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Abstract

Complex shapes – such as the surface of the human brain – may be represented and analyzed in frequency space by means of a spher-
ical harmonics transformation. A key step of the processing chain is introducing a suitable parametrization of the triangular mesh rep-
resenting the brain surface. This problem corresponds to mapping a surface of topological genus zero on a unit sphere. An algorithm is
described that produces an optimal combination of an area- and angle-preserving mapping. A multi-resolution scheme provides the
robustness required to map the highly detailed and convoluted brain surface. More than 1000 datasets were successfully processed by
this mature and robust approach.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Magnetic resonance imaging; Brain surface; Surface parametrization; Spherical harmonics transformation
1. Introduction

It is a well-known fact in neuroanatomy that structural
variants of the brain exist, some of which have to be con-
sidered as pathologic (e.g., macrogyria or microgyria) or
abnormal (e.g., callosal agenesis) – but even normal brains
exhibit a considerable variability. Brain shapes do not nec-
essarily form a continuum in some descriptor space, but
may cluster due to pre-determined genetical factors or
acquired diseases.

An interesting approach for describing shapes is pro-
vided via a spherical harmonics transformation (SHT) that
may be understood as a ‘‘Fourier transform on a sphere”.
Any surface of genus zero can be transformed into fre-
quency space using a linear combination of basic shapes,
and the resulting parameters of the shape spectrum can
be used as a parsimonous shape description. The shape
space spanned by spherical haramonic basis functions is
orthogonal, and readily offers a metric for comparing and
classifying shapes (Brechbühler et al., 1996; Funkhouser
et al., 2003; Gerig et al., 2001; Shen et al., 2004).
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Implementing this apparently attractive approach poses
difficult problems when highly convoluted objects with
detailed structures are under study, such as the surface of
the human brain. First, the brain’s surface must be
extracted from magnetic resonance (MR) imaging data of
the human head, usually as a triangular mesh. This is con-
sidered a complex, but well developed methodology in
medical image processing (Kruggel, 2005). The ‘‘tricky”

part is to ensure that the surface has a topological genus
of zero (Fischl et al., 2001; Han et al., 2002, 2003; Shattuck
and Leahy, 2001) and is free of self-intersections (Gumhold
et al., 2003; Park et al., 2001).

For computing a SHT, a parameterization of the surface
must be introduced which corresponds to mapping it onto
a (unit) sphere. Such a mapping can be either angle- or

area-preserving but not isometric (both) – which is most
desirable because all properties of the surface are repre-
sented in the parameter domain. Finding an angle-preserv-
ing mapping yields an almost unique solution: all mappings
form a so-called Möbius group (Gu et al., 2004). Equiareal
mappings are substantially different because from the point
of view of uniqueness there are many more of them. In
order to find a well-behaved mapping we need to aim for
area-preservation with some minimization of angular
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distortion. For a comprehensive discussion of current map-
ping techniques and their foundation in differential geome-
try, refer to the survey by Floater and Hormann (2005).

Several approaches were proposed for parametrization
of brain surface meshes: The conformal mapping proce-
dure proposed by Angenent et al. (1999) first maps the
input mesh onto a plane using the Laplace–Beltrami oper-
ator and then uses a stereographic projection to map to the
sphere. It requires an (arbitrary) selection of a ‘‘pole” for
the projection and an (arbitrary) splitting of the sphere.
So the area distortion of the final map depends on the
selection of the pole and the split. This method is very fast,
but may fail due to numerical instabilities when solving the
underlying partial differential equation as a large sparse lin-
ear equation system. Tosun et al. (2004) built upon this
procedure and add a Möbius transformation to minimize
area distortion of the final mapping. Before mapping, a
surface is inflated (flattened) to obtain a more regular mesh
structure. This flattening reduces the curvature scale and
improves the numerical stability of the equation system.
However, metric properties are optimized for the inflated
surface, so the relation of angles, distances and areas for
the brain mesh vs. the spherical map are unspecified. Gu
et al. (2004) later proposed an iterative method for generat-
ing a conformal map by minimizing the harmonic energy.
This approach may generate triangle flips when the mesh
has obtuse angles, and they suggest local remeshing as a
preprocessing step to ensure that all angles are acute. Hur-
dal and Stephenson (2004) used the fact that classical ana-
lytic functions can be approximated using circle packing,
and proposed a mapping procedure based on circle pack-
ing. However, this approach considers connectivity only
and does not preserve metric properties. Finally, Fischl
et al. (1999) described a mapping algorithm that minimizes
metric distortion and unfolds sulci based on a signed area
term. An implementation is widely available in the Free-
Surfer software package. In comparison, metric surface
properties are preserved best by this algorithm (Ju et al.,
2005), however, the solution is not unique (Floater and
Hormann, 2005), and the method is computationally very
demanding.

These drawbacks of current mapping approaches trig-
gered the development of a mapping algorithm that is
robust enough to handle large, convoluted brain surface
meshes consisting of up to 500,000 triangles. It provides
an optimum of angle- and area-preservation that comes
close to isometry which is most desirable for a parametriza-
tion that is used for a SHT. Preprocessing is not required
(e.g., selecting a pole, inflation, or remeshing for acute
angles). More than 1000 hemispheres were successfully
processed, so we consider our approach as mature and
robust.

2. Algorithms

Three steps are required to achieve a shape description
by SHT: (1) extraction of the surface from imaging data
as a triangle mesh, (2) parametrization of the mesh by
spherical mapping, and (3) computation of the SHT. We
focus on the description of an algorithm to perform step
(2), but outline steps (1) and (3) for completeness.

2.1. Surface generation

Any method may be used to obtain a triangulated mesh
representing the grey/white matter (GM/WM) interface.
We briefly outline our procedure. T 1-weighted volumetric
MR images were aligned with the stereotaxic coordinate
system and interpolated to an isotropic voxel size of 1mm
using a fourth-order b-spline method. Data were corrected
for intensity inhomogeneities by a fuzzy segmentation
approach using three classes (Pham and Prince, 1999),
roughly corresponding to background and cerebrospinal
fluid (class 0), GM, muscles and connective tissue (class
1), WM and fat (class 2). A mask for the brain’s WM
was extracted from intensity class 2 by removing the outer
hulls of the brain and cutting the brainstem by an axial
plane 15 mm below the posterior commissure. The biggest
c18-connected component (Toriwaki and Yonekura, 2002)
is retained as the raw WM segmentation of the cerebrum.
The resulting raw WM segmentation was edited to have
a topological genus of zero (Shattuck and Leahy, 2001).
A triangulated surface was generated from the binary white
matter segmentation using a variant of the ‘‘Marching
Cubes” algorithm that preserves the original topology
(Cignoni et al., 2000). An improved representation of the
GM/WM interface was obtained by treating the initial
mesh as a deformable model (Kruggel, 2005). Finally, we
split the surface mesh at the mid-sagittal plane to yield sep-
arate meshes representing the GM/WM interface of each
hemisphere.

2.2. Surface parametrization

A parametric surface is defined by an one-to-one map-
ping / : X 7!R3, with X � R2 the parameter domain, and
we denote / a parameterization of the surface. In our case,
this parameter domain are the longitude and latitude ðu; vÞ
of the unit sphere. More specifically, a parameterization of
a surface S that has a triangulation is sought:

M ¼ f½1 . . . n�;T; ðsiÞi¼1...ng; ð1Þ
where ½1 . . . n� denotes vertices at positions si and T
their set of corresponding triangles DM. We require that
the parameterization is piecewise linear so that / maps
vertices and triangles of M onto vertices and triangles
of the spherical triangulation M0. The parameterization
is found by minimizing a suitable error metric for the
mapping over the parameter domain. As a result, we
find parameters ðui; viÞ for each vertex si of the surface
mesh.

Metric properties of S are characterized by its first fun-
damental form (for a thorough derivation, refer to Kreyz-
sig, 1991):
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A parametrization / is called isometric if I/ ¼ I2, where I2

corresponds to the 2� 2 identity matrix. Isometric para-
metrizations only exist for surfaces with zero Gaussian
curvature: only developable surfaces (e.g., planar, cylin-
drical or conical surfaces) can be parametrized without
distortion.

A conformal (angle-preserving) parametrization
requires that I/ðxÞ ¼ cðxÞI2 for every x 2 X, where c cor-
responds to the so-called conformal factor (Gu et al.,
2004). Thus, the conformality of a parametrization can
be expressed as the ratio of both singular values r1=r2 of
I/. This ratio is equal to one for all mappings that do
not deform shape. For an area-preserving parametrization,
detðI/Þ ¼ 1, or r1r2 ¼ 1 (Floater and Hormann, 2005).

2.2.1. Error metric

A suitable error metric for obtaining an (almost) isomet-
ric parametrization was proposed by Degener et al. (2003).
Conditions for conformality and area-preservation should
yield values close to one. The function f ðxÞ ¼ xþ 1

x is con-
vex, has its minimum at x ¼ 1, and grows to infinity for
x! 0 and x!1 (Hormann, 2001).

Substituting x by the ratio of the area of DM and the
mapped triangle DM0 defines the error term Earea for area-
preservation:

Earea ¼
areaðDMÞ
areaðD0MÞ

þ areaðD0MÞ
areaðDMÞ

� 2: ð3Þ

Substituting x by the ratio r1=r2 yields an error term Eangle

for angle preservation. Referring to the notation of Fig. 1,
this term is given by:

Eangle ¼
cot ajaj2 þ cot bjbj2 þ cot cjcj2

2areaðDMÞ
: ð4Þ

For details of the derivation of this term, refer to (Hor-
mann, 2001; Pinkall and Polthier, 1993). Finally, the total
distortion error of the map is

E/ ¼
X
D2T

ED ¼
X
D2T

EangleðEareaÞqareaðDM0 Þ; ð5Þ
Fig. 1. Graphical explanation of the variables in the error function Eqs.
(3) and (4).
where q varies between 0 and 1 and controls the relative
importance of angle and area-preservation (Degener
et al., 2003).

2.2.2. Optimization

The coordinates ðui; viÞ of vertex i affect only those ED

for which i is incident with D. Thus, only the partial error
sum in the 1-ring (star) neighborhood of vertex i Ei ¼P

D21-ringðiÞED is influenced by ðui; viÞ.
Given an initial configuration ðui; viÞi¼1...n, first all verti-

ces are ordered by their error Ei. Then, each vertex i is opti-
mized in ðui; viÞ. The Simplex algorithm is used to solve this
2-parameter non-linear optimization problem (Press et al.,
1999). The solution must be checked that ðui; viÞ lies within
the kernel of its 1-ring, so that triangles do not fold over.
Minimizing Ei decreases E/ in each step, so the algorithm
is guaranteed to converge to a (local) minimum. We
assume convergence if the change in E/ falls below a pre-
defined bound.

An initial configuration can be obtained by projecting
vertices si to a position s0i on the unit sphere, and by mini-
mizing the distance of s0i to all its adjacent vertices s0j in the
1-ring:

s0i ¼ s0i þ s
X

j21-ringðiÞ
js0j � s0ij

2 with s 2 ½0:10; 0:16�: ð6Þ

This process is iterated until all folded-over configurations
are resolved.

2.2.3. Introducing robustness

For simple surfaces (i.e., a cube), mesh sizes of less than
50,000 triangles, and for q ¼ 0, the algorithm above con-
verges quickly. For complex surfaces (i.e., of a brain), lar-
ger meshes, and other settings of q, a multi-resolution
scheme is employed. For surfaces with a small number of
triangles, finding a solution (close) to the optimal one is
more likely. The solution is propagated to the next more
complex level, optimized again until a solution at the origi-
nal resolution level is found.

The triangulated surface is subsampled by edge contrac-
tion. We basically use the iterative edge contraction
method proposed by Garland and Heckbert (1999). By
contracting an edge uv to form vertex w, both adjacent tri-
angles can be removed (see Fig. 2). The position of the new
contraction vertex w is determined by minimizing the so-
called quadric error metric QtðwÞ ¼ distðt;wÞ2 that is
defined as the squared distance of w to the plane that con-
tains triangle t. The edge contraction that introduces the
lowest quadric error is considered first for removal. Sub-
sampling an orientable 2-manifold closed surface of genus
zero ultimatively leads to a tetrahedron. However, the ori-
ginal formulation of the algorithm neither preserved topol-
ogy nor avoided self-intersections. We have to keep a
topological genus of zero for the surface to preserve
homotopy with a sphere. A self-intersection may result in
a non-orientable surface in a subsequent simplification



Fig. 2. Mesh simplification: by contracting the edge uv both adjacent
triangles can be removed.
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step. The next section describes how these constraints are
imposed.

The sequence of changes (vertex/edge/triangle removal)
is recorded and ‘‘played back” for propagating a solution
onto the next resolution level. Typically, a subsampling
factor f ¼ ½1:2 . . . 2:0� is used between levels. For our prob-
lem, starting at a lowest resolution level of 1000–5000 tri-
angles is sufficient. In Fig. 3, surfaces at five resolution
levels (50,000, 25,000, 12,500, 6250, 3125, 1623 triangles)
and their corresponding spherical mapping are shown.
Longitude and latitude of vertices at the highest resolution
level serve as the parameterization of the input (brain)
surface.

2.2.4. Constrained mesh simplification

Introducing a topology constraint is straightforward: if
an edge contraction would change the genus, it is not per-
formed. Remember that the genus g of a triangulated sur-
face mesh is given by:

g ¼ 1� ðnv � ne þ nfÞ=2;
Fig. 3. Hemispheric surfaces at five resolution levels (50,000, 25,000, 12,500
where nv corresponds to the number of vertices, ne is the
number of edges, and nf is the number of faces. Note that
we have to ensure that this mesh consists of a single con-
nected component.

The formalism for avoiding self-intersections is rather
involved: instead of just testing for self-intersections
around the new vertex w after contraction, we need to
check for intersections along the contraction paths
uw and vw. Denote x and y as other vertices that are
edge-connected to u or v. Then, the following tests are nec-
essary for path uw (and vw, in parentheses) (Gumhold
et al., 2003):

1. A triangle–edge intersection test between the contrac-
tion path uwðvwÞ and all triangles in the local neighbor-
hood that do not include vertex uðvÞ.

2. A edge–triangle intersection test between the triangle
formed by uwðvwÞ and any edge uxðvxÞ with all edges
in the local neighborhood that do not include vertices
uðvÞ and x.

3. A vertex-in-tetrahedron test between the tetrahedron
formed by uwðvwÞ and any triangle uxyðvxyÞ with all ver-
tices in the local neighborhood except u; x; yðv; x; yÞ.

4. A triangle–edge intersection test between the triangle
uvw with all edges in the local neighborhood that do
not include vertices u and v.

5. A vertex-in-tetrahedron test between the tetrahedron
formed by uwðvwÞ and any triangle uvx with all vertices
in the local neighborhood except u; v;w; x.

6. A edge–triangle intersection test between the triangle
uvw and any edge uxðvxÞ in the local neighborhood
except uðvÞ as intersection point.

7. A edge–triangle intersection test between the edge vw

and all triangles uxyðvxyÞ in the local neighborhood.
8. A triangle–triangle intersection test between (a) all trian-

gles formed by edge uw and any edge ux and (b) all tri-
angles formed by edge vw and any edge vy.
, 6250, 3125, 1623 triangles) and their corresponding spherical mapping.
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If one of these tests indicates an intersection, the edge con-
traction is not performed. In order to quickly find primi-
tives in the local neighborhood, a bounding box for
primitive type I is computed and all primitives type II that
intersect with the bounding box are included in the test. As
an example, Algorithm 1 outlines test #2:

Algorithm 1. Triangle–edge intersection test

make a list lt of all triangles t that contain the edge ux and

vertex w
compute the bounding box b enclosing all triangles lt

make a list le of all edges e that intersect with the bound-

ing box b

for all t 2 lt do
Fig. 4.
images
for all e 2 le do

if u; x are not vertices in e then
if e and t intersect then

return true
end

end

end

end

return false

In order to quickly find all triangles in the bounding
box, we use a spatial cache. The space enclosed by the sur-
face mesh is divided into a regular grid of cells. For each
cell, we maintain a list of all vertices, edges, and triangles
partially or completely contained in the cell. The grid spac-
ing is set to the average edge length. Note that the spatial
cache must be updated after each successful edge contrac-
Lateral view onto a WM surface of a left brain hemisphere (top left,
show the corresponding spherical mapping, for different settings of q:
tion. Simplification of a triangular mesh of genus zero will
ultimatively yield a tetrahedron. This fact can be used to
test the correctness of the implementation.

2.3. Computation of the SHT coefficients

A SHT of degree lmax has p ¼ ðlmax þ 1Þ2 functions
(Press et al., 1999). Given ðsi; ui; viÞi¼1...n points on the sur-
face and their parameterization, we can assemble a n� p
matrix B of complex-valued spherical harmonics
bi;j ¼ Y m

l ðui; viÞ, where jðl;mÞ ¼ l2 þ lþ m, and a n� 3
matrix X ¼ ðsiÞTi¼1...n of the spatial coordinates. Typically,
p� n, so the p � 3 coefficient matrix C with row entries
ðcm

l Þ
x
; ðcm

l Þ
y
; ðcm

l Þ
z is determined by least squares

estimation:

C ¼ ðBTBÞ�1 BTX ð7Þ

To solve this large equation system on standard worksta-
tions, BTB and BTX are computed ‘‘on the fly”. The surface
approximation can be computed from these coefficients by
the inverse transformation:

ŝðtÞi ðui; viÞ ¼
Xlmax

l¼0

Xl

m¼�l

ðcm
l Þ
ðtÞ Y m

l ðu; vÞ t ¼ fx; y; zg; ð8Þ

The distance ĵsi � sij is a measure for the goodness-of-fit or
reconstruction error.

3. Experiments

We used a database of 513 MRI brain datasets of
healthy volunteers aged between 16 and 70 years (Kruggel,
50,000 triangles), where sulcal substructures are color-coded. Subsequent
0.0, 0.5, 1.0, 1.5, and 2.0.
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Fig. 5. Difference ðas vmap=vtrue � 1Þ for angles ða;b; c; topÞ, edge lengths
(a; b; c, middle), and areas A (below). Colors denote different settings of q:
0.0 (red), 0.7 (blue), 1.0 (black), and 2.0 (green). For q ¼ 0, the method is
angle-preserving alone due to the first term of the error function.
Increasing q to non-zero values introduces the preservation of edge
lengths and areas while preserving angles, albeit at an increasing variance
of the angle error with increasing q.
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2006). MR imaging was performed on a Bruker 3T Med-
spec 100 system, equipped with a bird cage quadrature coil.
T 1-weighted images were acquired using a 3D modified dri-
ven equilibrium Fourier transform (MDEFT) protocol:
field-of-view 220� 220� 192 mm, matrix 256� 256,
TR = 1.3 s, TE = 10 ms, 128 sagittal slices, voxel size
0:9� 0:9 mm, 1.5 mm slice thickness, scanning time
15 min.

Surfaces representing the GM/WM interface were com-
puted from all datasets (a total of 1026 hemispheres), and
were visually inspected for anatomical correctness. Note
that these triangulated meshes were generated from inter-
polated datasets with isotropic voxel dimensions of
1 mm. All surfaces were successfully processed by the map-
ping algorithm with settings q ¼ 1; f ¼ 1:3. The processing
time was about 20 min for the mapping and 15 min for the
transformation on a standard workstation (AMD64,
2.4 GHz processor, Linux 2.6.15 operating system, 2 GB
RAM).

Neurobiological results will be reported in a separate
publication, we merely focus on evaluating technical
aspects of the mapping algorithm here.

The first experiment demonstrates the influence of the
mapping parameter q, which shifts properties of the algo-
rithm from angle to area-preservation. This is depicted in
Fig. 4: Sulci in an example hemisphere were color-coded
and mapped with settings of q between 0 and 2. The rela-
tive change in shape and size of the mapped sulci is
impressive.

In the next experiment, we studied the distribution of
differences in angles, edge lengths and triangle areas
induced by the mapping in dependence of q. Results for
q ¼ f0:0; 0:7; 1:0; 2:0g are shown in Fig. 5. For q ¼ 0, the
method is angle-preserving alone due to the first term of
the error function (top, red curve), but the error distribu-
tion of edge lengths (middle) and area (below) is broad.
Increasing q to non-zero values introduces the preservation
of edge lengths and areas while preserving angles, albeit at
an increasing variance of the angle error with increasing q.
Choosing q ¼ 1:0 results in an optimal compromise
between angle and area-preservation.

To demonstrate the robustness of this parametrization
approach, we studied the error distributions in all 1026
hemispheres that were mapped using the same parameter
setting ðq ¼ 1; f ¼ 1:3Þ. The mean and standard error of
the error distributions in this sample are shown in Fig. 6,
and correspond to the example graph from Fig. 5 (black
line for q ¼ 1:0).

The higher the degree lmax of this decomposition, the
more detail is preserved, yielding a coarse-to-fine descrip-
tion with increasing number of parameters. We computed
the reconstruction error (Fig. 7), color-coded on the GM/
WM surface, depending on lmax for q ¼ 1:0; and lmax ¼ 5
(top left), 15 (top right), 25 (bottom left), 35 (bottom right).
The color scale runs from blue (0 mm) to red (P4 mm).

Finally, we were interested in the average reconstruction
error of the GM/WM interface as a function of the maxi-
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Fig. 6. Difference ðas vmap=vtrue � 1Þ for angles ða; b; c; topÞ, edge lengths
(a; b; c, middle), and areas A (below) for q ¼ 1. Shown are the mean (±
standard error) of the error distribution obtained from processing the
whole database of 1026 hemispheres. Compare results with Fig. 5 for
q ¼ 1:0 (black line).
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mum SHT degree lmax and varying settings of q (circles:
q ¼ 0:0, triangles: q ¼ 1:0, crosses: q ¼ 2:0) (Fig. 8). To
achieve a surface error that is in the order of the image res-
olution, lmax P 30 is required. Note that using an area-pre-
serving mapping always yields a better reconstruction resp.
to a lower lmax. Again, choosing q ¼ 1:0 is optimal. For our
problem, choosing an area-preserving mapping requires
35% less coefficients to achieve the same reconstruction
error.

4. Discussion

The advantages of the proposed mapping algorithm are:
(a) It is robust enough to handle large, highly convoluted
meshes such as brain surfaces, and was tested with mesh
sizes of up to 500,000 triangles. (b) By introducing an error
metric that includes terms for area and angle-preservation,
we achieve a mapping that comes close to isometry. (c)
Compared with an angle-preserving mapping, substantially
less coefficients are required to represent the brain surface
with same reconstruction error.

Our procedure has two parameters. The exponent q in
the error function weights terms regarding angle- and
area-preserving properties of the mapping. Our evaluation
demonstrates that introducing area-preservation by
increasing q reduces the error on edge lengths and triangle
areas, while the average angle error does not change noti-
cably. Thus, increasing q leads to a more isotropic map -
a very desirable feature. When mapping brain surfaces
and aiming at a good compromise between area- and
angle-preservation, we found that choosing q is not critical
in the interval [1, 3], with an optimum at q ¼ 1. Values
beyond 3 did not influence results noticably. The setting
of q influences the optimization: As discussed in the intro-
duction, angle-preserving mappings have a unique opti-
mum (up to a Möbius transformation), so for q ¼ 0, a
fast convergence is achieved, and less (or even no) multires-
olution levels are required. Increasing q slows down con-
vergence, and more more multiresolution levels are
necessary to avoid suboptimal solutions.

The multiresolution approach increases the robustness
of the algorithm. Besides the setting of q, the choice of
the second parameter, the subsampling factor f is related
to the convolutedness of the surface. For simple surfaces
(e.g., similar to a cube or a sphere), a single level is suffi-
cient. Values of f close to 1 increase the number of resolu-
tion levels (and thus, the computation time), but increase
the likeliness of finding an optimal solution. For our map-
ping problem, values in the interval [1.3, 1.8] (correspond-
ing to 30-7 levels) were sufficient. We processed all 1026
hemispheres with the same parameters q ¼ 1; f ¼ 1:3.

We would like to emphasize that the mesh simplifica-
tion scheme described here is useful beyond this applica-
tion. Most algorithms developed for computer graphics
optimize on speed, and minimize on surface or volume
error (Cignoni et al., 1998). This application (and similar
problems in medical imaging) require in addition that
the topology of the original mesh is preserved. As demon-
strated, a topology constraint is easily integrated with



Fig. 7. Reconstruction error color-coded on the GM/WM surface depending on lmax ¼ 5 (top left), 15 (top right), 25 (bottom left), 35 (bottom right). The
color scale runs from blue (0 mm) to red (P4 mm).
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mesh simplification. Most simplification schemes do not
prevent the formation of self-intersections that are likely
when simplifying highly convoluted surface meshes as
encountered here. While self-intersecting surfaces are obvi-
ously anatomically invalid, a subsequent edge contraction
step close to the intersection may lead to a non-orientable
surface, and thus, to an invalid input for our mapping
algorithm. So both constraints are indispensible for this
algorithm, and are most likely required for similar appli-
cations in medical image analysis.

Our primary motivation for introducing a surface
parametrization is obtaining a parsiomonous shape
description of the brain surface via a SHT for further sta-
tistical analysis between gender and across age. Note that
the obtained maps may be used for identifying sulci and
gyri of the neocortical surface by matching surface features
across subjects (or with an atlas).

Although we studied the mapping of brain surfaces
exclusively here, it is well understood that our algo-
rithm is applicable to any triangulated surface of genus
zero, and thus, offers a general route for describing
complex shapes by SHT coefficients. We would like
to emphasize that this approach offers a range of gen-
eral applications, notably in biomedical imaging and
engineering:

� Shape representation: SHT allows a global, coarse-to-
fine description of a complex surface.
� Shape analysis: Coefficients are suitable for statistical

analysis, such as a classification of brain shapes. The
area-preserving property allows quantitative compari-
sons of subregions across objects.
� Shape modeling: Models may be reconstructed to repre-

sent a smoothed version of the initial surface, or a
‘‘mean shape” from a set, i.e., for modeling tissue
replacements.
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� Information compression: Comparing storage require-
ments for the initial WM surface and the SHT coefficient
array (lmax ¼ 35, average error <0.7 mm), a compression
ratio of 1:580 is achieved.
� Shape retrieval: The sparse set of coefficients, and the

coarse-to-fine representation are interesting options for
building shape databases and the design of efficient sim-
ilarity metrics and search strategies.

Our primary goal is to describe the brain’s shape by a
sparse set of parameters. We will analyze shape differences
across age and between gender, and derive statistics to
detect significant shape differences.
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