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Abstract

The neocortical surface has a rich and complex structure comprised of folds (gyri) and fissures (sulci). Sulci are important macroscopic
landmarks for orientation on the cortex. A precise segmentation and labeling of sulci is helpful in human brain mapping studies relating
brain anatomy and function. Due to their structural complexity and inter-subject variability, this is considered as a non-trivial task. An
automatic algorithm is proposed to accurately segment neocortical sulci: vertices of a white/gray matter interface mesh are classified
under a Bayesian framework as belonging to gyral and sulcal compartments using information about their geodesic depth and local cur-
vature. Then, vertices are collected into sulcal regions by a watershed-like growing method. Experimental results demonstrate that the
method is accurate and robust.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The macrostructure of the human neocortex is a highly
complex and convoluted surface comprised of folds (gyri)
and fissures (sulci) (see Fig. 1). The development of high
resolution and high contrast MR imaging techniques
allows studying morphological variability of the neocorti-
cal folding patterns. The accurate segmentation of cortical
sulci has many applications such as localizing activation
sites precisely in functional imaging (Mangin et al., 1995),
providing landmarks for 3D deformable brain image vol-
ume registration, and studying region-dependent patterns
of diseases affecting the neocortex.

Two main strategies were pursued for the analysis of the
cortical surface. The first employs feature-based elastic reg-
istration and warps a pre-labeled template to a subject’s
imaging data for segmenting and identifying anatomical
structures (Behnke et al., 2003; Desikan et al., 2006). The
second strategy tries to directly extract or recognize sulci
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in the space of an individual subject without elastic regis-
tration (Mangin et al., 1995; Goualher et al., 1997, 1999;
Vaillant and Davatzikos, 1997; Lohmann and von Cra-
mon, 2000; Rettmann et al., 2002). While the first approach
has demonstrated a successful identification of some major
sulci, due to the high inter-subject variability, a registration
method cannot exactly match all surface features between a
subject and a pre-labeled template – and it is an open ques-
tion whether such a match exists (Cachia et al., 2003).

Working in the individual data space, it is possible to
extract sulci directly in the image space from the 3D MR
image volumes (Mangin et al., 1995; Goualher et al., 1997;
Lohmann, 1998; Lohmann and von Cramon, 2000; Zhou
et al., 1999; Riviére et al., 2002), or to detect them on cortical
surface meshes reconstructed from 3D MR images (Khaneja
et al., 1998; Rettmann et al., 2002; Vivodtzev et al., 2003;
Kao et al., 2007). Although mesh-based methods require
extra steps for their creation, specific surface properties
may be imposed (e.g., topological constraints, no self-inter-
sections, or surface–surface contacts) that are advantageous
for segmentation. Surface features such as curvature (Viv-
odtzev et al., 2003) are more reliably computed, and multi-
resolution schemes are much easier to implement in order

mailto:faguoy@uci.edu
mailto:fkruggel@uci.edu


Fig. 1. A cross-section of the cortical surface.
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to increase the robustness and computational efficiency.
Sulci may be represented as regions (Rettmann et al., 2002)
or fundus lines (Kao et al., 2007; Shi et al., 2007). It was
argued that sulcal fundi are more stable in terms of definition
and identification compared to sulcal regions. Our primary
aim is to introduce a parcellation on the neocortex to allow
morphometry, so we focus on segmenting regions.

The two main features employed for parcellating the
neocortical surface are curvature (Goualher et al., 1999;
Cachia et al., 2003; Vivodtzev et al., 2003) and geodesic
depth (Rettmann et al., 2002; Kao et al., 2007). Curva-
ture-based approaches make the first-order approximation
that sulci are concave and gyri are convex. However, sec-
ondary structures, correlates of acquisition noise, and
modeling errors may violate this assumption locally. There-
fore, curvature-based algorithms may produce unwanted
results, e.g., at small bridging gyri deep in cortical folds.
Smoothing the surface is a viable option, but specifying
the amount of smoothing is not a well-defined problem.
Approaches based on geodesic depth use ad hoc techniques
to distinguish sulci and gyri. Kao et al. (2007) apply depth
thresholding to extract sulcal regions. Rettmann et al.
(2002) use a deformable model to distinguish sulci and gyri.
However, parameters describing the elasticity of the
deformable model affect the definition of sulcal areas.

We suggest to combine both geodesic depth and curva-
ture information in a Bayesian framework to classify sur-
face vertices into sulcal and gyral compartments. Hereby,
we can resolve issues of noisy surfaces, bridging gyri deep
in cortical folds, and arbitrary depth thresholds. In a sec-
ond step, we form sulcal regions by employing a
watershed-like region growing method on the surface mesh.

2. Algorithms

Now, we discuss the key steps of our algorithm in detail:
(1) surface generation and feature computation, (2) vertex
classification, and (3) watershed-like growing and segment
merging as sulcal regions.

2.1. Surface and feature extraction

To study the human cortex folding patterns, we may
either use the interface between gray matter (GM) and
cerebro-spinal fluid (CSF) or the interface between white
matter (WM) and gray matter (GM) as long as the cortical
surface representation is reliable (Cachia et al., 2003).
However, the partial volume effects makes sulcal banks
indistinguishable for tightly packed sulcal regions on the
GM/CSF interface at the standard MR imaging resolution
(Han et al., 2004). Therefore, it is more difficult to obtain a
correct GM/CSF surface (Mangin et al., 1995). Without
loss of generality, we select the WM/GM interface here
for generating the cortical surface easily and reliably.

2.1.1. Surface generation

Extracting the brain’s surface as a polygonal mesh from
magnetic resonance imaging data of the human head is
considered a complex, but well developed methodology in
medical image processing. In principle, any published
method may be used to obtain a triangulated mesh repre-
senting the WM/GM interface that is required for our seg-
mentation method. However, it must be ensured that (1)
the surface mesh has a topological genus of zero (an useful
simplification of the neuroanatomy, but warranted at this
spatial resolution level) and (2) is free of self-intersections.
It is self-evident that self-intersecting surfaces are anatom-
ically invalid.

We briefly outline our procedure in the following. T1-
weighted volumetric MR images were aligned with the ste-
reotaxic coordinate system (Kruggel and von Cramon,
1999) and interpolated to an isotropical voxel size of
1 mm using a fourth-order B-spline method. Data were
corrected for intensity inhomogeneities by a fuzzy segmen-
tation approach using three classes (Pham and Prince,
1999), yielding an intensity-corrected T1-weighted image,
and a set of three probability images. Here, each voxel con-
tains a probability for belonging to the intensity class 0
(background and CSF), 1 (GM, facial muscles, connective
tissue), and 2 (WM, fat). Data of probability class 2 are
binarized by a threshold t, and treated with a morpholog-
ical erosion filter using a spherical kernel of radius d to
remove small bridges between the temporal lobe and the
cerebellum. To remove the cerebellum, brainstem is cut
by an axial plane 15 mm below the posterior commissure,
and the biggest c18-connected component (Toriwaki and
Yonekura, 2002) is retained as the raw WM segmentation
of the cerebrum. Note that this step also removes the outer
hulls of the human brain. For our data, typical parameter
settings are t ¼ 0:65 and d ¼ 1:4. We automatically modify
t and d to determine the best combination for which the
remaining cerebral volume is maximal.

The resulting raw WM segmentation was refined to
have a topological genus of 0 (i.e., no holes or handles).
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First, the inner ventricles and other holes encompassed by
WM are filled by labeling all c180-connected components
in the background and joining all but the biggest one with
the initial WM segmentation. We use a variant of the pro-
cedure proposed by Shattuck and Leahy (2001) to modify
the foreground object until it has a topological genus of
zero.

A triangulated surface mesh was generated from the
refined white matter segmentation using a version of the
‘‘Marching Cubes” algorithm that preserves the original
topology (Cignoni et al., 2000). Note that the isosurface
threshold for this step must range in t 2 ½0:25; 0:5� to main-
tain a c18-connectivity in the foreground and yield a mesh
with a topological genus of zero.

An improved representation of the WM/GM interface is
obtained by treating the initial mesh as a deformable model
(Kruggel, 2005). On any vertex v0 in the mesh, internal and
external forces act until a balance is achieved. The first
term corresponds to an internal force that tries to center
a vertex among its edge-connected neighbors
vi; i ¼ f1; . . . ; ng:

vðtþ1Þ
0 ¼ w1

1

ni

Xni

i¼1

vðtÞi þ w2df vðtÞ0

� �
: ð1Þ

The second term corresponds to an image-driven force
exerted by a gradient field f. This gradient field is computed
by convolving the intensity-corrected image I with a kernel
based on the first derivative of a Gaussian function rG
with standard deviation r (Xu and Prince, 1998). This force
is weighted to capture the surface within a narrow intensity
range around I lim: d ¼ tanhðjðIðv0Þ � I limÞÞ. Convergence is
assumed if the average intensity difference jIðv0Þ � I limj
drops below a pre-defined bound. For our data, we used
the settings: r ¼ 1:0; j ¼ 0:2; w1 ¼ 0:01; w2 ¼ 0:004;
I lim ¼ ðIWM þ IGMÞ=2 for the WM/GM interface. The nota-
tion IXX refers to the average compartment intensity.

One of the key issues in this step is to avoid self-intersec-
tions of the surface (Gumhold et al., 2004), as this would
yield an anatomically implausible result. Finally, we
reduced the number of triangles to 100,000 by edge con-
traction (Heckbert and Garland, 1999) and split the surface
mesh at the mid-sagittal plane to yield two meshes repre-
senting the WM/GM interface of each hemisphere. Note
that this mesh is non-uniform, but optimally represents
the original surface properties such as curvature.
Fig. 2. Image processing steps for obtaining the sulcal geodesic depth: (a) MR
2.1.2. Surface curvature

An approximation method (Sander and Zucker, 1987;
Stokely and Wu, 1992) is used to compute the mean cur-
vature hv of each vertex on the cortical surface mesh. At
each vertex v0, we construct a local coordinate system
from its unit normal vector and two orthogonal vectors
~x;~y on its tangent plane. Cartesian coordinates of all
edge-connected neighbors vi; i ¼ f1; . . . ; ng are trans-
formed to local coordinates fðx1; y1; h1Þ; . . . ; ðxn; yn; hnÞg.
The cortical surface near vertex v0 is approximated by
a paraboloid Sðx; yÞ ¼ ðx; y; ax2 þ 2bxy þ cy2Þ, and coeffi-
cients a; b; c are determined by least squares estimation.
The computation of the mean curvature involves in the
first and second principal forms of the surface (Morten-
son, 1985). For the approximating paraboloid at point
vertex v0, the mean curvature can be estimated as
hv ¼ aþ c. Note that there are more vertices in highly
curved portions, so this estimation method is self-adap-
tive with respect to the surface area.

2.1.3. Geodesic depth

Processing steps for computing the geodesic depth of the
WM surface voxels are illustrated in Fig. 2. We start from
the refined WM segmentation computed above (Fig. 2b).
Because brains were aligned with the stereotaxic coordinate
system, we can simply use the y–z center plane to split the
left and right hemisphere (Fig. 2c). A morphological clos-
ing filter with a spherical structuring element (Maragos
and Schafer, 1990) was applied to obtain an idealized
smoothed surface (Fig. 2d). The exact size of the diameter
is not critical as long as it is large enough to fill the sulci, we
used d = 14 mm here. The geodesic depth of each voxel in
the filled sulcal compartment was calculated with respect to
this idealized smoothed surface using a constrained 3D dis-
tance transform (Borgefors, 1984). Finally, depth informa-
tion is interpolated at vertex positions of the WM mesh.
2.2. Vertex classification

Consider the cortical surface mesh M consisting of ver-
tices vi; i ¼ 1; . . . ;N . We introduce a classification C by
addressing a label Li; i ¼ f1; 2g to each vertex whether it
belongs to a gyral or sulcal compartment based on its mean
curvature hv and geodesic depth dv. Classification is per-
formed by maximizing PðCjMÞ:
image; (b) white matter; (c) splitting; (d) closing; and (e) geodesic depth.
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C� ¼ arg max
C

P ðCjMÞ ð2Þ

We assume the classification of each vertex on the corti-
cal surface mesh is independent from each other. Therefore

arg max
C

P ðCjMÞ ¼
[

v

arg max
L

P ðLjhv; dvÞ ð3Þ

This assumption highly simplifies the classification of the
vertices on the cortical surface mesh. According to Bayes’
rule:

P ðLjhv; dvÞ ¼
P ðhv; dvjLÞPðLÞ

P ðhv; dvÞ
ð4Þ

Since P ðhv; dvÞ ¼
P

LPðLÞP ðhv; dvjLÞ, P ðhv; dvÞ is a constant
for each vertex across the classes. So,

P ðLjhv; dvÞ / P ðLÞP ðhv; dvjLÞ ð5Þ
We further assume that given the class label, the geode-

sic depth dv and the mean curvature hv are conditionally
independent. According to this assumption, Eq. (5)
becomes

P ðLjhv; dvÞ / P ðLÞP ðhvjLÞP ðdvjLÞ ð6Þ
The density functions of each class are approximated

using kernel expansion (Duda et al., 2000).

P ðhvjLÞ ¼
1

NL

XNL

i¼1

Krhðhv � hiÞ ð7Þ

P ðdvjLÞ ¼
1

NL

XNL

i¼1

Krd ðdv � diÞ ð8Þ

where Krh and Krd are Gaussian kernels with standard
deviation rh and rd ; hi; di; fi ¼ 1; . . . ;N Lg correspond to
samples of class L. The prior probability of each class
P ðLÞ can be estimated by

P ðLÞ ¼ NL

N
: ð9Þ

Once we know the distributions of hv, dv, and the prior
probability P ðLÞ of each class, we can classify each vertex
on the cortical surface mesh. On the other hand, if we know
the class label of each vertex on the cortical surface mesh,
we can use Eqs. (7)–(9) to estimate the density function
pðhvjLÞ, pðdvjLÞ and the prior probabilities P ðLÞ. An expec-
tation maximization (EM) algorithm is used to classify
vertices:

(i) We initialize the segmentation using mean curvature
only: vertices with a positive value are classified as
belonging to sulci, all other as gyri. Note that the sign
of the mean curvature depends on the computation
method which is positive in concave regions for the
method applied here.
(ii) We re-estimate density functions (Eqs. (7) and (8))
and prior probability (Eq. (9)) of each class. Parameters
rh and rd are important when approximating the density
functions. Larger values make the estimated density
function smooth. To achieve a robust classification, we
use a strategy similar to the temperature control method
in simulated annealing (Kirkpatrick et al., 1983; Aarts
and Korst, 1989) to determine the values of these two
important parameters:

rðtÞh ¼rð0Þh expð�taÞ ð10Þ
rðtÞd ¼rð0Þd expð�taÞ ð11Þ

where t is the current iteration number. In all our exper-
iments, we used a ¼ 1:0; rð0Þh ¼ 0:2, and rð0Þd ¼ 2.
(iii) Then, we re-classify each vertex by computing
PðLÞP ðhvjLÞPðdvjLÞ and addressing it to class L� with
the maximum value P ðL�ÞPðhvjL�ÞP ðdvjL�Þ among all
the classes.
(iv) If the number of reclassified vertices becomes zero,
or a maximum iteration number T is reached, we assume
convergence and stop the classification process. Else we
go to step (ii). We used T ¼ 20.

Note that this method is unsupervised and training is
not required.

2.3. Segmenting sulcal regions

The objective of the segmentation process is to collect
vertices from the sulcal class as separate sulcal regions that
correspond to neuro-biologically meaningful structures.
2.3.1. Segment growing

The watershed algorithm is widely used in the image
processing literature to segment an image into catchment
basins (Meyer and Beucher, 1990). Imagine puncturing
holes in the local minimum of a height function and
immerse the function into a pool, the water will flood areas
near the local minimum, and finally form different catch-
ment basins. The choice of the height function f ð�Þ is cru-
cial for each application. For our problem, height can be
defined as (1) mean curvature, (2) geodesic depth or (3)
the probability of belonging to the sulcal class (Eq. (4)).
The formation of the catchment basins on the cortical sur-
face is only affected by the topology of the vertices and
their associated height values, not by their 3D vertex posi-
tion. The region growing process is formalized as

(i) Create a list K of all vertices vi of the sulcal class in
descending order of their height fi.

(ii) Starting with the highest vertex, test the labeling sit-
uation of the neighbors of vi:
– If all of its neighbors are unlabeled, or some of its
neighbors are unlabeled and the rest of the neigh-
bors belong to the gyral class, we create a new
catchment basin.

– If its labeled neighbors only belong to a single
catchment basin, then address its label to the cur-
rent vertex.

– If its labeled neighbors belong to several different
catchment basins, we search for the closest
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neighboring labeled vertex vj and address its label
to the current vertex. The distance between the ver-
tices are defined as the Euclidian distance.

Since the watershed method is sensitive to small high-
frequency surface variations (e.g., detailed cortical struc-
tures), it tends to over-segment the surface. Therefore, we
perform a merging process that is described in the follow-
ing section.

2.3.2. Segment merging

A merging process needs a criterion for selecting candi-
dates for merging. We use the ridge height of a basin here
(see Fig. 3). Consider two neighboring segments Si and Sj.
The ridge height riðSjÞ of segment Si with respect to seg-
ment Sj is defined as the highest geodesic depth in catch-
ment basin Si before spilling over into catchment basin
Sj. Note that riðSjÞ 6¼ rjðSiÞ.

The merging process is described as follows:

(i) Create a graph G in which basin segments correspond
to nodes. If two segments share a common ridge, then
link these neighbors by an edge.
(ii) Denote the segment depth as the maximum geodesic
depth among all vertices of a segment. Create a list K of
all basin segments sorted by descending depth.
Fig. 3.
ing seg
while end of list K has not been reached
Select the current basin segment Si as the next seg-
ment in list K.
Collect the set NðSiÞ of neighbors of Si.
LOOP: Find the segment Sj in NðSiÞ that has the
smallest ridge height riðSjÞ.
if riðSjÞ is smaller than a given threshold T w

then
merge segments Si and Sj.
merge NðSjÞ into NðSiÞ.
remove Sj from NðSiÞ and from all neighbors of
Si.
update the watershed information r in Si and
NðSiÞ.
delete segment Sj from the list K and graph G.

endif

goto LOOP.
endwhile
S 1 

S 2 

P

r1 ( S 2 )

r2 ( S 1 )

An illustration of the definition of ridge height between neighbor-
ments.
Finally, we remove small segments without neighbors or
merge them unconditionally with their largest neighbor.

3. Experiments

For an evaluation of our segmentation algorithm, we
conducted a set of experiments. From a large subject data-
base (see Kruggel, 2007 for a complete demographic
description), we randomly selected 20 cases (29.4 ± 13.0
years; 8 males, 12 females). Subjects were scanned on a
Bruker 3T Medspec 100 system, equipped with bird cage
quadrature coil. T 1-weighted images were acquired using
a 3D modified driven equilibrium Fourier transform
(MDEFT) protocol: field-of-view 220 mm� 220 mm�
192 mm, matrix 256� 256, TR = 1.3 s, TE = 10 ms, 128
sagittal slices, voxel size 0.9 mm � 0.9 mm, 1.5 mm slice
thickness.

A neuroanatomist counted the number of anatomically
defined segments (see Fig. 4) that make up the central
(CS), post-central (PCS) and superior temporal sulcus
(STS). If the number of anatomically defined segments
matches the number of automatically defined segments,
we consider this segmentation as correct. If our algorithm
found more segments, we denote this as an over-segmenta-
tion, if less, as an under-segmentation.

In our first experiment, we assessed possible choices for
the height parameter in the region growing process: (1) geo-
desic depth, (2) mean curvature, and (3) the sulcal class
probability. We used settings of rð0Þh ¼ 0:2, rð0Þd ¼ 2:0 and
T w ¼ 2:5 mm to obtain the segmentation results in our test
sample. A neuro-anatomist counted the occurrence of
under-segmentation by inspecting the lateral view of the
segmented hemisphere (see Fig. 5). For height measures
(2) or (3), an under-segmentation was found in 7/20 cases.
No under-segmentation was found for geodesic depth that
was selected as the region growing metric.
Fig. 4. An illustration of the anatomically defined segments. The central
sulcus (red) only has one anatomical segment, while the superior temporal
sulcus consists of two anatomical segments (yellow and green).



Fig. 5. Effects of the metric selection in the region growing process: (a)
geodesic depth; (b) mean curvature; and (c) sulcal class probability. The
superior temporal sulcus is connected to other sulci if mean curvature or
sulcal probability are used as region growing metrics (refer to the region in
white circles).
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Our next experiment studied the influence of parameter
settings on the final segmentation results. Parameters
rð0Þh ; rð0Þd affect the initial class probabilities (Eqs. (7) and
(8)). With constant T w ¼ 2:5 mm, we varied rð0Þh from
0.15 to 0.25 in steps of 0.05; rð0Þd varied from 1.5 to 3.0 in
steps of 0.5. The similarity index SI (Dice, 1945) was com-
puted for the segmentation of each sulcus and each pair of
the parameter combinations: SI ¼ 2nc=ðni þ njÞ, where
ni; nj correspond to the number of vertices of segments
Fig. 6. Sulci segmentation result of a subject. The yellow and blue
segments in the white ellipse are the catchment basins making up of the
post-central sulcus.

Table 1
Similarity indices in 20 cases for the central (CS), post-central (PCS) and
superior temporal sulcus (STS)

CS STS PCS

Avg 0.9260 0.9304 0.9183
Std dev 0.0625 0.0851 0.1006

Table 2
Segmentation results in 20 cases for the central (CS), post-central (PCS)
and superior temporal sulcus (STS)

# of anatomical segments CS (%) PCS (%) STS (%)

CSR OSR CSR OSR CSR OSR

1 80 20 15 15 25 30
2 45 5 30
3 20 15

Correct segmentation rate (CSR) and over-segmentation rate (OSR): refer
to the text.



0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e 

pr
ob

ab
ilit

y

Primary sulci
Secondary sulci

448 F. Yang, F. Kruggel / Medical Image Analysis 12 (2008) 442–451
Si; Sj and nc is the number of vertices common to Si and Sj.
Higher values SI indicate a greater overlap, or a higher
consistency between two segmentation results. The similar-
ity index is not only sensitive to the size of the segmented
objects but also to their location. Results listed in Table
1 demonstrate that our method is not affected by the initial
choice of rð0Þh ; rð0Þd .

The watershed threshold T w has a direct influence on
the final segment count: larger values of T w yield a smaller
segment count. We changed T w from 1 to 20 mm with
constant rð0Þh ¼ 0:2 and rð0Þd ¼ 2. For T w > 6 mm, a serious
under-segmentation occurred, which we try to avoid. We
prefer a slight over-segmentation, because merging seg-
ments is much easier than splitting when matching seg-
ments with anatomical labels. Therefore, we empirically
selected T w ¼ 2:5 mm for all subsequent experiments.

Next, we wanted to estimate the amount of over-seg-
mentation w.r.t. our final parameter settings in our exam-
ple group. While the CS is generally anatomically
continuous, PCS and STS are often interrupted, i.e., con-
sist of several anatomical segments. We refer to the correct
Fig. 7. Classification into primary (in red) and secondary (in green) sulci.
(a) and (b) are from two different views.
segmentation rate (CSR) as the proportion of cases where
the number of anatomical segments matched the segment
count of our algorithm. Likewise, the over-segmentation
rate (OSR) is defined.

In Table 2, the CSRs of CS, PCS and STS are 80%,
80% and 70%, respectively. In most of the over-segmen-
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Fig. 8. Cumulative distribution function of geodesic depth (top), mean
curvature (middle) and segment size (below) for primary and secondary
sulci.
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tated cases, small bridging gyri deep in a sulcal fundus
led to the formation of separate segments (see Fig. 6).
As discussed above, we rather accept a slight over-
segmentation.

In our final experiment, we were interested in evaluating
differences in geodesic depth and mean curvature for pri-
mary and secondary sulci on the lateral surface. Please note
all of our other experiments are executed on both lateral
and medial surfaces. The reason we exclude the medial sur-
face in this experiment is that some primary sulci on the
medial surface (e.g., the cingulate sulcus) are shallower
than those on the lateral surface. A k-means classifier based
on a histogram of geodesic depth was employed to provide
an initial classification of sulci on the lateral aspect (Fig. 7).
This initial classification was reviewed by a neuro-anato-
mist based on the definitions by Ono et al. (1990). From
the cumulative probability function in Fig. 8, we find that
primary sulci show a greater geodesic depth than secondary
sulci – which is very much expected. However, the mean
curvature is not apparently different. This is readily under-
stood as a consequence of the fact that the neocortical
thickness is rather uniform – and two layers of cortex have
to fit into a sulcus, irrespective of its designation as primary
or secondary.
Fig. 9. Segmentation results on the l
To give a visual impression of the segmentation results,
we compiled the lateral view of four hemispheres in Fig. 9.

4. Discussion

We proposed a novel, automatic method for segmenting
sulci on the cortical surface. The main contributions of our
work are (1) using curvature and geodesic depth to segment
sulci; (2) deriving a probabilistic theory to combine differ-
ent information in a Bayesian framework; and (3) compar-
ing the effectiveness of different metrics for the watershed
segmentation.

Our work relates to that of Rettmann et al. (2002), who
use a deformable surface to distinguish sulci and gyri. Their
weights for the internal and external forces w1;w2 and dis-
tance threshold d affect the definition of the sulcal area.
Larger internal forces w1 make the deformable surface rigid
and will detect a larger area as sulcus. Larger values of d
greatly reduce the detected sulcal area. All these parameters
have to be selected empirically.

Here, we start from the first-order approximation that
sulci are concave and gyri are convex and use sign of the
mean curvature to initialize a classification of vertices.
Then, we combine mean curvature and geodesic depth
ateral convexity in four subjects.
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measures to refine the classification. These parameters are
more easily understood in terms of neuroanatomical fea-
tures, and ex post justified from studying their distribution
(see Fig. 8).

Cachia et al. (2003) used mean curvature in scale space
to detect sulcal roots that appear on the fetal cortex. Using
curvature and geodesic depth increases the robustness
against structural noise and allows using a simpler segmen-
tation scheme.

Experimental results demonstrate that our method
performs well on the lateral surface. We adjusted our
segmentation parameters to rather accept a slight over-seg-
mentation rate (about 25%). In a subsequent labeling step,
it is easier to merge segments into meaningful anatomical
objects than to decide about segment splitting. In a few
cases, the segment corresponding to the insula is connected
with non-sulcal surface areas on the base of the brain.
Here, it is easy to split the segments at the entrance of
the sylvian fissure.

We compared properties of primary and secondary
sulci. It is readily understood that primary sulci are deeper
and larger than secondary ones. However, it is not that
apparent both types have a similar mean curvature, thus,
the bending radius of the primary and secondary sulci is
similar. A simple but likely explanation of this finding is
given by the following fact: two layers of neocortex of sim-
ilar thickness must fit in the fold for both types of sulci,
thus, imposing an upper bound for the mean curvature.

Image acquisition parameters, different surface genera-
tion methods, and the presence of pathological features
(e.g., in neuro-degenerative diseases) affect our preprocess-
ing steps that produce the cortical surface. As long as the
cortical surface can be successfully generated, our sulci seg-
mentation framework can be applied to extract the sulcal
segments.

The complexity and variability of the human brains
poses a great challenge to combine anatomical and func-
tional information from a group of human brains into a
brain atlas. One method to address this difficulty is
spatial normalization, that is, image-based brain volume
warping (Friston et al., 1995; Shen and Davatzikos,
2002). However, current spatial normalization methods
are unable to match cortical structures exactly between
subjects.

An alternative is to perform matching at a higher
(e.g., segment) level. Our aim is to develop an automatic
segmentation, matching and interpretation system for the
neocortical surface. This tool for the neuroscientist will
improve the understanding of the structural organization
of the human brain and allow morphometric analysis of
brains affected by disease processes. Such a system is
comprised of two steps: surface segmentation and match-
ing/labeling of segments to an anatomical model. Here,
we focus on sulcal segmentation. The next steps is to find
segment correspondences between different subjects by
using shape, orientation and neighborhood information.
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