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ABSTRACT

Complex shapes - such as the surface of the human brain -
may be represented and analyzed in frequency space by a
spherical harmonics transformation. A key step of the pro-
cessing chain is introducing a suitable parametrization ofthe
triangular mesh representing the brain surface. This problem
corresponds to mapping the surface on a unit sphere. An al-
gorithm is described that produces an optimal combination of
an area- and angle-preserving mapping. A multi-resolution
scheme provides the robustness required to map the highly
detailed and convoluted brain surface.

Index Terms— magnetic resonance imaging, brain sur-
face, morphometry, shape analysis

1. INTRODUCTION

It is a well-known fact in neuroanatomy that structural vari-
ants of the brain exist, some of which have to be considered
as pathologic (e.g., macrogyria or microgyria) or abnormal
(e.g., callosal agenesis) - but even normal brains exhibit acon-
siderable variability. Brain shapes do not necessarily form a
continuum in some descriptor space, but may cluster due to
pre-determined genetical factors or acquired diseases.

An interesting approach for describing shapes is provided
via a spherical harmonics transformation (SHT) that may be
understood as a ”Fourier transform on a sphere”. Any surface
of genus zero can be transformed into frequency space using a
linear combination of basic shapes, and the resulting parame-
ters of the shape spectrum can be used as a parsimonous shape
description. The shape space spanned by spherical haramonic
basis functions is orthogonal, and readily offers a metric for
comparing and classifying shapes [2].

Implementing this apparantly attractive approach poses
difficult problems when highly convoluted objects with de-
tailed structures are under study, such as the surface of the
human brain. First, the brain’s surface must be extracted
from from magnetic resonance (MR) imaging data of the hu-
man head, usually as a triangular mesh. This is considered
a complex, but well developed methodology in medical im-
age processing [8]. The ”tricky” part is to ensure that the
surface has a topological genus of zero [10] and is free of
self-intersections [7].

For computing a SHT, a parameterization of the surface
must be introduced which corresponds to mapping it onto a
(unit) sphere. Such a mapping can be either angle-or area-
preserving but notisometric (both) - which is most desirable
because all properties of the surface are represented in the
parameter domain. Finding an angle-preserving mappping
yields analmost unique solution: all mappings form a so-
called Möbius group [6]. Equiareal mappings are substan-
tially different because from the point of view of uniqueness
there are many more of them. In order to find a well-behaved
mapping we need to aim for area-preservation with some min-
imization of angular distortion.

Current mapping approaches [1, 2, 6] that we tested fail
for various reasons when applied to brain surface meshes of
100.000 triangles or more. This finding triggered the devel-
opment of a mapping algorithm that is robust enough to han-
dle large, convoluted brain surface meshes consisting of upto
500.000 triangles.

2. ALGORITHMS

Three steps are required to achieve a shape description by
SHT: (1) extraction of the surface from imaging data as a tri-
angle mesh, (2) parametrization of the mesh by mapping it
onto a sphere, (3) computation of the SHT. We focus on the
description of an algorithm to perform step (2), but outline
steps (1) and (3) for completeness.

2.1. Surface Generation

Any method may be used to obtain a triangulated mesh repre-
senting the grey/white matter (GM/WM) interface. We briefly
outline our procedure below and refer to [8] for a detailed de-
scription. T1-weighted volumetric MR images were aligned
with the stereotactical coordinate system and interpolated to
an isotropical voxel size of 1mm using a fourth-order b-spline
method. Data were corrected for intensity inhomogeneities
by a fuzzy segmentation approach using 3 classes. A mask
for the brain’s WM was extracted from intensity class 2 by
removing the outer hulls of the brain and cutting the brain-
stem at a level 15 mm below the posterior commissure. The
resulting raw WM segmentation was edited to have a topolog-
ical genus of zero (i.e., no holes or handles) [10]. A triangu-



lated surface was generated from the binary white matter seg-
mentation using a variant of the ”Marching Cubes” algorithm
that preserves the original topology [3]. An improved rep-
resentation of the GM/WM interface was obtained by treat-
ing the initial mesh as a deformable model [8] avoiding self-
intersections [7]. Finally, we reduced the number of triangles
to 100.000 by edge contraction [5] and split the surface mesh
at the mid-sagittal plane to yield separate meshes representing
the GM/WM interface of each hemisphere.

2.2. General notation

A parametric surface is defined by an one-to-one mappingφ :
Ω 7→R3, with Ω⊂R2 the parameter domain, and we denoteφ
a parameterization of the surface. In our case, this parameter
domain are the longitude and latitude(u,v) of the unit sphere.
More specifically, a parameterization of a surfaceS that has a
triangulation is sought:

M = {[1. . .n],T ,(si)i=1...n}

where[1. . .n] denotes vertices at positionssi andT their set
of corresponding triangles∆M . We require that the parame-
terization is piecewise linear so thatφ maps vertices and tri-
angles ofM onto vertices and triangles of the spherical trian-
gulationM ′. The parameterization is found by minimizing a
suitable error metric for the mapping over the parameter do-
main.

2.3. Error metric

The angle and area distortion error of a mapφ |∆M
are given

by:

Eangle =
cotα | a |2 +cotβ | b |2 +cotγ | c |2

2area(∆M )
,

Earea =
area(∆M ′)

area(∆M )
+

area(∆M )

area(∆M ′)
−2.

Finally, the total distortion error of the map is:

Eφ = ∑
∆∈T

E∆ = ∑
∆∈T

Eangle(Earea)
θarea(∆M ′),

whereθ varies between 0 and∞ and controls the relative im-
portance of angle and area preservation [4].
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2.4. Optimization

The coordinates(ui,vi) of vertex i affect only those E∆ for
which i is incident with∆. Thus, only the partial sum Ei =

∑∆∈1−ring(i) E∆ is influenced by(ui,vi).
Given an initial configuration(ui,vi)i=1...n, first all ver-

tices are ordered by their error Ei. Then, each vertexi is op-
timized in (ui,vi). The Simplex algorithm is used to solve
this 2-parameter nonlinear optimization problem. The solu-
tion must be checked that(ui,vi) lies within the kernel of its
1-ring, so that triangles do not fold over. Minimizing Ei de-
creases Eφ in each step, so the algorithm is guaranteed to con-
verge.

An initial configuration can be obtained by projecting ver-
ticessi to a positions′i on the unit sphere, and by minimizing
the distance ofs′i to all its adjacent verticess′j in the 1-ring:

s′i = s′i + τ ∑
j∈1−ring(i)

| s′j − s′i |
2 with τ ∈ [0.10,0.16]

This process is iterated until all overfolded configurations are
resolved.

2.5. Introducing robustness

For simple surfaces (i.e, a cube) and forθ = 0, the algorithm
above converges for surfaces of up to 50k triangles. For com-
plex surfaces (i.e., a brain) and other settings ofθ, a multi-
resolution scheme is employed. For surfaces with a small
number of triangles, finding a solution (close) to the optimal
one is more likely. The solution is propagated to the next more
complex level, optimized again until a solution at the original
resolution level is found.

The triangulated surface is subsampled by edge contrac-
tion. Each contraction step removes one vertex, two triangles
at least three edges. A quadric error metric [5] guides the se-
quence of contraction steps with an additional constraint that
avoids contractions leading to a topology change. Subsam-
pling an orientable 2-manifold closed surface of genus zero
ultimatively leads to a tetrahedron.

The sequence of changes (vertex/edge/triangle removal)
is recorded and ”played back” for propagating a solution onto
the next resolution level. Typically, a factorf = [1.2. . .2.0] of
faces are removed between levels. For our problem, startingat
a lowest resolution level of 1000−5000 triangles is sufficient.

2.6. Computation of the SHT coefficients

A SHT of degreelmax hasp = (lmax + 1)2 functions. Given
(si,ui,vi)i=1...n points on the surface and their parameteriza-
tion, we can assemble an× p matrix B of complex-valued
spherical harmonicsbi, j = Y m

l (ui,vi), wherej(l,m) = l2+ l +

m, and an×3 matrixX = (si)
T

i=1...n of the spatial coordinates.
Typically, p ≪ n, so thep×3 coefficient matrixC with row



entries(cm
l )x,(cm

l )y,(cm
l )z is determined by least squares esti-

mation:
C = (B

T

B)−1 B
T

X

To solve this large equation system on standard PCs,B
T

B and
B

T

X are computed ”on the fly”. The surface approximation
can be computed from these coefficients by the inverse trans-
formation:

ŝ(t)
i (ui,vi) =

lmax

∑
l=0

l

∑
m=−l

(cm
l )(t)Y m

l (u,v) t = {x,y,z},

The distance| ŝi − si | is a measure for the goodness-of-fit or
reconstruction error.

3. EXPERIMENTS

We used a database of 513 MRI brain datasets of healthy
volunteers. For demographic and acquisition details referto
[9]. Surfaces representing the GM/WM interface were com-
puted from all datasets, yielding 1026 hemispheric surfaces.
All surfaces were successfully processed by the algorithm de-
scribed above with settingsθ = 2, f = 1.3. The processing
time, including the SHT, was about 30 min on a standard
workstation (AMD64, 2.4 GHz processor, Linux 2.6.15 op-
erating system, 2 GB RAM). Neurobiological results will be
reported in a separate publication, we merely focus on eval-
uating technical aspects of the algorithm here. By varying

Fig. 1. Top left: View from left onto a white matter surface
of a left brain hemisphere (50k triangles), where sulcal sub-
structures are color-coded. Subsequent images show the cor-
responding mapping of this surface onto a sphere, for differ-
ent settings ofθ: 0.0, 0.5, 1.0, 1.5, and 2.0.

θ, the mapping shifts from angle to area-preservation. This
is shown in Fig. 1: Sulci in an example hemisphere were
color-coded and mapped onto a unit sphere with settings ofθ
between 0 and 2. The relative change in shape and size of the
mapped sulci is impressive.
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Fig. 2. Difference (asvmap/vtrue −1) for angles (α,β,γ, top),
edge lengths (a,b,c, middle), and areasA (below). Columns
correspond to different settings ofθ: 0.0 (left), 2.0 (right).

In the next experiment, we studied the distribution of dif-
ferences in angles, edge lengths and triangle areas inducedby
the mapping in dependence ofθ. Due to limited space, results
only for θ = {0.0,2.0} are shown in Fig. 2. The effect of
area preservation forθ = 2 is readily apparant in the bottom
figures. Forθ > 1.0, all distributions are sharply peaked, cor-
responding to a good preservation of anglesand areas. Next,
we were interested in the average reconstruction error of the
GM/WM interface as a function of the maximum SHT de-
greelmax and varying settings ofθ (circles:θ = 0.0, triangles:
θ = 1.0, crosses:θ = 2.0) (Fig. 3). To achieve a surface er-
ror that is in the order of the image resolution,lmax ≥ 30 is
required. Note that using an area-preserving mappingalways
leads to a better reconstruction resp. to a lowerlmax. For
our problem, choosing an area-preserving mapping requires
35% less coefficients to achieve the same reconstruction er-
ror. Finally, we show the reconstruction error (Fig. 4) color-
coded on the GM/WM surface depending onlmax for θ = 1.0,
andlmax=5 (top left), 15 (top right), 25 (bottom left), 35 (bot-
tom right). The color scale runs from blue (0 mm) to red (≥
4 mm).
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Fig. 3. Average reconstruction error of the GM/WM interface
as a function of the maximum SHT degreelmax and varying
settings ofθ (circles: θ = 0.0, triangles: θ = 1.0, crosses:
θ = 2.0).

Fig. 4. Reconstruction error color-coded on the GM/WM sur-
face depending onlmax.

4. DISCUSSION

The advantages of the proposed mapping algorithm are: (a)
It is robust enough to handle large, highly convoluted meshes
such as brain surfaces, with mesh sizes of up to 500.000 tri-
angles. (b) By introducing an error metric that includes terms
for area and angle-preservation, we achieve a mapping that

comes close to isometry. (c) Compared with an angle-preserv-
ing mapping, substantially less coefficients are required to
represent the brain surface with same reconstruction error.

SHT coefficients are suitable for statistical analysis, such
as a classification of brain shapes. The area-preserving map-
ping allows quantitative comparisons between brain regions
across subjects. Shape models may be reconstructed to rep-
resent an average shape from a set. The sparse set of coef-
ficients, and the coarse-to-fine representation are interesting
options for building shape databases and the design of effi-
cient similarity metrics and search strategies.
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