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ABSTRACT For computing a SHT, a parameterization of the surface

. must be introduced which corresponds to mapping it onto a
Complex shapes - such as the surface of the human brain, - " : .
. (unit) sphere. Such a mapping can be either anglearea-
may be represented and analyzed in frequency space bya . : . L .
. . . preserving but natsometric (both) - which is most desirable
spherical harmonics transformation. A key step of the proy

. S . . L because all properties of the surface are represented in the
cessing chain is introducing a suitable parametrizatiainef arameter domain. Finding an anale-breserving maopoin
triangular mesh representing the brain surface. This probl P ) 9 ge-p g PPPINg

corresponds to mapping the surface on a unit sphere. An cfl:gz ?Anbaéﬁst ;ng:qu?(s]so'lét'?ﬂ;r:gl anzpplir;gssfgrr?sibssot:an-
gorithm is described that produces an optimal combinatfon o . group {o]. =4 : pping .
tially different because from the point of view of uniqueses

an area- and angle-preserving mapping. A multi-resolution, .o o many more of them. In order to find a well-behaved

scheme provides the robustness required to map the h|ghﬁ ; ) . : .
: . apping we need to aim for area-preservation with some min-
detailed and convoluted brain surface. LT . .
imization of angular distortion.

Index Terms— magnetic resonance imaging, brain sur-  Current mapping approaches [1, 2, 6] that we tested fail

face, morphometry, shape analysis for various reasons when applied to brain surface meshes of
100.000 triangles or more. This finding triggered the devel-
1. INTRODUCTION opment of a mapping algorithm that is robust enough to han-

dle large, convoluted brain surface meshes consisting td up

It is a well-known fact in neuroanatomy that structural vari 500.000 triangles.

ants of the brain exist, some of which have to be considered

as pathologic (e.g., macrogyria or microgyria) or abnormal 2. ALGORITHMS

(e.g., callosal agenesis) - but even normal brains exhduzba

siderable variability. Brain shapes do not necessarilynfar  Three steps are required to achieve a shape description by

continuum in some descriptor space, but may cluster due t8HT: (1) extraction of the surface from imaging data as a tri-

pre-determined genetical factors or acquired diseases. angle mesh, (2) parametrization of the mesh by mapping it
An interesting approach for describing shapes is providednto a sphere, (3) computation of the SHT. We focus on the

via a spherical harmonics transformation (SHT) that may belescription of an algorithm to perform step (2), but outline

understood as a "Fourier transform on a sphere”. Any surfacsteps (1) and (3) for completeness.

of genus zero can be transformed into frequency space using a

linear combination of basic shapes, and the resu_lting PEIAM, 1 g\ face Generation

ters of the shape spectrum can be used as a parsimonous shape

description. The shape space spanned by spherical haramoAiny method may be used to obtain a triangulated mesh repre-

basis functions is orthogonal, and readily offers a metic f senting the grey/white matter (GM/WM) interface. We briefly

comparing and classifying shapes [2]. outline our procedure below and refer to [8] for a detailed de
Implementing this apparantly attractive approach posescription. T;-weighted volumetric MR images were aligned

difficult problems when highly convoluted objects with de- with the stereotactical coordinate system and interpdlaie

tailed structures are under study, such as the surface of tlaa isotropical voxel size of 1mm using a fourth-order b+spli

human brain. First, the brain’s surface must be extractethethod. Data were corrected for intensity inhomogeneities

from from magnetic resonance (MR) imaging data of the huby a fuzzy segmentation approach using 3 classes. A mask

man head, usually as a triangular mesh. This is considerddr the brain’s WM was extracted from intensity class 2 by

a complex, but well developed methodology in medical im-removing the outer hulls of the brain and cutting the brain-

age processing [8]. The "tricky” part is to ensure that thestem at a level 15 mm below the posterior commissure. The

surface has a topological genus of zero [10] and is free afesulting raw WM segmentation was edited to have a topolog-

self-intersections [7]. ical genus of zero (i.e., no holes or handles) [10]. A triangu



lated surface was generated from the binary white matter seg@.4. Optimization

mentation using a variant of the "Marching Cubes” algorithm _ )

that preserves the original topology [3]. An improved rep-1he coordinatesui,vi) of vertexi affect only those k for
resentation of the GM/WM interface was obtained by treatWhich i is incident withA. Thus, only the partial sum;E-
ing the initial mesh as a deformable model [8] avoiding self-2ac1-ring(i) Ea IS influenced by(ui, vi). .
intersections [7]. Finally, we reduced the number of trigsg ~ Given an initial configuratior{u;, vi)i=1..n, first all ver-
to 100.000 by edge contraction [5] and split the surface mesHices are ordered by their error.EThen, each vertexis op-

at the mid-sagittal plane to yield separate meshes repiegen timized in (ui,vi). The Simplex algorithm is used to solve
the GM/WM interface of each hemisphere. this 2-parameter nonlinear optimization problem. The solu

tion must be checked théti,v;) lies within the kernel of its
1-ring, so that triangles do not fold over. Minimizing &e-

2.2. General notation creases kin each step, so the algorithm is guaranteed to con-

A parametric surface is defined by an one-to-one mapping V€rge.

Q+— R3, with Q c R? the parameter domain, and we denpte An initial configuration can be obtained by projecting ver-
a parameterization of the surface. In our case, this pamrmettiCess to a positions on the unit sphere, and by minimizing
domain are the longitude and latitule v) of the unit sphere. the distance o to all its adjacent vertices in the 1-ring:
More specifically, a parameterization of a surf&tbat has a

triangulation is sought: s=s+1 > [s—¢ | with t1€[0.10,0.16]

jel—ring(i)
M={[1...n,7,(S)i=1..n}

This process is iterated until all overfolded configurasiane
wherel[1...n] denotes vertices at positiogsand7 their set  resolved.
of corresponding triangles,,,. We require that the parame-
terization is piecewise linear so thaimaps vertices and tri-
angles ofM onto vertices and triangles of the spherical trian-
gulationM/. The parameterization is found by m|n|m|Z|ng a For Simp|e surfaces (i_e, a Cube) and Gore 0’ the a|gorithm
suitable error metric for the mapping over the parameter doghove converges for surfaces of up to 50k triangles. For com-

2.5. Introducing robustness

main. plex surfaces (i.e., a brain) and other setting®,08 multi-
resolution scheme is employed. For surfaces with a small
2.3. Error metric number of triangles, finding a solution (close) to the optima

) _ ) one is more likely. The solution is propagated to the nextmor
The angle and area distortion error of a m@ja,, are given  complex level, optimized again until a solution at the aragi
by: resolution level is found.

cota | a|? +cotB | b |> +-coty | c|? The triangulated surface is subsampled by edge contrac-

Eangle = , tion. Each contraction step removes one vertex, two tresgl
2aredly) at least three edges. A quadric error metric [5] guides the se
guence of contraction steps with an additional constraiat t
_aredfyp) | aredly) : | i )
area = 2. avoids contractions leading to a topology change. Subsam
aredlq)  aredly) pling an orientable 2-manifold closed surface of genus zero
Finally, the total distortion error of the map is: ultimatively leads to a tetrahedron.
The sequence of changes (vertex/edge/triangle removal)
Eo= > Ba= ) Eangle(Earea)®ared ), is recorded and "played back” for propagating a solutiomont
AT AT the next resolution level. Typically, a factbe=[1.2...2.0] of

faces are removed between levels. For our problem, stating

wheref varies between 0 and and controls the relative im- . . . o
a lowest resolution level of 10605000 triangles is sufficient.

portance of angle and area preservation [4].

2.6. Computation of the SHT coefficients

b a A SHT of degredmax hasp = (Imax + 1)? functions. Given
(s,u;,Vi)i=1..n points on the surface and their parameteriza-
tion, we can assemblerax p matrix B of complex-valued

@ g spherical harmonids ; = Y™(ui,vi), wherej(I,m) =12 +1+

. T . .

Ap(T) m, gnd anx 3 matrixX = (S),_1 o_f t_he spatla_\l coo_rdmates.

M Typically, p < n, so thep x 3 coefficient matrixC with row




entries(c")*, (¢")Y, (¢")? is determined by least squares esti-
mation: . .
C=(BB)1B X

To solve this large equation system on standard BCBand

B'X are computed "on the fly”. The surface approximation .
can be computed from these coefficients by the inverse trans-
formation:

Pum=3 T  POP@Y =y

I=0m=—I

The distance § — 5 | is a measure for the goodness-of-fit or
reconstruction error.

3. EXPERIMENTS

We used a database of 513 MRI brain datasets of healthy
volunteers. For demographic and acquisition details refer
[9]. Surfaces representing the GM/WM interface were com-
puted from all datasets, yielding 1026 hemispheric sugace
All surfaces were successfully processed by the algoritesm d
scribed above with settingg= 2, f = 1.3. The processing
time, including the SHT, was about 30 min on a standard
workstation (AMD64, 2.4 GHz processor, Linux 2.6.15 op- R e
erating system, 2 GB RAM). Neurobiological results will be T e T U

reported in a separate publication, we merely focus on eval-

uating technical aspects of the algorithm here. By varying

Fig. 2. Difference (as/map/Vrue — 1) for angles ¢, B,y, top),
edge lengthsg b, ¢, middle), and area& (below). Columns
correspond to different settings @f 0.0 (left), 2.0 (right).

In the next experiment, we studied the distribution of dif-
ferences in angles, edge lengths and triangle areas inthyced
the mapping in dependence@fDue to limited space, results
only for 8 = {0.0,2.0} are shown in Fig. 2. The effect of
area preservation fd@¥ = 2 is readily apparant in the bottom
figures. Fo® > 1.0, all distributions are sharply peaked, cor-
responding to a good preservation of angled areas. Next,
we were interested in the average reconstruction erroreof th
GM/WM interface as a function of the maximum SHT de-
greelmax and varying settings df (circles:0 = 0.0, triangles:
Fig. 1. Top left: View from left onto a white matter surface 6 = 1.0, crossesf = 2.0) (Fig. 3). To achieve a surface er-
of a left brain hemisphere (50k triangles), where sulcal subror that is in the order of the image resolutidpax > 30 is
structures are color-coded. Subsequentimages show the cogquired. Note that using an area-preserving mapglwgys
responding mapping of this surface onto a sphere, for diffedeads to a better reconstruction resp. to a lolugx. For
ent settings 06: 0.0, 0.5, 1.0, 1.5, and 2.0. our problem, choosing an area-preserving mapping requires

35% less coefficients to achieve the same reconstruction er-
0, the mapping shifts from angle to area-preservation. Thisor. Finally, we show the reconstruction error (Fig. 4) celo
is shown in Fig. 1: Sulci in an example hemisphere wereoded on the GM/WM surface dependinglgg for 6 = 1.0,
color-coded and mapped onto a unit sphere with settin@s of andlux=5 (top left), 15 (top right), 25 (bottom left), 35 (bot-
between 0 and 2. The relative change in shape and size of tham right). The color scale runs from blue (0 mm) to red (
mapped sulci is impressive. 4 mm).




8 comes close to isometry. (c) Compared with an angle-preserv

ing mapping, substantially less coefficients are requiced t

represent the brain surface with same reconstruction.error
SHT coefficients are suitable for statistical analysishsuc

N as a classification of brain shapes. The area-preserving map

ping allows quantitative comparisons between brain region

across subjects. Shape models may be reconstructed to rep-

& resent an average shape from a set. The sparse set of coef-

ficients, and the coarse-to-fine representation are irtbeges

5 options for building shape databases and the design of effi-

cient similarity metrics and search strategies.
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