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Cytoarchitectonic fields of the human neocortex are defined by characteristic variations
in the composition of a general six-layered structure. It is commonly accepted that
these fields correspond to functionally homogeneous entities. Diligent techniques were
developed to characterize cytoarchitectonic fields by staining sections of post-mortem
brains and subsequent statistical evaluation. Fields were found to show a considerable
interindividual variability in extent and relation to macroscopic anatomical landmarks.
Recent advances in high resolution magnetic resonance (MR) imaging techniques have
demonstrated the feasibility to study the neocortical fine-structure in anatomical MR
images, thus, defining cytoarchitectonic fields by in vivo techniques. The current status
of this research is summarized in terms of image acquisition, image analysis, evaluation
and validation.
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1. Introduction

When discussing structure-function relationships in the brain, it is important to
distinguish between anatomical and functional variability. While the latter is related
to inter-individual differences in the implementation of a cognitive task in the brain,
task-solving strategies, motivation etc., the former term addresses inter-individual
differences in the pattern, location and extent of functional activations. There is
little doubt that there is a close correspondence between the functional organization
of the neocortex and the cytoarchitectonic fields, which have been characterized by
different histological staining techniques (e.g. Nissl staining) in post-mortem brains
during the last 100 years.>27:34:3% Cytoarchitectonic fields are defined by varying
compositions of the general six-layered fine-structure of the neocortex characterized
by the properties and densities of neurons and their connecting fibers (see Fig. 1).
One of the most recent techniques for delineating the borders of cytoarchitectonic
fields is called objective cytometry.2%:29 This technique examines radial intensity
profiles across the neocortical sheet in stained brain sections that are statistically
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Fig. 1. Left: Nissl and myelin preparation from a section of Area 7 (reproduced from Hellwig,
1993). Right: Basic scheme of the cyto- and myeloarchitecture of an association cortex (reproduced
from Vogt and Vogt, 1919). Note the similarity of myelin stained slices with MR images of a fixated
brain (e.g. see Fig. 3).

compared along a trajectory on the surface. Local maxima in the classification
function indicate a border between two fields.

It is now well accepted these fields show a considerable interindividual variabil-
ity with respect to macroscopic landmarks such as sulcal and gyral borders and
their substructures.?:24726:36 Tt is an open issue whether macroscopic landmarks
are sufficient for describing the position of functional activation (e.g. as revealed by
in vivo MR imaging), or whether it is necessary to resort to atlas-based descriptions
of cytoarchitectonic fields that are obtained in vitro from different subjects in the
form of a probabilistic map.

Myelin preparations of brain slices reveal the “wiring” of the neurons. Note that
a myelin preparation and a Nissl staining (see Fig. 1) show complementary struc-
tural aspects. Neocortical subdivisions by cytoarchitecture resemble those based on
myeloarchtecture.

Histological techniques offer a spatial resolution which is well beyond the lim-
its of current (macroscopic) anatomical MR imaging protocols. However, recent
investigations demonstrated that a spatial resolution of 0.25mm (i.e. a matrix of
1024 x 1024 voxels) for anatomical scanning is feasible, and even 0.10mm voxel
dimensions may be aimed at for regional measurements. At this resolution, the
neocortical sheet is mapped as a layer of 12 (or even, 30) voxels, which may be suf-
ficient to recognize the layer structure of the cortex. Suitable image post-processing
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techniques may be designed to classify cortical intensity profiles, and thus, to define
borders of cytoarchitectonic fields in vivo.

The work described here investigates the feasibility of segmenting the neocor-
tical fine-structure in MRI data. To achieve a high spatial resolution at a reason-
able signal-to-noise ratio without restrictions in scanning time, we have resorted to
examine a fixated brain hemisphere. Since the MR signal strength is related to the
local cellular environment (e.g. biopolymer content) in a volume, it is not unrea-
sonable to assume that stained histological intensity profiles and MRI intensity
profiles show some similarity, albeit at a much lower spatial resolution. Thus, we
will compare previously published results obtained by objective cytometry!>2:11:38
with an MRI-based neocortical fine-structure analysis.

2. Materials and Methods
2.1. Brain preparation and scanning

An isolated left brain hemisphere (female, 72 years of age) obtained from a rou-
tine autopsy was fixated in formalin and embedded in a small container in agar gel,
taking care of removing small air bubbles located in deep sulci by ultrasound immer-
sion. MR acquisition was performed on a Bruker 3T Medspec 100 system equipped
with a bird cage quadrature coil. Our standard T}-weighted 3D MDEFT protocol”
was used, except that the spatial resolution was increased (FOV 96 x 192 x 128 mm,
matrix 256 x 512 x 512, voxel size 0.375 x 0.375 x 0.25 mm) and the scanning time
set to 12h.

2.2. Preprocessing

The first steps consist of preprocessing the acquired image data: data format conver-
sion, interpolation, and correction of intensity inhomogeneities. All processing steps
were performed with our proprietary image processing system called BRIAN.!®
First, data were converted from the scanner into our proprietary data format,
using an optimal histogram translation from 16 to 8 bit per pixel. Ten percent
of the low-intensity voxels were mapped to 0, 1% of the high intensity voxels to 255,
the interval in-between mapped linearly. Then, sagittal slices were transposed into
the axial direction while interpolating voxels to an isotropical resolution of 0.25 mm
using fourth-order b-spline interpolation,?? and cropped to a minimum bounding
box enclosing the hemisphere of 276 x 608 x 384 voxels.

Inhomogeneities of the B1 scanner field lead to contrast differences within the
measurement volume (see Fig. 2, top). For our dataset, the contrast ratio of white
matter to grey matter varied up to 50%. To correct for these differences, a modified
version of the “adaptive fuzzy c-means” algorithm??® was employed. It clusters data
by computing a measure of membership, called the fuzzy membership, at each voxel
for a specified number of classes C'. The fuzzy membership function u, constrained to
be between zero and one, reflects the degree of similarity between a voxel intensity y;
and the prototypical data value m. or centroid, of its class. In this simple form, the
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Fig. 2. Top: Sagittal, coronal and enlarged axial slice of the original high resolution MRI dataset.
Note the anisotropy of the voxel size and the intensity inhomogeneities (esp. close to the midline
and in cranio-caudal direction). Below: corresponding views of the interpolated and intensity-
corrected dataset.

cost function Prcyy for this “fuzzy c-means” classification problem is:

c
Prey = Z Zugc(:lﬁ —me)?, (1)

1€Q c=1

where 2 denotes the image domain. Now, we assume that a class-independent but
spatially variable gain field g modulated measured voxel intensities. We further
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empose a smoothness constraint to this field in the form of a Tikhonov—Philips
regularizer:

c 3
Parcn = > ug(yi — gime)* + M > (Drxg)?

1€Q c=1 i€EQr=1
3 3
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i€Q r=1s=1

where D, (Dy) is a known finite differencing operators along the rth (sth) dimen-
sion, and x is the convolution operator. Now, the estimation algorithm consists of
the following steps:

(1) Provide initial values for the centroids m.,c=1,...,C and the gain field g;.
(2) Compute membership functions:

L. -2
o= = TIM) TG0 and e=1,...,C. 3)
> et (i — gimy) 2

(3) Compute new centroids:

mC:MZZZgi:gi, Ve=1,...,C. (4)
2 ieq Yicdi
(4) Compute a new gain field:
c c
D uiyime = g Y uimi + M(Hixg)i + Ao (Ho % )i, ()
c=1 c=1

where the convolution kernels H; and Hy are given by:

0 00 0 -1 0
H?*=[0 -1 0o, H=[-1 6 —1)7
0 00 0 -1 0
00 0 0 O 00 0 0 0
00 0 0 O 00 2 00
H?’=[00 10 0], H*=]0 2 —-12 2 0/,
00 0 0O 00 2 00
00 0 0 O 00 0 0 0
0 0 1 00
0 2 12 2 0
Hi=11 —-12 42 -12 1
0 2 —12 2 0
0 0 1 00
This system is solved using successive overrelaxation (w = 1.75). To speed

up the solution, we used a 3-level multigrid solution scheme. Heuristically, we
found A; = 20000, Ay = 200000.
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(5) If the algorithm has converged, then quit. Otherwise, goto step 2. Convergence
is assumed if the biggest change in a class membership function is below 0.1.
Typically, 20 iterations are required.

On output, we computed corrected intensities for the image ¢; = v;/¢; and
obtained fuzzy membership functions for each voxel and class ;.

As with any variant of the c-means algorithm, a good initialization is required.
We assumed that the average intensity within a subregion of the image is con-
stant, i.e. is only affected by inhomogeneities. Thus, we computed the average fore-
ground intensity for the whole image domain yo and within cubic subregions of
402 voxels (7). The quotient ¥, /yq was used to initialize the gain field within this
subregion. Based on this fixed setting for the gain g;, an initial classification was
computed by alternating steps 2 and 3 of the algorithm above.

The computation time for this 62 MB data volume was 2h on a Linux system
equipped with 2GB RAM and a Athlon 1.5 GHz processor. Finally, we yielded
a segmentation into three classes (class 1: background (BG), class 2: white mat-
ter (WM), class 3: grey matter (GM)) and an intensity-corrected version of the
input image (see Fig. 2, below). Intensity inhomogeneities were less than 7% in this
dataset.

2.3. White matter segmentation

The following steps aim at generating a raw segmentation of the hemisphere’s
white matter. We used the fuzzy membership function class 2 obtained from the
segmentation procedure above. All voxels u;s > 0.5 were selected as the initial
WM segmentation. This dataset was scaled down by a factor of 2 to yield a
spatial resolution of 0.5mm. A morphological opening operator (radius 1 voxel)
was used to remove small bridges. Connected components were labelled, and
the biggest connected component was selected (see Fig. 3, top) as the raw WM
segmentation.

The following steps are not required for the analysis of the neocortical fine-
structure, but improve the quality of the GM and WM surfaces computed in the
next processing steps.

To improve the visualization of the occipital and basal cortices, the brainstem
and cerebellum were removed using an image editor.'® Likewise, the inner ventricles
and basal ganglia were filled. For standard in vivo MRI datasets, an automated
procedure was developed to perform this task. However, fixating and embedding this
hemisphere led to deformations, and thus, to violations of the anatomical heuristics
incorporated in the automated algorithm that made hand-editing necessary here.

The resulting object should have a topological genus of 0 (i.e. have no holes or
handles).?® However, noise in the dataset and the thresholding operation on the
fuzzy membership function introduce segmentation errors. In our case, the genus
of the edited WM segmentation was 30. We removed these holes using a procedure
similar to the one described by Shattuck and Leahy.?Y By changing 357 of 654000



Analyzing the Neocortical Fine-Structure 261

Fig. 3. Top: Axial (left) and sagittal (right) views of the raw white matter segmentation as
a binary voxel volume. Below: Corresponding views of the initial WM/GM interface (721000
triangles). Note the “staircase” artifacts on the surface, a consequence of generating a surface
from a binary voxel volume.
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t33

voxels, we obtained a C'18-connected object®> of genus 0, corresponding to a white

matter segmentation in binary voxel space.

2.4. Segmentation of basins

Sulci and gyri allow introducing a macroscopic subdivision of the neocortical sur-
face. In order to study the issue how much microstructurally defined fields respect
macroscopic borders, we computed a segmentation of the white matter surfaces
into basins. Basins are substructures of sulci, i.e. one or more basins line up as
a classical sulcus.?’ Basins are relatively simple to construct from a white matter
segmentation. In a nutshell, the sulcal compartment is determined by morpholog-
ical closing of the WM segmentation using a spherical kernel of 14 mm diameter.
In this compartment, a constrained distance transform is computed subject to the
white matter segmentation. Local maxima of this constrained distance transform
correspond to the deepest points in the sulci, and each of these maxima marks a
basin. Starting from these points, a classical concurrent region growing algorithm
fills these basins. Typically, 100-150 basins are found per hemisphere. Four neu-
roanatomically relevant regions were selected as examples and compiled in Fig. 4,
the central sulcus, the calcarine fissure, and the pars triangularis and opercularis
of the inferior frontal gyrus.

Fig. 4. Basin segmentation of the central sulcus (top left), calcarine fissure (top right), inferior
frontal gyrus, pars triangularis (bottom left), inferior frontal gyrus, pars opercularis (bottom
right). For visualization, detected basins were mapped on the white matter surface (compare with
Fig. 5, top).
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2.5. Computation of the interfaces

The following steps aim at generating the interfaces between white/grey matter
(WM/GM) and grey matter /background (GM/BG) as polygon meshes in 3D. The
rationale for generating these interfaces is to define starting points and directions
of intensity profiles that run radially through the cortex.

A triangulated surface was generated from the binary white matter segmenta-
tion using the “Marching Cubes” algorithm.?! Because the original algorithm may
introduce ambiguities in the triangulation, a variant that preserves the original
topology was employed here.® We yielded an initial surface close to the WM/GM
interface consisting of 721000 triangles.

An improved model of the WM/GM interface was obtained by treating this
1.31 With modifications, we follow the ideas of
Xu et al.3" and Dale and Sereno” here. On any vertex vg in the mesh, internal and

initial mesh as a deformable mode

external forces act until a balance is acheived. The internal force Fj,; tries to center

a vertex among its edge-connected neighbors v;, 7 =1,..., N:
N
Fipt = N ;(Uz — ). (6)

The first external force Feyt1 tears a vertex outwards in the direction of its surface
normal ng. This force is exerted by an intensity-gradient field f, which is computed
from a convolution of the intensity-corrected image I with a Gaussian kernel G: f =
V(G % 1)

|F€It,1| = <f(U0); TL()>, (7)

where (,) denotes the scalar product. The second external force Feyt o captures the
surface within a narrow range around an image intensity Ij;,:

|Fezt,2| = tanh(k(I(vo) — Liim)), (8)

where k corresponds to the capturing range and is related to the noise level in
the data set. Fezt 2 pushes a vertex in the direction of the surface normal until a
position with intensity I, is reached. A suitable value for I, was chosen as the
average of the class center intensities for WM and GM in the initial segmentation
step. Forces are weighted to ensure good convergence properties during iterations ¢
of the surface adaption process:

o8 = o8 4+ wy Fi + no(wa| Feaea|| Foat2| — ws|Four2]). (9)

The image gradient force |Feyy,1]| is weighted by the intensity force |Feyy 2| in order
to reduce the outward-driving force adaptively when the destination intensity range
is reached. This constraint also reduces the chance of introducing self-intersections.

For generating the WM/GM interface, we used parameters: w; = 0.1, wy =
0.0001, wg = 0.02, Ij;,, = 130, k = 10, and 200 iterations for convergence. Starting
again from the initial mesh, we obtained the GM/BG interface using Ij;, = 195,
and 1000 iterations for convergence.
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Finally, we reduced the high resolution of these interfaces to 200000 triangles each,
i.e. one triangle corresponds to a surface area of about 1 mm?. We used a variant of
the edge contraction method described by Garland and Heckbert.'® This algorithm
respects the local curvature by using a quadrics-based error metric. Their approach
was enhanced by an additional criterion that ensures topology preservation during
mesh simplification. Example views of both interfaces are shown in Fig. 5.

Fig. 5. Top: Axial (left) and sagittal (right) views of the adapted WM/GM interface (200000
triangles). Below: Corresponding views of the adapted GM/BG interface. In comparison with
Fig. 3, surfaces now appear smooth, due to refinement as a deformable model.



Analyzing the Neocortical Fine-Structure 265

2.6. Determination of the neo-cortical intensity profiles

The space between the interfaces WM/GM and GM/BG is occupied by the neo-
cortex. To describe the local properties of the fine-structure, we computed intensity
profiles that run radially through the cortex. These profiles were characterized by
a sparse set of parameters, and classified locally into surface patches that were
compared with the known extent of neurofunctional areas.

Starting from each vertex on the interface WM /GM, we walk 3 mm outwards in
the direction of the vertex normal, and construct a sphere of 5 mm around this point.
All triangles of the interface GM/BG that intersect with this sphere are collected in
a list. Then, the shortest distance between the vertex on the interface WM /GM and
each triangle is determined.® ' The shortest path of all triangles in the list defines
the direction of the profile. Along this direction, we sampled intensity values from
the intensity-corrected dataset obtained in the segmentation step (see Sec. 2.2). In
order to correct segmentation errors introduced in the steps above, we re-determined
the local transition between WM and GM resp. GM and BG. Thus, sampling started
2mm before the position of the vertex on interface WM/GM (i.e. in the white
matter), and ended 8 mm after this position (i.e. within the background). Points
were sampled at regular intervals of 0.025 mm using trilinear interpolation. A typical
profile through the visual cortex is shown in Fig. 6.
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Fig. 6. Example intensity profile across Area 17. The rising flank (on the right) crosses the
WM/GM border, while the slope of the intra-cortical segment is comparatively flat. The falling
flank mostly results from the partial volume effect on the GM/BG boundary. A Gaussian function
is used to model the position, intensity and width of intra-cortical bands, such as Gennari’s band.
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Starting from the low-intensity white matter, the rising flank (on the right)
crosses the WM/GM border, while the slope of the high-intensity intra-cortical
segment is comparatively flat. The falling flank mostly results from the partial vol-
ume effect on the GM/BG boundary. In order to define the WM/GM and GM/BG
boundary points consistently, lines were adaptated to the rising flank of the profile
(at the WM/GM boundary) and to the falling flank (corresponding to the GM/BG
boundary, see Fig. 6). The exact position of the WM/GM boundary was computed
at intensity I = 135, for the GM/BG-boundary at intensity I = 100, and their
distance was recorded as the local cortical thickness th. Because layers occupy a
rather constant relative portion of the cortex,?? the profile was resampled at 1%
intervals of th between both boundaries. In summary, we obtained for each vertex
on the WM/GM interface the cortical thickness and a spatially normalized intensity
profile of 101 data points.

When analyzing this one-dimensional signal, a number of special cases and
exceptions had to be taken into account:

e There is no neocortex at this position (i.e. at the cut through the corpus callo-
sum in the midline, at the brainstem). This case is easily detected, because the
intermediate high-intensity segment is missing or very short (<0.5 mm).

e Two banks of a sulcus touch (i.e. there is no BG adjacent to GM). Here, we
extrapolated the GM/BG-boundary point at I = 100, based on the slope of the
falling flank.

e Artifacts may disturbe a profile (i.e. a cut or a tear through the cortex, an air
bubble trapped in a sulcus). In these cases, an “unusual” formation of a profile
is detected.

For any of these exceptions, we suppressed the resulting profile at this position.
Finally, intensity profiles were characterized for statistical evaluation by a sparse
set of parameters:

the cortical thickness th;

the slope of the rising flank at the WM/GM boundary mg (see Fig. 6);

the slope of the intra-cortical portion mq;

the slope of the falling flank at the GM/BG boundary ms; and

the position (bp), intensity (bi) and width (bw) of an intra-cortical band were

determined by adaptation of a Gaussian function to the intra-cortical profile
segment:

h)2
Izml*x—l—nl—bi*exp(—(mbibf)) (10)
w

Powell’s algorithm was used to find optimized parameters.
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2.7. Classification of the neo-cortical fine-structure

The final step consisted of a regional subdivision of profiles. We hypothesized that
profiles within a cortical field exhibit a relatively high similarity.

Cortical areas with similar fine structure were determined by comparing local
profile properties with those of a template region. To characterize the template, pro-
file properties were collected from a surface patch of 5 mm radius around a manually
specified position (typically, 60-100 vertices). This template region was selected at
a position where a specific functional area is expected with high probability, based
on prior neuroanatomical knowledge (i.e. for the motor cortex, a position at Broca’s
knee was selected). Properties of a local sample were collected from a given vertex
and its first and second-order neighbors (typically, 10-30 vertices).

From a series of heuristical experiments, six statistical tests were selected to
measure the similarity of the local region with the template:

Pearson’s correlation coefficient of the averaged profiles in both regions (z1).
Pearson’s correlation coefficient of the first derivative of the averaged
profiles (z2).

a t-test comparing the cortical thickness th of profiles in both areas (z3).

a t-test comparing the rising slope mq of profiles in both areas (z4).

a t-test comparing the intra-cortical slope my of profiles in both areas (z5) and
a t-test comparing the band intensity bi of profiles in both areas (zg).

A similarity measure was derived from the individual tests as:
Zsim=211+22—|23|—|Z4|—|Z5|—|Z6|. (11)

If both regions contain similar profiles, z3 to zg contribute values close to 0, while
z1 and 29 provide positive scores, summing up to some (small) positive quantity.
For dissimilar regions, negative similarity measures are expected. For performance
reasons, we restricted the computation to the target region and its adjacent basins.
A heuristically determined threshold was applied to zs;y, to optimally discriminate
between the target region and its neighbors.

3. Experiments

First, we performed a simple simulation experiment to verify the properties of the
segmentation and classification algorithms. Then, we demonstrated the similarity of
T1-weighted MR images with myelin-stained brain slices. Finally, we selected three
different anatomical regions that are well studied by histological techniques. We
were interested in comparing intensity profiles with known descriptions of the local
layer structure, and in comparing the extent of statistically homogeneous regions
with known cytoarchitectonic fields.
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3.1. Ewaluation

In order to better understand the influence of the parameter settings on the resulting
segmentation, we run a simple simulation study. A test object consisting of two folds
was constructed (see Fig. 7).

The body of this object was set to an intensity similar to white matter (I = 120).
A profile was added to the left fold with properties similar to those found in Area
17 (thickness 1.8 mm, intracortical intensity linearly increasing from I = 135 to I =
200, from 0.75mm — 1.05 mm reduced by 30 intensity units to simulate Gennari’s
band). To the right fold, a profile resembling Area 18 was added (thickness 2.0 mm,
intracortical intensity linearly increasing from I = 135 to I = 200). A multiplicative
inhomogeneity field with parabolic cross-section was applied in z direction (i.e. along
the fold) that led to an intensity decrease of 15% from the center to the upper and
lower image border, similar to the inhomogeneity of 50% over 7T0mm as in the
original dataset (see Fig. 7, right). Finally, Gaussian distributed noise N (0,5.5)
was added.

This simulated dataset was analyzed with the same process chain as described
above, using the same parameter settings. A position on the crown of the left fold
(Area 17) was used as a template region. The distribution of zg;,, for Area 17 and
18 is shown in Fig. 8.

Results were obtained for Area 17: zgun, = 4.53 4+ 2.34, for Area 18: zgm =
—6.24 + 2.66. A t-test of zg;,, demonstrated highly significant differences between
both areas (p < 2.2e-16, DOF = 3618). Figure 9 shows a segmentation of Area 17
using a threshold of z > 0. Note that z scores are independent of the z coordinate
(the direction of the simulated intensity inhomogeneities).

Fig. 7. Left: Cross-section through the test object in z-y plane. The left fold carries a simulated
profile similar to Area 18, the right similar to Area 18. Right: Cross-section through the test object
in z-z plane. Simulated inhomogeneities are visible as an intensity decrease from the center to the
upper and lower image border.
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Fig. 8. Histogram of classification results zgiy, for Area 17 (left) and Area 18 (right).

Fig. 9. Detected Area 17 (threshold zgipm, > 0).

3.2. Comparison of MR images and myelin-stained slices

We validated some of our results by comparison of MRI data with stained brain
slices. After MRI scanning, slices were cut from the fixated brain every 1.5cm.
Slices were embedded, myelin-stained, digitized using a PC scanner, and regis-
tered with the MRI volume. Here, a 2D-3D registration is necessary. We applied a
low-dimensional transformation consisting of scaling, translation, and rotation. In
addition, a deformation perpendicular to the slice plane on the basis of nine control
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points was allowed. A cost function based on cross-correlation of both images was
used, and a genetic algorithm was employed to optimize transformation parameters.

Example results from a coronal section through the occipital lobe are shown in
Fig. 10. Note the striking qualitative similarity between the MR signal intensity
and the contrast induced by staining. The correlation coefficient of both marked
intensity profiles is 0.92. Note that the T} contrast is “inverted” by fixation: regions
of higher neuron content (i.e. cortical layers 1-3, 5 and 6, basal ganglia) show a
higher signal intensity than fiber-containing regions (i.e. the white matter).

3.3. Visual cortex (Area 17)

The visual cortex is distinguishable from the surrounding Area 18 by the presence
of Gennari’s band, which corresponds to layer IVb of this cortex and consists of
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Fig. 10. Coronal section through the occipital lobe. MRI slice (top) and registered myelin-stained
brain slice (below). Sample intensity profiles along the straight lines in both slices are shown on
the right. The correlation coefficient of both profiles is 0.92. Note also the detection of Gennari’s
band in both modalities (in the banks of the calcarine fissure, upper right quadrant).
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an intracortical horizontal fiber system. This structure is easily detected in the
acquired MRI dataset as a darker band in the bright cortex (see Fig. 11).

By application of the procedures described above, the cortical thickness on the
banks of the calcarine fissure was determined as 1.86 & 0.10mm (von Economo?’:
1.84mm), the position of the center of Gennari’s band as 52 4 6% (Zilles et al.3:
55%), and the thickness of this band as 0.30 & 0.10mm (Zilles et al.3%: 0.28 mm).

The extent of Area 17 is described by von Economo®® as located on the walls
and lips of the calcarine fissure, and at the gyral crowns at the occipital pole. This
description compares nicely with the automatically generated statistical classifica-
tion as shown in Fig. 12.

3.4. Motor and sensory cortex (Area 4 and 3)

As a second example, we tried to differentiate the primary motor cortex (Area 4)
on the anterior bank of the central sulcus from the somatosensory cortex (Area 3)
on its posterior bank (see Fig. 13).

The most distinctive feature here is the cortical thickness: on the anterior bank,
the motor cortex reaches values up to 3.8 mm, while the sensory cortex is less than
2.2mm thick.?2:35 Intensity profiles in Area 4 mostly showed three maxima (see
Fig. 13), which roughly correspond to the transition between layer IT/III, layer
III/V and layer V/VI as described by Amunts et al.! The somatosensory cortex on
the posterior bank exhibited much less substructure.

A statistical classification was initialized by a manually specified region close to
the hand field and yielded the full extent of the motor cortex well in agreement with
previously published histological classifications (see Fig. 14). The border between
the anterior and the posterior bank is sharp, although some small spots (esp. at
crowns of other gyri) respond to this classificator as well.

3.5. Broca’s area (Area 44 and 45)

As a final example, we selected Broca’s speech region, which corresponds to Area 44
(the pars opercularis of the inferior frontal gyrus) and Area 45 (the pars triangularis
of the inferior frontal gyrus).

As described by von Economo?®® and Amunts et al.,? the cortex of Area 44 is not
sharply delineable from the white matter, which corresponds to a flat slope mg (see
Fig. 15, bottom right). The cortex of Area 45 (see Fig. 15, bottom left) is thinner
and features a more distinct horizontal layering.

For the delineation the extent of both areas, training regions were selected at
characteristic positions as indicated in Fig. 15. Classification results are shown
superimposed on the white matter surface in Fig. 16, separated for Area 45 (top)
and Area 44 (below). Note that the detection of Area 45 is less specific and extends
to adjacent sulci as well. However, detected Areas 45 and 44 are complemen-
tary in their extent, indicating that both are based on different properties of the
fine-structure.
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Fig. 11. Top: Sagittal, coronal and axial slice (enlarged) through the visual cortex. The position
of the intensity profiles through Area 17 is marked by a white bar. Below: T'wo intensity profiles
through Area 17. Gennari’s band — visible as a dark horizontal line in the cortex — is indicated
by an intensity drop at ~52% of the cortical width.
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Fig. 12. Medial view of the white matter surface. The model region marked in Fig. 11 was used
to detect Area 17 which is mapped in light grey at a detection threshold of zg;y, > —4.

4. Discussion

Three results of this work are stated for discussion:

e “It is possible to reveal the neocortical fine-structure by high-resolution MR

imaging.”
We have shown three examples of cortical regions where it is relatively easy to
visually discriminate properties of the layer structure — even at a moderate

spatial resolution of 0.375 x 0.375 x 0.25 mm. Since our initial report,'”>'® this
result was confirmed by three independent groups: using MR microscopy? in vitro
at 9.4 T field strength and a spatial resolution of 0.078 x 0.078 x 0.500 mm, using
a standard Ty weighted imaging protocol* (SPGR) in vivo at 3.0 T field strength
and a spatial resolution of 0.350 x 0.350 x 0.600 mm, and by comparing in vivo
data (field strength 1.5T, resolution 0.556 x 0.556 x 0.700 mm) with post-mortem
histological data.3%

The spatial resolution of the MRI data acquired here is ~0.3 mm, and thus at
least one order of magnitude lower than the resolution offered by histological
techniques. However, these optical profiles are typically subsampled in space?8:2°
in order to characterize gross features of layers. Results presented here suggest
that most likely a microscopic resolution is not required if a classification of
cortical areas is sought for. However, at a higher resolution (say, 0.1 mm), even
more detail is revealed (see profiles in Ref. 9), leading to more powerful statistical
classificators. It is ambitious but not impossible to implement scanning protocols
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Fig. 13. Top: Sagittal, coronal and axial slice (enlarged) through the anterior (Area 4, motor
cortex) and posterior (Area 3, sensory cortex) bank of the central sulcus. The position of the
intensity profiles through Areas 4 and 3 is marked by a white bar. Below: Two intensity profiles
through Area 4 and 3. The motor cortex is thicker than the sensory cortex and shows more
substructure.
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Fig. 14. Top lateral view of the white matter surface. Area 4 (detected from a model region at
Broca’s knee, see Fig. 13) is shown in light grey at a detection threshold of zg;m, > —4.

for in vivo examination with a spatial resolution of 0.1 mm, at least if one focuses
on a brain subregion (i.e. a lobe).

A critical issue of this study is to achieve a good signal-to-noise ratio (SNR)
for acquiring high-resolution datasets of an acceptable quality. As for a given
MR system, the MR signal strength is approximately proportional to the voxel
volume, we simply scaled our standard scanning time of 20 min (1.5 mm?® voxel
volume) to 12h (0.035mm? voxel volume). However, the SNR measured here
was about two times better compared with our standard MRI datasets, which
is probably due to the small substance load in the coil, and the fact that an
isolated brain was scanned. One may consider to reduce the scanning time to 3 h,
accepting a SNR similar to those of standard MR datasets. We have rather chosen
to conduct subsequent experiments with an isotropical resolution of 0.25 mm.

e “Intensity characteristics of Ti-weighted MR tomograms of formalin-fixated
brains resemble those of myelin-stained brain slices that reveal the myeloarchi-
tecture of the brain.”

We demonstrated an example of a myelin-stained brain slice that was digitized
using a conventional PC scanner and then registered to the MRI volume data of
the same brain. A striking qualitative similarity between the MR signal intensity
and the contrast induced by staining was found. The correlation coefficient of the
example intensity profile is 0.92. These findings were confirmed by Fatterpekar

et al.” using MR microscopy and noted by Walters et al.3%: “Equivalent intensity
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Fig. 15. Top: Axial (enlarged) and sagittal section through the inferior frontal gyrus. The profile
denoted Area 45 was taken from the pars triangularis, while the other profile (Area 44) corresponds
to the pars opercularis. Below: Intensity profiles through Area 45 (left) and Area 44 (right). The
cortex is thinner in Area 45, but exhibits a more prominent banded structure.

line profiles also indicate that the MR intensity line profile is most similar to the
low-magnification myelin stain intensity line profile.”
It is unclear how the well-known cortical cellular and fiber structure translates
into intensity profiles as revealed by high-resolution MRI in fixated brains. There
is a striking similarity of MRI intensity profiles with photometric studies of the
myeloarchitecture.!® 14 In addition, theoretical studies'? demonstrated the equiv-
alence of Nissl-stained cytometric intensity profiles with myelin-stained profiles. A
quantitative comparison of MRI intensity profiles with optical profiles of stained
tissue is necessary.

e “Using image processing techniques it is possible to detect regional characteritics
of the fine-structure that allow segmentation into neocortical fields.”
Results shown for three different brain areas demonstrate the feasibility of analyz-
ing the neocortical substructure from high-resolution MRI data. Using statistical
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Fig. 16. Lateral view of the white matter surface. Area 45 (top) and Area 44 (below) were
detected from model positions shown in Fig. 15 at a detection threshold of zg;m, > 2 (Area 45)

resp. Zsim > —1 (Area 44).
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descriptors of the profiles obtained from a template region, the extent of tar-
get regions was determined by comparing local descriptors with the template.
Qualitative properties of MRI intensity profiles and quantitative descriptors (e.g.
cortical thickness, band position and width) corresponded well with descriptions
found in reference publications based on histological examinations.

It is an open issue how much the approach described here may be translated to
in vivo studies. Our scanning time of 12 h is impossible to sustain for humans, and
might even be hard to achieve when scanning anaethesized animals (e.g. monkeys).
Nevertheless, progress in MR, techniques (especially at ultra-high field strengths
and /or using array receiver coils) will offer a significant reduction in scanning times,
and let us expect to have such scanning techniques at our disposal within this
decade. The resolution obtained in current in vivo studies* 36
low to allow a reliable segmentation. Of course, with increasing resolution, unavoid-

is considered as too

able motion artefacts (e.g. from random head movements, swallowing, breathing and
pulsation) influence the scan quality. Gated measurements may offer a solution.

The possibility of studying the neocortical fine-structure by MR imaging, i.e.
introducing a myeloarchitecture-related parcellation of an individual brain, offers
exciting perspectives for the analysis of structure-function relationships in the brain
on a mesoscopic level.
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