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Texture Anisotropy of the Brain’s White Matter as
Revealed by Anatomical MRI

Vassili Kovalev and Frithjof Kruggel*

Abstract—The purpose of this work was to study specific texture
properties of the brain’s white matter (WM) based on conventional
high-resolution T1-weighted magnetic resonance imaging (MRI)
datasets. Quantitative parameters anisotropy and laminarity were
derived from 3-D texture analysis. Differences in WM texture
associated with gender were evaluated on an age-matched sample
of 210 young healthy subjects (mean age 24.8, SD 3.97 years,
103 males and 107 females). Changes of WM texture with age
were studied using 112 MRI-T1 datasets of healthy subjects aged
16 to 70 years (57 males and 55 females). Both texture measures
indicated a “more regular” WM structure in females (p < 10

�6).
An age-related deterioration of WM structure manifests itself
as a remarkable decline of both parameters (p < 10

�6) that is
more prominent in females (p < 10

�6) than in males (p = 0:02).
Texture analysis of anatomical MRI-T1 brain datasets provides
quantitative information about macroscopic WM characteristics
and helps discriminating between normal and pathological aging.

Index Terms—Age, anisotropy, gender, magnetic resonance
imaging (MRI), texture, white matter (WM).

I. INTRODUCTION

MACROSCOPIC-ANATOMICAL descriptions of the
human brain are acquired by magnetic resonance

imaging (MRI) within minutes today. A computer-based
analysis of these imaging data leads to a quantitative charac-
terization of structures, tissues, and their changes with time.
The resulting extensive parameter sets are used in further
statistical studies, e.g., to classify brains, to draw conclusions
about structural differences in subject groups (i.e., by gender,
structural abnormalities), and to track individual changes with
time (aging, diseases of the central nervous system (CNS),
therapeutical interventions).

One of the crucial tasks here is to define what is considered
as “normal” or “pathological.” Compared with the still valid
gold standard—brain section—digital analysis methods offer
the advantage of studying large population groups at different
ages and in vivo. For successfully introducing computer vision
methods in a clinical setting, they have to demonstrate their ro-
bustness against varying scanner properties (i.e., changes in in-
tensity, contrast, and noise), and their ability to detect patholog-
ical changes at a well-documented sensitivity level.
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Texture features provide integral, quantitative information
about structural properties at a millimeter scale. We recently
demonstrated that the characterization of tissue properties by
3-D volumetric texture analysis [1], [2] is robust and is highly
sensitive for detecting image features that may be related to
degeneration or attributed as pathological signs. The purpose
of this work was to introduce texture anisotropy and lami-
narity as neurobiologically interesting parameters that describe
properties of the brain’s white matter (WM) as revealed by
high-resolution -weighted MRI. These image-based pa-
rameters may reflect WM tissue properties such as the local
coherence, direction and density of fiber bundles, their myelin-
isation status, the density and direction of vessels supplying
and draining the WM, and findings commonly associated with
aging (e.g., lacunes, enlarged periventricular spaces). We tested
for age-related changes and gender-related differences of these
WM texture measures in a reasonably large population sample.
Extreme cases in terms of the statistic may be considered as
pathological.

The concept of generalized co-occurrence matrices was
introduced in [3], and texture anisotropy measures in 3-D were
evaluated first in [4] and recast in a common framework in
[2]. As a neurobiological example application, we studied the
macrostructural asymmetry of the human brain in the same
sample [5].

It is important to note that despite an immediate termino-
logical association, our texture anisotropy, as measured here
on -weighted images, does not necessarily relate to the
anisotropy measures obtained from diffusion tensor imaging
[6]–[8].

II. MATERIALS AND METHODS

A. Subjects

This study relies on a database of subjects enrolled for
functional MRI experiment. Before admission, a brief his-
tory and physical examination is taken by a physician, and a
high-resolution -weighted MRI scan of the head is acquired.
Subjects are included in this database if they comply with
the informed consent for conducting general fMRI experi-
ments, pass the examination, and do not exhibit pathological or
abnormal features (such as ventricular enlargements, subarach-
noidal cysts) in their MRIs. The WM anisotropy differences
associated with gender were evaluated using a group GEN
consisting of 210 young healthy subjects [mean age 24.8,
standard deviation (SD) 3.97 years] including 103 males (mean
age 25.3 years, SD 3.94) and 107 females (mean age 24.3
years, SD 3.97) with insignificant age difference. Changes of
WM anisotropy with age were studied using a group AGE of
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112 healthy subjects from the same database (57 males and 55
females) aged 16 to 70 years. Subjects were selected to include
approximately three per year of age and balanced for gender.
Both GEN and AGE groups were selected prior to the analyses.

B. Image Data

MRI acquisition was performed on a Bruker 3T Medspec
100 system equipped with a bird cage quadrature coil using a

-weighted 3-D modified driven equilibrium Fourier transform
(MDEFT) protocol [9]: field-of-view (FOV) 240 240 192
mm, matrix 256 256, TR s, TE ms, 128
sagittal slices, voxel size 0.9 0.9 mm, 1.5-mm slice thickness,
scanning time 15 min. Acquired data were interpolated to an
isotropical voxel size of 1.0 mm and aligned with the stereo-
tactical coordinate system by applying a rigid transformation
using a fourth-order b-spline method for interpolation [10]
while removing the outer hulls of the brain [11]. Data were cor-
rected for intensity inhomogeneities by a fuzzy segmentation
approach using three classes [12], yielding an intensity-cor-
rected -weighted image, and a set of probability images.
Only voxels in Class 2 with were taken into account as
a mask of the WM compartment. Datasets were finally cropped
to a minimum box enclosing the brain of 160 200 160 mm
extent. Image analysis methods were implemented in the C
programming language for recent PC workstations. Statistical
analyses were performed using the STATISTICA 5.0 software
package.

C. Measuring Texture Anisotropy

Three-dimensional anisotropy histograms [1], [4] and gra-
dient angle co-occurrence matrices [2] were used to evaluate
the anisotropy properties of WM texture. Both techniques use
the orientation of MRI- intensity gradient vectors computed
over all WM voxels. Gradient vectors are calculated in a voxel
neighborhood and normalized to unit vectors so that only infor-
mation about the directionality (vector angles) is considered.

For the first technique, all possible 3-D directions are quanti-
fied to equal solid angle bins and vectors falling into each bin are
counted. Such anisotropy histograms can be visualized as 3-D
graphs, in which the radius in a specific direction is proportional
to the number of gradient vectors identified in this direction. If
image data were fully isotropic, all bins would be equally pop-
ulated and the graph would correspond to a sphere. Thus, the
anisotropy of WM texture can be measured as the amount of
deviation from this ideal histogram. The second approach con-
siders adjacent voxel pairs that are assessed for their relative
orientation. The measure corresponding to this local coherence
of gradient vectors is defined as laminarity and roughly under-
stood as the relative amount of WM tissue with a nearly parallel
grayscale pattern (see Fig. 1).

D. Anisotropy Measure

Three issues are considered when computing anisotropy: the
“binning” of the gradient orientation (tessellation of the unit
sphere), the selection of a suitable way for calculating gradient
vectors, and the definition of the anisotropy feature.

Fig. 1. Example of natural textures (upper row) and their anisotropy (middle
row) and laminarity (bottom row) properties. (a) Anisotropic, laminar texture
(A = 20:3; L = 0:460). (b) Isotropic, laminar texture (A = 1:92; L =
0:393). (c) Isotropic, nonlaminar texture (A = 1:13;L = 0:175).

Tessellation of the Unit Sphere: We quantize gradient direc-
tions in three dimensions into equal solid angles which cor-
responds to tessellating the sphere’s surface into equal-sized
patches. A point on the unit sphere is defined in terms of lon-
gitude measured along the equator and the elevation above
the equatorial plane. Patches are defined by dividing and in
equally sized intervals of equal area. Dividing
into equal intervals and in equal segments
results in spherical quadrangles and spher-
ical triangles (on poles), all sustaining the same solid angle of

. An arbitrary direction defined by vector be-
longs to the anisotropy histogram bin if the following
two conditions are met:

where

where

Here, and were found as a good compromise
between the resolution (sensitivity) of anisotropy histograms
and robustness of resulting features (see also [4]).

Calculating Gradient Vectors and Anisotropy Histograms:
We visit every WM voxel and compute components

, and of its gradient vector by
convolving the 3 3 3 image neighborhood with the orthog-
onal masks of a 3-D Zucker–Hummel filter [13]. Only voxels
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belonging to the WM class were included in the computation
of the gradients. The unit gradient vector with components

, and is obtained by dividing the components
, and by the intensity gradient magnitude

. This normalization particularly achieves the
insensitivity of unit vectors to the original intensity scale.

For calculating the anisotropy histogram
with the angle bins , we identify the bin using both con-
ditions given above. Thus, the anisotropy histogram counts only
the number of the unit vectors oriented in a given direction irre-
spective of the magnitude of intensity variation. Due to random
noise, gradient vectors with small magnitudes (e.g., 5% of the
maximum value) have poorly defined orientations. In our ex-
perience, leaving out results from these voxels (typically about
0.05%) increases the robustness of anisotropy measurements
[1]. Finally, the anisotropy histogram is normalized by the sum
of bins to avoid a dependence on the number of visited voxels.

Anisotropy Feature: In principle, the whole anisotropy his-
togram can be used to represent the texture anisotropy. Ideally,
one would prefer to use only a few parameters to represent this
feature. A rather global characteristic is the deviation of a partic-
ular histogram from the histogram of an ideally spherical distri-
bution that implies a totally isotropic volume. Thus, anisotropy
is defined here as [1]

where denotes the value of the anisotropy histogram
bin and is the mean histogram value. The anisotropy
feature expresses the degree of anisotropy of a texture mea-
sured as the standard deviation of the distribution of gradient
vector orientations in 3-D.

E. Laminarity Measure

A complementary way to characterize anisotropic properties
of anatomical brain datasets is based on so-called gradient angle
co-occurrence matrices [2]. These matrices and a derived quan-
titative measure, referred to as laminarity here, are described
below.

Gradient Angle Co-Occurrence Matrices: The gradient
angle co-occurrence matrix is a 2-D array that represents the
frequency of spatial occurrence of voxel pairs with a certain
relative orientation of their gradient vectors at a given range
of intervoxel distances. Consider an arbitrary voxel pair
defined on discrete voxel lattice by indexes
and at a Euclidean distance . Denote
the angle between their 3-D gradient vectors by . The
gradient angle co-occurrence matrix is defined as

where

and is the number of WM voxel pairs at the given dis-
tance . The angle between gradient vectors is com-
puted from the dot vector product of the normalized intensity
gradient vectors obtained above. All possible voxel
pairs inside the WM mask with no repetition are considered
when calculating the matrix. Using normalized gradient vectors
provides insensitivity of matrices to image intensity. Normal-
ization by the sum of voxel pairs yields volume independence.
Anisotropy descriptors are rotation/reflection invariant because
they take only the relative gradient orientation into account.

Laminarity Feature: Gradient angle co-occurrence matrices
provide a detailed description of the orientational structure of
3-D textures. In a prestudy, their discrimination abilities were
evaluated on more than 300 brain datasets with 1-mm voxel
resolution. We determined an optimal angle bin size of 30 (six
bins for the whole range of 180 ). Considering intervoxel dis-
tances greater than 2 mm did not provide statistically signifi-
cant benefits due to the high spatial frequency of brain WM tex-
ture and relatively fast decline of the autocorrelation function.
Hence, it is sufficient to limit intervoxel distances to one raster
unit , so the 2-D co-occurrence matrix collapses
to its first row. The first element measures the relative
amount of voxel pairs with relative gradient angles of 0 –30 ,
the second element counts pairs with angles 30 –60 ,
and so on. Thus, for a perfectly laminar texture formed by lo-
cally parallel structures (e.g., “layers,” “stripes,” “tubes”), all
voxel pairs fall into the first bin while other bins
are empty. Thus, we define the laminarity feature as the value
of the first element of the gradient angle co-occurrence matrix:

. At a spatial resolution of 1 mm, the intervoxel
distance of one raster unit corresponds to the physical distances
between 1.0 and 1.73 mm with an average of 1.42 mm. The lam-
inarity is robust because it is an average value by nature and
sampled over a typical number of voxel pairs.

The laminarity feature may roughly be understood as the
relative WM volume with a nearly laminar structures (angle less
than 30 ) measured at the scale of 1.42 mm.

F. Comparison of Anisotropy and Laminarity Features

Anisotropy describes the global, dominant directionality of
WM tissue by summing up local orientations over the solid
angle bins with predefined directions relative to the image coor-
dinate frame. The laminarity feature measures the local spatial
coherence and, therefore, it is insensitive to the global shape of
the WM compartment.

Differences are illustrated in Fig. 1 with test images rep-
resenting natural grayscale textures of three basic classes:
anisotropic, laminar [Fig. 1(a)], isotropic, laminar [Fig. 1(b)],
and isotropic, nonlaminar [Fig. 1(c)]. Anisotropic properties
of these textures are depicted as histograms in Fig. 1, middle.
For this illustrative experiment, original 2-D images were
converted to pseudovolumetric datasets with three identical
slices. Thus, there is no intensity variation along the z-axis and
3-D anisotropy histograms are flat. Note also that the dominant
direction of anisotropy histogram is perpendicular to the actual
texture direction by definition. The bottom row of Fig. 1 shows
the 1-D gradient angle co-occurrence histograms, the first
column of which expresses the laminarity degree of each test
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Fig. 2. Top: Dependence of noise levels with standard deviation of 0–50 units
for anisotropy (left) and laminarity (right). Adding noise detoriates texture prop-
erties, resulting in a strong decline of measures with increasing noise levels.
Gender differences become small but never change sign. Below: Dependence
of anisotropy on rotation angles between �25 and 25 . Anisotropy is almost
independent of rotation in y- and z-direction (front-to-back resp. body axis),
while there is a noticable decrease with rotation in x-direction. The laminarity
measure is independent of rotation.

image. Corresponding quantitative values of the anisotropy
and laminarity are given in the figure caption. Note that the
minimum possible laminarity of natural textures is (uni-
form distribution), or in this study. Anisotropy
and laminarity are correlated for most textures except for those
similar to Fig. 1(b).

III. RESULTS

A. Evaluation

To evaluate properties of our texture measures, we examined
their stability against 1) noise, 2) intensity inhomogeneities,
3) scaling, and 4) rotation using simulated influences on real
datasets. Note that our datasets have 256 intensity levels.

Noise: The level of random (Gaussian) noise obviously in-
fluences texture measures. We arbitrarily selected datasets of
a male (25.7 years old) and a female (22.4 years old) subject.
Gaussian noise was added to these datasets with a standard devi-
ation of {0, 10, 20, 30, 40, 50} units, compared with an average
noise level of 6 in our data. Results are shown in Fig. 2, top. As
expected, adding noise detoriates texture properties, resulting
in a strong decline of measures with increasing noise levels. For
unrealisticly high noise levels, gender differences become small
but never change sign. We conclude that higher noise levels dis-
turb regular texture and decrease gender-related effects.

Intensity Inhomogeneities: A linear multiplicative intensity
gradient in the -direction (ear-to-ear) and -direction (front-to-
back) was applied to both datasets above with a slope of {0,
0.25, 0.50, 0.75, 1.00, 1.25, 1.50} units/voxel. Laminarity (as a
local measure) showed very little change (less than 5%) even
with very strong intensity inhomogeneities, while anisotropy
(as a global measure) increases with a stronger intensity gra-
dient (about 60%). Gender differences remained almost con-
stant with increasing intensity inhomogeneities. In our original
data, intensity inhomogeneities of about 15%–20% (peak-to-

TABLE I
GENDER-RELATED DIFFERENCES OF WM TEXTURE MEASURES

(ANISOTROPY A AND LAMINARITY L) IN YOUNG SUBJECTS (GROUP GEN).
CODES FOR P-VALUES ARE: 0 � � � � < 0:001

peak) are typical, and partially corrected for by the post-hoc cor-
rection scheme referenced above. This corresponds to a slope of
0.50 units/voxel in our simulation experiment. We conclude that
intensity inhomogeneities affect anisotropy, but not laminarity
values. No interaction with gender was found.

Scaling: A single dataset was linearly scaled in all three
dimensions by a factor of {0.85, 0.90, 0.95, 1.00, 1.05, 1.10,
1.15}, roughly corresponding to the natural variation in brain
size. Laminarity slightly increased with scaling by 12% over
the range studied here. Downscaling a regular texture leads
to an increase of intervoxel distance and to more randomly
oriented gradient vector, and thus, to higher laminarity values.
Anisotropy decreases slightly with upscaling (by 5%), but more
strongly with downscaling (by 20%). With “compression” of
neighboring voxels, gradients are higher in magnitude and
more unstable in direction.

Rotation: A single dataset was rotated in all three dimensions
by { 25, 20, 15, 10, 5, 0, 5, 10, 15, 20, 25} degrees.
Results are shown in Fig. 2, bottom. The anisotropy measure
is almost independent of rotation in - and -direction (body
axis), while there is a noticable decrease with rotation in the

-direction. Laminarity measures local, relative gradient orien-
tation and is independent of rotation.

To summarize, the influence of noise, intensity inhomo-
geneities, scaling, and rotation on the values of our texture
measures may be well understood and explained from their
definition.

B. Gender-Related Differences in WM Texture Measures

The differences of WM texture anisotropy associated with
gender were evaluated based on 210 MRI- datasets of young
healthy controls (group GEN, 103 males and 107 age-matched
females). Anisotropy and laminarity were computed for
the whole WM and for both hemispheric compartments. Group
differences were evaluated by linear regression using gender and
brain volume as factors. Results are summarized in Table I and
interpreted as follows.

1) WM texture anisotropy and laminarity are significantly dif-
ferent for male and female subgroups. WM in males is con-
sistently less laminar (more disordered) and more isotropic
than in females.

2) Gender-related differences in WM anisotropy are approxi-
mately similar for the whole brain and brain hemispheres.

3) Laminarity shows a higher discrimination power than
anisotropy.
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TABLE II
DIFFERENCES OF WM TEXTURE MEASURES (ANISOTROPY A AND LAMINARITY

L) IN SUBJECT PAIRS MATCHED FOR AGE AND BRAIN VOLUME. CODES FOR

P-VALUES ARE: 0 � � � � < 0:001 � �� < 0:01 � � < 0:05

TABLE III
MULTIPLE REGRESSION OF WM TEXTURE MEASURES (ANISOTROPY A

AND LAMINARITY L) WITH AGE AND GENDER IN GROUP AGE. CODES FOR

P-VALUES ARE: 0 � � � � < 0:001; 0:1 � � � 1

The influence of brain volume on the texture measures is
small but statistically significant: lower anisotropy and lami-
narity values were found in larger brains. To prove that gender-
related differences are not just attributed to size differences, we
selected 57 pairs of male/female subjects with a pairwise differ-
ence in brain size of less than 1% that is statistically insignificant
( ). A pairwise t-test was used to evaluate gender dif-
ferences of texture measures. Results are compiled in Table II.

Comparing results in Tables I and II, we conclude that
gender-related differences in our texture measures remain
highly significant.

C. Changes of WM Texture Measures With Age

Changes of anisotropy and laminarity with age were evalu-
ated in group AGE of 112 subjects over a life span of 16 to
70 years. Linear regression with factors age, gender, and brain
volume was used, and results are summarized in Table III.

A highly significant decline of WM texture measures with
age was found for both measures. Evaluating texture mea-
sures for the whole brain compartment separately for females
and males, a stronger decline for females is determined for
anisotropy ( 0.0223 versus 0.0175) and for laminarity
( versus ) (see also Fig. 3). This

Fig. 3. Changes of WM anisotropy (top) and laminarity (bottom) with age
(group AGE, 112 subjects). Filled circles correspond to values of females, open
circles to males. The regression line shows a stronger decline for females (solid)
than for males (dashed) for both parameters. Over the age range examined here,
gender differences become insignificant for the anisotropy measure, but remain
significant for the laminarity measure.

stronger decline renders gender differences in anisotropy in-
significant over the life span included here, while differences
remain significant for laminarity.

Fig. 4 provides examples of two extreme datasets with visu-
ally evident differences in WM structure along with their 3-D
anisotropy histograms. It can be clearly seen that the histogram
of the second dataset with the lowest texture anisotropy (higher
WM disorder) has more a spherical shape than the first one.

IV. DISCUSSION

A. Main Findings

We summarize the main findings of this study as follows.
1) There are significant differences in WM texture associated

with gender. In young females, both anisotropy and lami-
narity are consistently higher than in young males, corre-
sponding to a more laminar and less disordered texture.

2) A highly significant decline of anisotropy and laminarity
with age was found, and interpreted as an age-related de-
terioration of spatially directed WM structures (e.g., fiber
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Fig. 4. Two sample subjects from group AGE with high (top) and low (bottom)
WM texture anisotropy. (a)–(c) Axial and coronal slices of Subject 1 (female,
22 years old, A = 3:85; L = 0:522) and its WM anisotropy histogram viewed
from the top (d) and back (e). (f)–(g) Axial and coronal slices of Subject 2 (male,
40 years old, A = 2:37; L = 0:405) and its WM anisotropy histogram viewed
from the same positions in 3-D (i), (j). Close-ups (b) and (g) give a visual im-
pression of the difference in WM texture. Image slices are contrast-enhanced;
the GM compartment is kept for clarity.

bundles). This decline is more prominent in females than
in males and renders gender-related differences insignifi-
cant for the anisotropy, but not for the laminarity measure.

3) WM texture parameters were similar in magnitude for the
whole WM compartment and both hemispheres. Differ-
ences with gender and changes with age were similar for
all compartments.

Laminarity is a very sensitive feature that captures both
age and gender-related anisotropy changes. It is superior to
anisotropy feature in all tests. Most likely, the better discrim-
inative power of the laminarity feature can be explained by
its insensitivity to global brain shape that varies considerably
across subjects and blurs the anisotropy measures. As expected,
both measures are correlated with a coefficient of 0.714 in
group GEN and 0.656 in group AGE.

B. Reproducibility Notes

General findings reported with our study are expected to be
easily reproducible on MRI- datasets using the image anal-
ysis methods described here. Nevertheless, the absolute values
of WM texture parameters may depend on several technical de-
tails. Some important points that should be considered in similar
studies are listed below.

Spatial Resolution: Images should be acquired at a high spa-
tial resolution and an (almost) isotropical voxel size. Anisotropy
values depend on the acquisition resolution since they measure
texture directionality as presented by the imaging data. The res-
olution of our MRI- datasets was the same in all three axes
with the interpolated voxel size of 1 mm . At a lower resolution,
texture features may not be revealed due to the partial volume
effect and greater intervoxel distances. For instance, measure-
ment of WM laminarity in young subjects with raster
units results in smaller mean values: for males and

for females while the original magnitudes are 0.453
and 0.479, respectively (see Table I). The nonuniformity artifi-
cially increases anisotropy in the direction of greater dimension
of brick-shaped voxels. A nonuniform sampling can be han-
dled by means of appropriate scaling of gradient components

, and when calculating gradient vector di-
rections [4].

Image Acquisition: A number of technical factors related
to properties of the MR apparatus and imaging protocol influ-
ence the value of descriptors derived from texture analysis [14].
While it was impossible to control for all factors in this retro-
spective analysis, the relative stability of texture measures with
rotation, scaling, intensity inhomogeneity, and noise was doc-
umented in the experimental section. We argue that these tech-
nical factors are unlikely to exhibit a systematic influence ex-
plaining the age- and gender-related differences found here.

Note that all measurements were performed using the same
imaging protocol run on the same 3.0 T scanner. A prelimi-
nary investigation revealed that the WM laminarity computed
for datasets acquired using a different imaging protocol on a
1.5 T scanner are higher.

C. Relations With Previous Studies

This work focuses on the quantitative characterization of
WM anisotropy as revealed by conventional -weighted MR
imaging using 3-D texture analysis methods. This approach has
not previously been studied.

Structural WM changes associated with age and gender were
examined by various methods, e.g., by evaluating gross volu-
metric differences [15]–[18], by investigating the deterioration
of WM microstructure postmortem [19]–[21], and in vivo by
MRI [8], [22]–[27], and diffusion-tensor imaging [6].

It is well documented that the gross WM volume is approx-
imately constant until the fourth decade, and then declines
with age [15], [17], [18]. [23], [25]. Several mechanisms may
account for this finding. Histopathologic evidence shows that
myelin breakdown progresses with age [28], and is considered a
major factor in the age-related cognitive decline associated with
aging [29]. It was hypothesized that myelin breakdown exceeds
maturation in adults and exerts a constant factor throughout
lifetime. Wallerian degeneration due to (cortical) neuronal
loss is probably not explaining axonal myelin changes [30].
Pathologic changes in small blood vessels are associated with
diffuse WM changes and may have a distinct role in the genesis
of vascular dementia [31]. Mild signs of diffuse vacuolization
and arteriolosclerosis are a common finding in elderly subjects
and are likely to detectable as age-related changes of WM.
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Recent evidence from comparing high field MR microscopic
imaging and histopathology in multiple sclerosis lesions has
demonstrated that myelin content and axonal density correlates
strongly with relaxation time [21]. This effect offers an
explanation for the age-related decrease of the gray matter
(GM)/WM contrast in macroscopic -weighted MRIs [24].
Similarly, changes in relaxation time show a strong corre-
lation with age [22].

Diffusion tensor imaging is understood to measure the ap-
parent local diffusion coefficient of extracellular water, as im-
peded by local microstructure (e.g., axons, microvessels). Re-
sults [6] demonstrated a significant decline of fractional WM
anisotropy with age in the genu and splenium of the corpus cal-
losum, the centrum semiovale, and the frontal and parietal per-
icallosal WM [26]. By assessing the normal brain development
in neonates and infants [7], it was found that diffusional WM
anisotropy is a sensitive indicator of brain maturation and it pre-
cedes an MRI- intensity change.

Texture properties are evaluated on a millimeter scale, and
may capture the local coherence, direction, and density of fiber
bundles, their myelinisation status, the density and direction of
vessels supplying and draining the WM, and findings commonly
associated with aging (e.g., lacunes, enlarged periventricular
spaces). Our results are in accordance with similar findings ob-
tained for specific brain structures on the micro level [8], [19],
[26], [32].

A possible explanation for the gender-related differences doc-
umented here may be given when taking results of a separate
study [5] into account. With a similar approach based on texture
features, it was demonstrated that brain hemispheres are more
symmetric in females than in males. Thus, a more symmetric
brain allows for a more regular “wiring layout” of the WM com-
partment, which is equally true for long- and short-range con-
nections. Hence, this hypothesized regular WM wiring layout in
females corresponds to a higher texture anisotropy and greater
laminarity of WM structures.

All subjects included in this study were apparently healthy,
by report and by inspection. Any pathologic process (e.g., dif-
fuse or focal WM lesions) is expected to disturb structural fea-
tures and lead to a reduction of WM laminarity and anisotropy
in comparison with an age-related population sample. Thus, tex-
ture measures may be of diagnostic relevance as a quantita-
tive parameter describing local structural properties of the WM
compartment.

In conclusion, this study demonstrated that the texture
anisotropy analysis of anatomical MRI- brain datasets
provides quantitative information, which may help to better
understand the gender-related differences and WM alterations
with brain maturation and aging.
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