Pm ¼ 0:3.
3. Experiments

From a large database of healthy subject (see [14] for a
complete demographic description), we randomly selected 40
cases (27:6711:09 years, 15 males, 25 females). Subjects were
scanned on a Bruker 3T Medspec 100 system, equipped with bird
cage quadrature coil. T1-weighted images were acquired using a
3D modified driven equilibrium Fourier transform (MDEFT)
protocol: field-of-view 220 mm� 220 mm� 192 mm, matrix
256� 256� 128, TR ¼ 1:3 s, TE ¼ 10 ms, voxel size 0:9 mm�
0:9 mm� 1:5 mm.

Cortical surfaces corresponding to the WM/GM interfaces were
generated, and cut into right and left hemispheres using the
surface generation method described above. Our sulcus recogni-
tion method was performed on 40 right hemispheres. We focus on
the recognition of the insula (INS), the central (CS), postcentral
(PTS), precentral (PCS), superior temporal (STS), callosal (CLS),
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Fig. 10. QQ-plots of example feature vector components: (a) cx; (b) dz; (c) I1 and (d) I4.

Fig. 11. Influence of the association measure Wci
in the objective function (without Wci

(a) and with Wci
(b)). Some secondary sulci near the SFS and IFS are included in (a)

but correctly omitted if the association measure is used (b).
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cingulate (CIS), superior frontal (SFS) and inferior frontal sulcus
(IFS). These nine sulci are well-defined and comprise the major
sulci on the lateral and medial cortical surfaces.

An expert labeled these sulci by selecting, merging, and cutting
automatically generated sulcal segments on the WM/GM interface
mesh in all 40 cases. A leave-one-out strategy was pursued for
validation: 39 datasets were used to build the spatial map and the
model graph Gm and the remaining dataset was used for testing.
To rate the correctness of the automatical labeling procedure, the
true positive rate (TPR), false positive rate (FPR), and the similarity
index (SI) of each sulcus are computed:

TPR ¼
TP

TP þ FN
; ð13Þ

FPR ¼
FP

FP þ TN
; ð14Þ
SI ¼
2TP

2TP þ FP þ FN
; ð15Þ

where TP corresponds to the number of vertices of a specific
sulcus that were correctly labeled by our algorithm, FN is the
number of vertices that belong to this sulcus but were unlabeled,
FP is the number of vertices falsely labeled as this sulcus, and TN is
the number of vertices that do not belong to this sulcus and are
unlabeled. Average rates across sulci and subjects are reported.

Our first experiment evaluates the relative influence of the
weights for ridge height ða1Þ and inter-segment distance ða2Þ in
the segment collection process (see Eq. (4)). We varied (1) a1 from
1.6 to 2.2 in steps of 0.2 with a fixed setting a2 ¼ 10:5 and (2) a2

from 7.5 to 13.5 in steps of 1.0 with a fixed setting of a1 ¼ 2:0. The
average SI (across subjects) for each sulcus is shown in Fig. 9.
Identification results are stable against the setting of these
parameters. In the following experiments, we use a1 ¼ 2:0 and
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a2 ¼ 10:5. From a similar experiment, we selected b ¼ 10, with a
range of [5, 15].

We tested the distribution of several features in our training
samples. In Fig. 10, quantiles of the sample data vs. the standard
normal quantiles are listed for the central sulcus. Because
quantile–quantile plots are almost linear, we conclude that our
normality assumption is reasonable.
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Fig. 12. The average similarity index vs. the number of features with and without

the application of the cutting procedure.

Table 1
Average TPR, FPR and SI with and without cutting procedure for the central sulcus

(CS), postcentral sulcus (PTS), precentral sulcus (PCS), insula (INS), superior

temporal sulcus (STS), callosal sulcus (CLS), cingulate sulcus (CIS), superior frontal

sulcus (SFS), and inferior frontal sulcus (IFS).

Sulcus TPR (%) FPR (%) SI with cutting (%) SI w/o cutting p-Value

CS 94.5 0.2 0:9470:07 0:9570:06 n.s.

PTS 87.3 0.7 0:8170:16 0:8270:15 n.s.

PCS 79.9 0.5 0:8070:13 0:7170:15 0.0014

INS 90.0 0.6 0:9070:04 0:9070:05 n.s.

STS 88.6 0.5 0:8770:09 0:8770:10 n.s.

CLS 93.7 0.1 0:9570:11 0:9370:12 n.s.

CIS 91.5 0.7 0:8870:09 0:8770:10 n.s.

IFS 74.5 0.7 0:7070:18 0:6170:28 0.0275

SFS 85.0 0.4 0:8070:17 0:5570:32 4.4626e�5

Significance values in the rightmost column demonstrate the improvement of the

cutting procedure for the precentral, superior frontal, and inferior frontal sulci.

Table 2
Mean m and standard deviation s of sulcal features obtained in the subject sample for th

superior temporal sulcus (STS), callosal sulcus (CLS), cingulate sulcus (CIS), superior fro

CS STS INS PCS PTS

cx 0:5270:02 0:7270:03 0:6070:02 0:5070:04 0:527
cy 0:0370:02 0:0970:02 �0:0570:01 �0:0770:02 0:107

cz �0:3970:02 �0:0470:03 �0:0770:02 �0:3670:04 �0:41

dx 0:6470:04 0:0370:05 0:2370:06 0:5570:09 0:687

dy �0:4070:07 �0:7270:08 0:8570:06 �0:3570:10 �0:43

dz 0:6570:05 0:6870:09 �0:4770:08 0:7570:06 0:597

I1 693776 8887137 16407180 7117115 5817
I2 5:7670:80 6:7471:47 4:3970:63 5:2970:76 5:317
I3 2:8370:80 4:8671:60 4:1971:09 3:5870:76 3:417
I4 0:3370:16 0:9070:41 1:0770:41 0:6370:20 0:567
Next, we tested the influence of the segment association
measure Wci

(see Eq. (10)) on sulcus recognition. Leave-one-out
experiments were performed with and without Wci

, and resulted
in slightly higher similarity indices (0.8474 vs. 0.84) if Wci

was
included. Without this association measure, some secondary sulci
tend to join with neighboring major sulci (see Fig. 11). This term is
included to prevent merging neighboring sulci that do not belong
to the same anatomical entity. It may, however, also penalize the
intended merging of interrupted sulci. According to our
experience based on this subject group, the net effect of this
parameter is positive.

We evaluated the influence of specific elements of the feature
vector on the recognition results. We conducted runs including
the location only ðnf ¼ 3Þ, adding the principal axis ðnf ¼ 6Þ, and
adding an increasing number of moment invariant features
ðnf ¼ 7� 19Þ. The average similarity index vs. the number of
features nf is shown in Fig. 12. Location, orientation, and the first
four moment invariants I1; . . . ; I4 are most relevant for recognizing
sulci. Including higher order invariants slightly deteriorates the
performance, because they are more susceptible to (structural)
noise. Including the cutting procedure yields a considerable and
consistent improvement in the average SI.

The average TPR, FPR, and SI (with and without cutting) using
features location, orientation, and moment invariants I1; . . . ; I4 are
tabulated in Table 1 for each sulcus. Structures with a higher
variability (e.g., IFS) have lower TPR and SI than rather invariant
sulci (e.g., CS). A paired t-test between SI-values revealed that the
cutting procedure is effective in PCS, SFS, and IFS, which is very
much expected. Mean m and standard deviation s of sulcal
features obtained from our database are listed for each sulcus in
Table 2.

A quantitative comparison with other sulcus identification
methods is highly desirable, but not easily accomplished. Sulci
were represented by very different representations (e.g., external
curves [29], bottom lines [19,12,33,38], medial surfaces [9,28],
cortical surface patches [3]) that lead to different quality
measures. Because Behnke et al. [3] also used sulcal segments,
we compare our recognition results for those sulci that were
studied with their method. They reported the TPR (see Eq. (13))
and the false alarm rate FAR ¼ FP=ðTPþ FPÞ. Table 3 provides a
comparison for five sulci. Although our average FAR is slightly
higher, our average TPR is considerably better. Note that our
results are based on a much larger sample (40 vs. 10 subjects),
which indicates a good robustness of our approach.

We implemented a sulcus identification scheme based on a
probabilistic atlas as proposed by [9,37]. Again, a leave-one-out
strategy was performed on the sample of 40 subjects. Measures
TPR, FPR, and SI are compiled in comparison for our and the atlas-
based approach in Table 4. Our method achieves an average SI 0.85
over 0.72 for the probabilistic approach. We observe a similar
e central sulcus (CS), postcentral sulcus (PTS), precentral sulcus (PCS), insula (INS),

ntal sulcus (SFS), and inferior frontal sulcus (IFS).

CIS CLS SFS IFS

0:04 0:1570:01 0:0970:02 0:3370:04 0:5970:04

0:03 �0:0370:04 �0:0370:04 �0:2170:03 �0:2470:03

70:03 �0:3170:03 �0:1870:03 �0:3670:4 �0:1370:04

0:04 0:0070:02 0:0270:04 0:1270:17 0:0070:16

70:09 0:9370:03 0:9870:02 0:8570:05 �0:6770:13

0:08 �0:3570:08 �0:1270:14 �0:4570:15 0:7070:16

96 10407159 271773 4657104 4517124

1:22 13:6872:07 18:9372:81 4:8071:20 3:8670:60

1:29 17:9075:54 31:10712:13 3:2971:01 3:1570:90

0:33 1:4570:71 4:0274:51 0:5470:20 0:5870:27
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Table 3
Recognition results for our method and Behnke’s [3]: central sulcus (CS), insula (INS), superior temporal sulcus(STS), cingulate sulcus (CIS), superior frontal sulcus (SFS) on

the right hemisphere.

TPR FAR

Our method (%) Behnke’s method (%) Our method (%) Behnke’s method (%)

CS 94.5 100 5.9 5.8

INS 90.2 92 7.9 6

STS 89.3 83.6 12.6 12.9

SFS 85.1 72.8 21 29.7

CIS 91.7 74.7 14.2 2.1

Avg. over sulci 90.2 84.6 12.3 11.3

Fig. 13. Automatical (top) and manual labeling results (below) in a subject with

smallest SI of the 40 test subjects.

Table 4
Recognition results for our method and a scheme based on a probabilistic atlas:

central sulcus (CS), postcentral sulcus (PTS), precentral sulcus (PCS), insula (INS),

superior temporal sulcus (STS), callosal sulcus (CLS), cingulate sulcus (CIS), superior

frontal sulcus (SFS), and inferior frontal sulcus (IFS).

Our method Probability atlas-based strategy

TPR (%) FPR (%) SI (%) TPR (%) FPR (%) SI

CS 94.5 0.2 0.94 94.1 0.2 0.94

PTS 87.3 0.7 0.81 71 0.4 0.72

PCS 79.9 0.5 0.80 47.9 0.6 0.52

INS 90.0 0.6 0.90 88.9 0.6 0.89

STS 88.6 0.5 0.87 85.0 0.6 0.85

CLS 93.7 0.1 0.95 54.0 0.02 0.55

CIS 91.5 0.7 0.88 85.1 0.6 0.85

IFS 74.5 0.7 0.70 56.7 0.4 0.56

SFS 85.0 0.4 0.80 59.4 0.4 0.61

Avg. over sulci 87.2 0.5 0.85 71.3 0.4 0.72
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performance for both methods in relatively invariant sulci
(e.g., central sulcus, insula). This is straightforward to
understand, because probabilistic information is much sharper
in these sulci.

Finally, let us discuss some problems of our procedure based
on an example subject (Fig. 13) with smallest similarity index
measure (0.7428). Compared with the manually labeled sulci,
some secondary sulci are attached to the primary sulci: blue
patches (in the white ellipses) are attached to the PCS. A portion of
the STS (in the white ellipse) is missing. Some small segments are
wrongly identified (the red segments in the white ellipses). The
main reason for these errors is the considerable variability of the
sulcus pattern across subjects. Segmentation errors during surface
generation are another possible source for identification errors.
Finally, the optimization process will only yield a result that is
close to optimal in a limited amount of time. However, even for
this worst case, all major sulci are correctly labeled.

To further provide a visual impression of the identification
results, we include identification results for two cases in Fig. 14,
which are selected randomly from the 40 subjects.

Algorithms were implemented using Cþþ language, and
tested on a Linux server with an AMD Athlon 64 processor
(2.21 GHz) and 4 GB memory. All processing stages do not require
user interaction, other than a visual quality check. Steps for
surface generation and optimization from MRI datasets require
about 50 min processing time, the segmentation into cortical
patches about 20 min. The labeling procedure described here
needs about an hour of computation time. There is a certain
variability (about 30%) in the processing time across subjects, due
to differences in the complexity of the surface and the number of
surface patches.
4. Discussion

We introduced a novel, automatical approach for identifying
major sulci that uses prior statistical information about location,
orientation, shape and neighborhood structure. These features are
verified as effective for characterizing sulci. Labeling is recast as a
graph matching problem between a model graph of sulcal features
and their neighborhood relationships and a candidate graph
composed of sulcal segments obtained in a specific dataset. The
combinatorial optimization problem is solved using a genetic
algorithm.

Sulcus segmentation techniques based on surface features
such as curvatures and geodesic depths [27,40] cannot provide
a one-to-one correspondence between sulcal segments and
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Fig. 14. Identification results for two subjects.
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anatomically defined sulci. Even major sulci are interrupted with a
considerable incidence while others are connected [24]. So the
initial segmentation must be re-processed to merge interrupted
and split connected sulci for a successful recognition. Both
operations require the application of prior knowledge. Merging
is usually easier, because a successful merge operation will
increase the similarity between a union of candidate segments
and a model sulcus, even if there is some variance in the structural
features describing a sulcus. Splitting requires not only to identify
a candidate segment but also to determine a suitable cut line
precisely. We propose a data-driven segment-splitting scheme
that uses a spatial distribution model of sulci to identify such
candidate segments. The cut line is determined from individual
shape features of this segment, and thus independent of the
spatial uncertainty of the atlas. Given a more complete model
graph Gm, a decision about segment splits may also be derived
during the graph matching and optimization process.

To validate our method, we used the similarity index
that represents how well the automatically recognized region
matches with expert-identified sulci. To guarantee an objective
validation, manual labeling and segment splitting were performed
independently and without referencing automatical splitting
results.

Currently, we model shape, location, and orientation features
of the sulcus as independent Gaussian distributions, which we
consider as a viable simplification that is justified by a good
identification performance. While it is possible to model the
distribution of features by a multivariate Gaussian distribution,
the estimation of distribution parameters is less robust even if a
much larger training sample is employed. Our current choice
provides a fairly good balance between robustness and model
complexity.

For optimizing the combinatorial problem of graph matching,
it is straightforward to use a genetic algorithm. The segmentation
procedure typically yields about 100 sulcal segments per hemi-
sphere, so the search space for recognizing nine sulci is about
10100. To reduce this dimensionality, we use prior knowledge
about the spatial distribution of candidate segments, and
eliminate those that are unlikely to belong to any of our target
sulci. With no loss of generality, other and potentially more
efficient graph matching strategies can be used here (e.g.,
probability relaxation [4]), and this is part of our current work.

However, a more elaborate strategy is required for more
complex identification models that cover all primary and
secondary sulci. Since the neighborhood relationships are sparse
(e.g., an occipital sulcus is never expected to be a neighbor of a
frontal sulcus), splitting a hemispheric surface first into four
subregions (roughly, the frontal convexity, the medial surface, the
temporal lobe, and the parieto-occipital lobe) can be achieved. For
the frontal lobe and the medial surface of the brain, this idea is
rather straightforward to implement by identifying a few
relatively invariant key points on the surface. It remains to be
seen whether a split of the temporo-parieto-occipital convexity is
necessary and/or feasible. Such a segmentation provides the
following advantages: at this lobular level, only 20–30 segments
have to be matched with 5–10 sulci. Without loss of generality,
this identification context can be used on the lobular level. Due to
the drastically reduced search space, a much lower computational
burden is expected for this hierarchical model.

Any attempt to capture structures of the human brain in the
form of an atlas has to face the challenge posed by its complexity
and variability. To overcome difficulties with techniques based on
spatial normalization and image-based brain volume warping
[7,32], several alternative approaches were proposed that perform
a structural matching at a higher level of abstraction. Automatic
sulcus identification was addressed in [35,20,28,9] using a
probabilistic atlas, point distribution and shape models, neural
networks and statistical models. Fischl et al. [6] use the local
geometry (average complexity and curvature) and prior knowl-
edge about the spatial distribution of sulci in their sulcus
recognition procedure. We take advantage of global sulcus
characteristics such as orientation and shape. Lohmann et al.
[20] described a method to detect sulcal basins that correspond to
substructures of a sulcus as single points. We try to recognize the
whole sulcus instead, which addresses the neurobiological
question. Sulci are represented by curves in [35,26], while we
represent sulci using 3D surfaces on the cortex, which is more
convenient for morphometry of the cortical sulci.

It is likely that no single approach is able to solve the atlas
problem, but rather a combination of segmentation in the
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individual data space, use of prior probabilistic (spatial) informa-
tion, and symbolic knowledge about object features and their
neighborhood relationships is successful. The procedure described
here is an initial attempt to combine these approaches, and a
resulting average similarity index of 0.85 is very encouraging.

Our aim is to develop an automatical segmentation, matching,
and interpretation system for the neocortical surface. This tool for
the neuroscientist will improve the understanding of the
structural and functional organization of the human brain and
allow morphometric analyses of brains affected by disease
processes.
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