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Abstract

Graph matching techniques are widely used in pattern

recognition problems such as scene description, finger print

identification, or face recognition. In this paper, we put

forward two optimization methods for graph matching and

compare them in the context of brain sulcus identification.

The first approach is based on a constraint search in a

neighborhood; the second uses a genetic algorithm for op-

timization. Experiments demonstrate that both methods

yield satisfactory identification rates, however, the second

method is more general and easier to adapt to similar prob-

lems.

1. Introduction

A symbolic description of an image is often represented

as a graph, where vertices represent image regions (or their

features) and edges between vertices correspond to relations

between regions. To identify an object in an image, it is

necessary to match a labeled template graph with a subject

graph obtained from this specific image. Graph matching

is one of the most complex problems in object recogni-

tion, pattern recognition and computer vision [1], because

of its combinatorial nature. In the literature, genetic algo-

rithms [2, 3], probability relaxation [4], expectation maxi-

mization [5, 6] are applied to solve this problem. No gen-

eral method exists that solves all graph matching problems,

so an optimization method has to be designed for a spe-

cific application. In this paper, we introduce and compare

two graph matching optimization methods with their ap-

plication in human brain sulcus identification. One is a

neighborhood-constraint-search method (NS), the other is

a genetic-algorithm-based optimization method (GA).

The neocortex of human brain is a convoluted sheet com-

posed of gyri and sulci. In neurobiology, it is very useful to

obtain an exact segmentation and identification of the sulci:

to provide landmarks for 3D deformable brain image vol-

ume registration; to locate activation sites precisely in func-

tional imaging; to describe morphological changes of brains

affected by diseases.

Several pre-processing steps are required before building

a graph representation: registration of 3D MRI brain images

to the stereotaxic coordinate system [7], tissue segmentation

[8], extraction of cerebral hemispheres, gray/white matter

interface reconstruction [9] and segmentation of sulcal re-

gions by a watershed-growing procedure [10, 11]. Then,

sulcal segments can be represented as an attribute graph,

where vertices contain the features of a sulcal segment and

edges correspond to the neighborhood relations between the

sulcal segments. We can identify brain sulci by matching a

subject graph to a template graph representation that was

constructed from a brain cortex segmentation labeled by an

expert. Due to the high variability of the neocortical sur-

face, we use multiple templates. So, we have to cope with

a multi-model inexact graph matching problem. To solve

our identification problem, we designed two optimization

strategies and compare them in this paper.

Next, we introduce the problem of identifying brain

sulci. Section 3 focuses on the neighborhood-constraint-

search method; Section 4 is devoted to the genetic-

algorithm-based optimization method. Experimental results

for both approaches are compared in section 5. A discussion

concludes the paper.

2. Human Sulcus Identification Problem

We now formally describe the formation of the graph

representation, the segment features, and the objective func-

tion used in the sulcal recognition problem. Due to the lim-

ited space, pre-processing steps (brain segmentation, sur-

face generation and surface parcellation into sulcal seg-

ments) are not discussed here but the subject of a separate

publication [11].

2.1. Graph Representation of Sulcal Segments

From pre-processing, we obtained sulcal segments on

the 3D surface mesh denoted by Q, where one or more seg-

ments correspond to a sulcus. Each segment on Q corre-

sponds to a node V in the graph representationG. To define
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Figure 1. The ridge height between neighboring vertices of sulcal

segments S1 and S2 is defined as the geodesic depth measured

from the convex hull of the mesh.

neighborhood relationships, we dilate the segments on Q
until no gyral vertices are left. The weight w between two

nodes V1, V2 corresponding to two different sulcal segments

S1, S2 is defined as:

w(V1, V2) = exp(−(α1d+ α2h)) (1)

where d is the number of dilations required to remove all

gyral vertices between the neighboring segments V1, V2; h
is the average ridge height, which can be calculated by

h =
1

Np

Np∑

i

(ri12 + ri21)/2 (2)

where Np is the number of pairs of neighboring vertices

between the two sulcal segments; The definition of r12 and

r21 between a pair of neighboring vertices belonging to two

different sulcal segments is illustrated in Fig. 1.

Smaller values of h and d yield a larger weight

w(V1, V2), and increase the probability that segments V1, V2

are merged to form a sulcus.

2.2. Features

We use position, orientation and shape as features that

describe a sulcal segment, and compile them in a feature

vector ~f = (f1, f2, · · · , fl). As the brain volumes are

aligned with the stereotaxic coordinate system, orientation

and position information are reliable for each sulcus. Each

sulcus is found in a relatively constant region of the cortical

surface, so location is critical for the identification task. We

use the centroid cx, cy, cz of each sulcal segment or com-

bination of sulcal segments as location information. Po-

sitions are normalized by scaling the brain so that it fits

into a bounding box of extent 1 in each direction. We use

geometric moment invariants to describe the sulcus shape.

There are thirteen rotation-invariant moments derived from

the zero, second and third order moments. For detailed in-

formation, please refer to [12]. Sulcal orientation is an im-

portant feature for sulcus identification. We use the princi-

pal axes derived from the second order moments, denoted

by dx, dy, dz . A total of l = 19 features are used.

2.3. Objective Function

Let s1, s2, · · · , sn denote the n sulci we want to rec-

ognize; ψ1, ψ2, · · · , ψn are the n sets of sulcal segments

making up of candidates of sulci s1, s2, · · · , sn, respec-

tively. A segment node V can only belong to a single sul-

cus: ψi
⋂
ψj = φ, ∀ (i, j = 1, · · · , n; i 6= j). The graph

matching objective function can be defined as:

O(ψ1, ψ2, · · · , ψn) = OF (ψ1, ψ2, · · · , ψn)
+ ON (ψ1, ψ2, · · · , ψn) (3)

where OF (ψ1, ψ2, · · · , ψn) and ON (ψ1, ψ2, · · · , ψn)
are unary feature-based and neighborhood-based sim-

ilarity values. The unary feature based similarity

OF (ψ1, ψ2, · · · , ψn) is defined by:

OF (ψ1, ψ2, · · · , ψn) =

n∑

i=1

S(~fψi
,mi), (4)

where ~fψi
is the feature vector ofψi;mi is the sulcal feature

model of sulcus si.
We assume each component of the feature vector ~f is

Gaussian distributed, so we can define the similarity func-

tion S(·) as follows:

S(~fψ,m) = Cψ
∏

i

1√
2πσi

exp
(fi − µi)2

2σ2

i

(5)

Where fi is the ith component of feature vector ~f ; µi, σi are

the mean value and standard deviation of feature component

fi for a specific sulcus, respectively; Cψ is a coefficient re-

lated to the weights wi between sulcal segments making up

of candidate ψ, which is defined as:

Cψ =
∏

V ∈ψ

uV , (6)

where uV corresponds to the largest weight w that connects

node V with a neighbor one level closer to the center node

(See Fig. 2).

Larger values of S(~fψ,m) indicate that segment set ψ
is a better candidate for sulcus s characterized by model

features m.

For the neighborhood-based similarity, we compare

the neighborhood relationship among sulcal candidates

ψ1, ψ2, · · · , ψn with that of the manually segmented

sulci. The neighborhood relationships of the candidates

ψ1, ψ2, · · · , ψn and the manually segmented sulci in the

model represented by graph Gc and Gm, respectively, can
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Figure 2. An illustration of the computation of the coefficient

Cψ. For the first order neighbor V1 of the central node Vc,

uV1
= w(V1, Vc), because there are only one link between V1

and the center node Vc; For the second order node V3, there are

two links connecting it to the first order neighbors V1 and V2, then

we select the larger one of weights w(V3, V1) and w(V3, V2) as

uV3
.

be obtained from the graph representation G of the sulcal

segments. There are three cases for the neighbors of a pair

of matched nodes ψ and S from Gc and Gm (see Fig. 3).

Sulcal candidates ψ, ψ1, ψ2 and ψ3 are matched to s, s1, s2
and s3, respectively. The first case is illustrated by ψ1 and

s1, which are neighbors of the matched pair ψ and s. The

second situation is demonstrated by ψ2 and s2, where ψ2 is

not a neighbor of ψ but s2 is a neighbor of s. The third sit-

uation is illustrated by ψ3 and s3, where ψ3 is a neighbor of

ψ, while s3 is not a neighbor of s. For each pair of matched

nodes ψ and s fromGc andGm, we compute the frequency

of case one, case two and case three denoted by κ, η and γ,

respectively. Then the neighborhood-based similarity can

be defined as follows:

ON (ψ1, ψ2, · · · , ψn) = β
n∑

i=1

(κi − ηi − γi) (7)

where β is a weight for the neighborhood similarity. A

higher similarity of the neighborhood in the model and tem-

plate graph results in a higher similarity value ON .

3. Neighborhood Constraint Search Method

In the first approach, we identify sulci sequentially and

explicitly use the neighborhood information. Sulcal candi-

dates for the pre- or postcentral sulcus are preselected as

neighbors of the central sulcus. Thus, we only optimize Eq.

4, which does not include the neighborhood part.

Two steps are taken to solve the graph matching opti-

mization problem here. First, we search a sulcal segment

set candidate ψ∗

j for sulcus sj that maximizes S(~fψj
,mj),

j = 1, · · · , n. Then, if more than one sulcal set candidate

ψ∗ shares a specific segment, we assign it to a sulcus s that

maximizes the objective function (Eq. 4).

We search the best sulcal segment set candidate ψ∗

j for

sulcus sj by examining 1 to Ns connected sulcal segments

s

ψ1 s1

s3

s2

ψ

ψ3

ψ2

Figure 3. The three neighbor cases of a pair of matched nodes.

and recording the set ψ∗ with a maximal similarity value.

Ns cannot be too large because computation costs increase

quickly; we use Ns = 5. To increase the chance that we

found the best ψ∗ in spite of a small Ns, we add a local

search step: if including the neighbor node VN of segment

node V ∈ ψ∗ increases the similarity, then we add node VN
to ψ∗. Note this process continues until no new segment

node is added to ψ∗. The algorithm is detailed below:

ns ← 1
ψ∗ ← φ
S(ψ∗,m)← −∞
while ns is less than Ns do

for all node V in sulcal segment graph G do

for all ns neighboring-connected-segment set ψ
with V as the center do

Compute the similarity value S(ψ,m) using for-

mula (5)

if S(ψ,m) is greater than S(ψ∗,m) then

S(ψ∗,m)← S(ψ,m)
ψ∗ ← ψ

end if

end for

end for

ns ← ns + 1
end while

for all sulcal segment node V in ψ∗ do

if add a neighbor VN of V to ψ∗ increase S(ψ∗,m)
then

add VN to ψ∗

end if

end for

After the first step, we obtained segment candidates

ψ∗

1
, ψ∗

2
, · · · , ψ∗

n for sulci s1, s2, · · · , sn, respectively. How-

ever, some of the sulcus candidates may share common seg-

ments, that is, not all ψ∗

i

⋂
ψ∗

j = φ, i 6= j. We use the

following method to solve this problem:

Find shared sulcal segment nodes V and identify their

segment candidates ψ∗. Form a set ϑ of these segment
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candidates and store the sets in a list L.

while end of list L has not been reached do

Select the current shared sulcal segment node V and

its corresponding ϑ as the next items in list L.

for all ψ∗ ∈ ϑ do

assign V into ψ∗.

exclude V from all other elements of ϑ.

compute the objective function O(ϑ) using formula

(4).

end for

assign sulcal segment V into a sulcal segment candi-

date with maximized O(ϑ).
end while

Now, all nodes V representing sulcal segments are

uniquely addressed to segment candidates ψ∗, and are rec-

ognized as a specific sulcus.

4. Genetic Algorithm Based Optimization

Method

In the second strategy, we try to recognize all sulci simul-

taneously. We make use of the neighborhood information

implicitly by maximizing Eq. 3, and optimize the objective

function by a genetic algorithm.

4.1. Overview of Genetic Algorithms

Genetic algorithms [13] are effective to find the global

optimum by introducing heuristic techniques for combina-

torial problems [14]. They try to mimic the evolution pro-

cess in the biological field. A solution that fits the objective

function better has a higher chance to survive and produce

offsprings. It is necessary to define the following to solve

an optimization problem using genetic algorithms.

Representation: A representation in genetic algorithms is

a form of expression of the solution of the optimiza-

tion problem. We should be able to represent any so-

lution to our problem and if possible, do not represent

any infeasible solution. If infeasible solutions are pos-

sible, then the objective function must be designed to

penalize them. An optimization parameter of a specific

problem is represented as a gene, the set of all param-

eters - a solution - is called chromosome, a group of

chromosomes forms a population.

Genetic operators: The basic genetic operators include ini-

tialization, mutation, and crossover. The initialization

operator defines how to create initial solutions of a spe-

cific problem. The crossover operator uses two or one

existing solutions to produce two or one new solutions.

The mutation operator tells how to vary some parts of

a solution to generate a new solution.

Fitness function: A fitness function is used to calculate the

quality of a solution. The fitness function is related to
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Figure 4. In the second optimization approach, each sulcus is rep-

resented by a gene and corresponds to a set of candidate segments.

the objective function or can be the objective function

itself.

With the above concepts and notations, the basic steps of

the Genetic Algorithm are as follows:

Step 1: Use an initialization operator to initialize the pop-

ulation.

Step 2: Select some chromosomes according to a

crossover probability to produce a group of new chro-

mosomes.

Step 3: Mutate the offsprings produced by the crossover

operator based on a mutation probability.

Step 4: Insert the newly generated chromosomes into the

population. Delete some chromosomes with a low fit-

ness to keep the population at a constant number of

chromosomes.

step 5: If stop criteria are not yet satisfied, go to step 2,

else stop.

4.2. A Genetic Algorithm for Sulcus Recognition

Remember that a sulcus in our recognition problem con-

sists of one or more connected segments. We try to label

n sulci by finding n best matching sets of connected seg-

ments. Each set is represented by a gene. Because gene gi
in a chromosome corresponds to a candidate ψi for sulcus

si, genes must accomodate different numbers of segment

nodes, which is guaranteed by a specific design of the ini-

tialization, crossover and mutation operators. A chromo-

some is illustrated in Fig. 4.

The representation affects the dimensionality of the

search space and, thus, the convergence speed of the algo-

rithm. A straightforward alternative representation of our

problem is a bit string. If we try to recognize 7 sulci, we

can use 3 bits to represent the label of each sulcal segment.

The label “0” denotes segments not addressed to any of

the 7 sulci. Suppose there are NG segment nodes in the

graph, so the total string length will be 3NG. Therefore
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Table 1. Sulcus correct recognition rate in 100 test subjects for

the genetic algorithm (GA), and neighborhood search (NS). CS:

Central sulcus; STS: Superior temporal sulcus; INS: Insula; PCS:

Precentral sulcus; PTS: Postcentral sulcus; CIS: Cingulate sulcus;

CLS: Callosal sulcus.
CS STS INS PCS PTS CIS CLS

GA 87% 86% 96% 83% 78% 91% 95%

NS 92% 82% 87% 82% 88% 83% 86%

the search space has 23NG solutions. For the first method,

we have a much smaller upper limit of C7

NG
CNmax

NG
Nmax

where Nmax is the maximum number of segment nodes

each gene can have.

The initialization operator is utilized to generate Nc
chromosomes to form the initial population. For each gene

g in a chromosome, we randomly select a center node Vc
and put it into g. Then we randomly select a neighbor node

of those nodes in g, which is not already included in the

chromosome, and add it to g until we have Ns segment

nodes in g. Ns is a randomly selected number between

1, · · · , Nmax. This initialization method ensures that dif-

ferent genes in a chromosome have different segment nodes

and the segment nodes in each gene are connected.

The crossover operator defines how to generate new so-

lutions from existing solutions. We randomly select a num-

ber k from 1, · · · , n, then we exchange the two genes gk
from the two existing chromosomes Pa1 and Pa2. If the

offsprings violate the rule that different genes in a chromo-

some cannot have same segment nodes, we randomly select

and exchange another pair of genes until we obtain two cor-

rect offsprings. In the case that we tried all n genes, and still

cannot obtain two correct offsprings, we view one or two of

the existing parent chromosomes as the offsprings.

The mutation operator modifies newly generated chro-

mosomes with a specific mutation probability. This oper-

ator randomly selects a number k from 1, · · · , n, and gen-

erates a new gene using the gene-generation method in the

initialization operator to replace gene gk. When creating

the new gene gk, we should not use those segment nodes

already included in gi, (i = 1, · · · , k − 1, k + 1, · · · , n) of

the same chromosomes.

We terminate the genetic algorithm if the fitness values

of the best chromosome and the worst chromosome of the

current generation are equal or there are over Np genera-

tions (Np = 50 here).

To speed up convergence, we introduce a local search

step near the segment nodes of the best chromosome of each

generation, which will be described in the next sub-section.

The second approach can be described as follows:

Step 1: Use the initialization operator to produceNc chro-

mosomes to form the population.

Step 2: ChooseNcRp chromosomes from the current pop-

(
a
)
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b
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Figure 5. In this case, NS correctly identified the CS (see (b)),

while GA failed (see (a))

.

ulation to form a temporary population, where Rp is

the chromosome replacement ratio. The selector picks

a chromosome based on its fitness score relative to

the rest of the population. Any chromosome can be

chosen by the probability equal to the fitness of the

chromosome divided by the sum of the fitness of the

chromosomes in the population. Then randomly se-

lect NcRpPc/2 pairs of chromosomes from the tem-

porary population, where Pc is the crossover probabil-

ity. Finally, the crossover operator generates NcRcPc
offsprings and replaces their parents in the temporary

population.

Step 3: Randomly select NcRpPm chromosomes from the

temporary population and use the mutation operator to

modify them.

Step 4: Add NcRp chromosomes from the temporary

population to the current population, then remove the

NcRp worst chromosomes to form the next population.

Step 5: Search near the best chromosome of the population

using the method described in next subsection. If the

newly searched chromosome has a higher fitness than

the current best chromosome, replace it.

Step 6: If the termination condition is satisfied, stop; Or

go to the step 2.

4.3. Local Search

Performing a local search around the current best solu-

tion can speed up the optimization process. The local search

employs a two-step strategy. First, we search a sulcal seg-

ment set candidate ψ∗

j (gene g∗j ) for sulcus sj that maxi-

mizes S(~fψj
,mj), j = 1, · · · , n, in the neighborhood of
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the segment nodes of gene gj of the best chromosome in

each generation. Second, if more than one sulcal set candi-

date ψ∗ shares a specific segment, we assign it to a sulcus

s that maximizes the objective function (Eq. 4). The local

search method here is similar to the search method in sec-

tion 3. Here, we just search around the single best solution

of each generation while in the first method, all segment

nodes in the subject graph were considered.

5. Experimental Results

We used 120 MR T1-weighted image datasets of healthy

subjects [7] to evaluate our method. Surfaces representing

the GM/WM interface were computed and segmented into

sulcal substructures. In a training set of 20 cases, a neuro-

anatomist manually labeled the central sulcus (CS), precen-

tral sulcus (PCS), postcentral sulcus (PTS), insula (INS),

superior temporal sulcus (STS), cingulate sulcus (CIS), and

callosal sulcus (CLS).

Feature vectors were computed for all sulci of all training

cases, and the mean and standard deviation of each feature

component were used for recognizing sulci of new cases.

The remaining 100 MRI brain datasets were processed by

both methods using the parameter settings from the training

set. The neuro-anatomist rated the automatic identification:

a result is considered as correct if all but only those seg-

ments are correctly labeled that make up a specific sulcus,

even if it is interrupted.

We chose α1 = 2, α2 = 10.5 in Eq. 1 for both optimiza-

tion methods. The parameters in the genetic algorithm pro-

ducing the best average recognition rate were: Nc = 2000,

Rp = 0.4, Pc = 0.9, Pm = 0.2, Nmax = 10. The iden-

tification rates are displayed in Tab. 1. The average iden-

tification rates are 88% for the genetic algorithm (GA) and

85.7% for the neighborhood search (NS). There is a general

and consistent advantage of GA over NS. The slight advan-

tage of NS for CS and PTS is explained by the heuristic im-

plementation of the search strategy: first, identify CS, then

PCS, then PTS in the neighborhood. GA tries to recognize

all sulci simultaneously, with a certain chance of mixing

them up (see Fig. 5). The neighborhood search method cor-

rectly recognized the central sulcus (see Fig. 5(b)), while

the GA optimization method wrongly identified the central

sulcus as the post-central sulcus (see Fig. 5(a)).

To provide a visual impression of the identification re-

sults, we show results of the genetic-algorithm-based opti-

mization method for three cases in Fig. 6. All 7 primary

sulci (CS, PCS, PTS, STS, CIS, CLS, INS) are correctly

identified, though there is a considerable variability of the

corresponding sulci.

The algorithms were implemented in the C++ language.

The computation time is 60 min for GA and 10 min for

NS, on a Linux server with a 2.21 GHz AMD Athlon 64 bit

processor and 4 GB memory.

6. Discussion

We introduced two graph matching strategies for an au-

tomatical labeling of brain sulci. Both achieve satisfactory

identification rates. The NS method features a lower com-

putational demand and high identification rates for CS and

PTS. In contrast, GA naturally takes neighborhood infor-

mation into account. It is easier to generalize for identify-

ing additional sulci and has a better overall recognition rate.

Probability relaxation [4] can be considered as another op-

timization method and will be investigated in the future.
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Figure 6. Identification results for three subjects.
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