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Abstract. An algorithm to segment the intracranial compartment from PD-weigh-
ted MR images of the human head is described. If only a T1-weighted dataset is
available for a given subject, an artifical PD-weighted dataset is computed from
a dual-weighted reference by non-linear registration of the T1-weighted datasets,
and the intracranial compartment is segmented from this artificial dataset. The
performance of the algorithm is evaluated on the basis of 12 dual-weighted data-
sets with an average volume difference of 2.05% and an average overlap (Dice
index) of 0.968.

1 Introduction

Skull growth occurs along the suture lines and is determined by brain expansion, which
takes place during the normal growth of the brain [9], [19]. Thus in normal adults, a
close relationship between the brain size and the intracranial volume (ICV) is expected.
This relationship is used to estimate the premorbid brain size in degenerative brain
diseases (e.g., Alzheimer’s disease [7], [11], [21]) or brain degeneration due to diffuse
or focal brain damage.

Three major approaches were suggested to determine the ICV from images of the
head: (a) manual delineation of the intracranial compartment in CT [1], [10], [18] or
MR images [7], [8], (b) classification and segmentation of multispectral MR images
[2], [3], [4], and (c) classification and segmentation of T1-weighted MR images [15],
[16]. While a manual delineation is certainly laborious, the second approach requires
the acquisition of multispectral volume images, which is often too time consuming (and
thus, too costly) to be acceptable for routine clinical studies. The third method, using
T1-weighted images only, makes certain assumptions that are invalid at least for datasets
acquired by our imaging protocol.

Our approach is based on the idea that proton-density (PD)-weighted MR images
provide a good basis for ICV segmentation, because the skull signal intensity is low,
and all intracranial tissue and the cerebrospinal fluid (CSF) provide a high signal in-
tensity. Thus, the first part of our algorithm consists of generating an ICV mask from
a PD-weighted MR image. Most often, only a high-resolution T1-weighted MR image
is available. So the second part of our algorithm consists of a non-linear registration
of a T1-weighted reference image to a T1-weighted study image, yielding a field of
inter-subject deformation vectors. This deformation field is applied to the PD-weighted
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reference image to generate an ”artificial” PD-weighted study image. This artificial PD-
weighted image is finally segmented to yield an ICV mask for the study image.

In the next section, we describe our approach in more detail. Then, we evaluate its
performance in a ”bootstrap” fashion. Finally, we compare our method and results with
the three approaches mentioned above.

2 Algorithms

In the following, certain heuristics (detailed below) require that the dataset has been
aligned with the stereotactic coordinate system. The x axis corresponds to the ear-to-ear
direction, the y axis to the nose-to-back direction, the z axis to the head-to-feet direction.
Indices ca resp. cp refer to the position of the anterior and posterior commissure.

2.1 Generating an ICV Mask from a PD-weighted MR Image

On input, we expect a PD-weighted image of a human head at an isotropical resolution
of 1 mm and an intensity resolution of 256 steps. Intensity inhomogeneities should have
been corrected by any suitable algorithm. Note that the dataset has been aligned with
the stereotactic coordinate system, e.g., by registration with an aligned T1-weighted
image of the same subject. The algorithm consists of three steps: (a) computation of a
head mask, (b) computation of an initial ICV mask, (c) refinement of the ICV mask at
the brainstem and hypophysis.
Computation of a head mask: The aim is to segment the head region as a single con-
nected component without holes. Steps are spelled out as follows:

i1 = isodata(iPD, 2) // segment into two intensity classes
i2 = binarize(i1, 1, 1) // select foreground voxels
i3 = dilate(i2, 5) // morphological dilation by 5mm
i4 = invert(i3) // next 3 steps fill holes inside head mask
i5 = selectBig(label(i4, 26)) // select biggest 26-connected component
i6 = invert(i5)
i7 = erode(i6, 5) // restore original head size
ihm = selectBig(label(i7, 26)) // select the biggest component

Computation of an initial ICV mask: The next step is to generate a first mask of the in-
tracranial region. The threshold th and eroding distance dist are determined iteratively:

i1 = erode(ihm, 5) // erode head mask by 5mm
iext = invert(i1) // this mask contains all exterior voxels
th = 40, dist = 4 // set initial parameters
do {

i2 = binarize(iPD, th, 255) // select voxels above an intensity threshold
i3 = erode(i2, dist) // separate ICV from small components
i4 = selectBig(label(i3, 26)) // select biggest 26-connected component
iicv1 = dilate(i4, dist) // restore original mask size
th += 5, dist += 0.6 // increment parameters

} while (and(iicv1, iext) �= {}) // stop if exterior and ICV mask do not overlap
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Due to the application of morphological operators with large kernels, some areas
of the intracranial volume with high curvature are rounded off in this first mask. A
refinement step adds these voxels back:

i1 = dilate(iicv1, 2) // dilate ICV mask by 2mm
i2 = mask(i1, iPD) // mask out these voxels from the PD image
i3 = binarize(i2, th, 255) // select voxels above an intensity threshold
i4 = and(invert(iext), i1) // select only voxels above an intensity threshold...
i5 = open(and(i3, i4), 1) // ...that do not belong to the exterior mask
iicv2 = selectBig(label(i5, 26)) // select biggest 26-connected component

Computation of the final ICV mask: The brainstem and hypophysis regions need special
treatment, because here the high flow in large vessels and CSF lead to a low signal in
the PD-weighted image. Thus, parts in these areas are not included in the initial ICV
mask.

Fig. 1. Refinement of brainstem segmentation: Midsagittal plane of image icone (left),
after thinning (middle), and brainstem midline (right).

Refinement at the brainstem: A cone-shaped mask is placed with a tip at the center of
the anterior and posterior commissure, and a basis at the bottommost slice of the dataset
with a maximum radius of 80mm. Voxels of the PD-weighted image within this mask
are selected if their intensity is above 100 to yield the binary image icone (see Fig. 1).
The medial surfaces of the objects in this image are computed [20]. Sagittal slices in
this datasets are searched for the longest connected line that is denoted as the brainstem
midline.

Using this line, the brainstem and its surrounding CSF is segmented sequentially
in axial slices. In each slice, the smallest distance dh from the midline voxel vm to the
next background voxel is determined. All foreground voxels within the circle of radius
dh around vm are collected as the initial brainstem mask ibs. This mask is dilated by
10mm to yield ibs 10. In this mask ibs 10, each foreground voxel is visited radially,
starting from the midline voxel. A foreground voxel is eliminated if one of the following
conditions is true: (a) this voxel belongs to the background in iPD, (b) we approached
the dura mater around the brainstem: this voxel does not belong to the brainstem in ibs
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and has an intensity above 80 in iPD, (c) condition (a) or (b) were already true on the
radial path.

Finally, a morphological opening using a 1.5mm kernel and a selection of the biggest
connected component leads to the brainstem mask that is joined with iicv2 to yield iicv3.

Refinement at the hypophysis: In the aligned images, the position of the hypophysis is
well known within the subvolume (xca − 20 ≤ x ≤ xca + 20, yca − 20 ≤ y ≤ ycp,
zca ≤ y ≤ 160). Voxels within this subvolume above the threshold th of iPD are
collected as image ihy. Now, the region around the hypophysis is segmented as follows:

i1 = and(invert(iicv3), ihy) // remove voxels that already belong to iicv

i2 = open(i1, 1) // remove small bridges to the hypophysis
i3 = selectBig(label(i2, 26)) // select the hypophysis
i4 = or(i3, iicv) // join the hypophysis with iicv

iicv4 = close(i4, 5) // close small gaps

Finally, starting from the bottommost axial slice in image iicv4 upwards, the area
of the ICV mask is calculated. A running average is computed over 10 slices; the level
zcer at which the current value is greater than 2 times the running average is taken as
the basis of the cerebellum [15]. Voxels in axial slices below zcer + 10 are removed to
yield the final ICV mask iicv (see Fig. 2).

Fig. 2. Border of the ICV mask overlaid on the T1-weighted image (top row) resp. PD-
weighted image (bottom row) for reference sample 12 (see below).
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This algorithm was implemented in C++ using the BRIAN environment [12]. The
computation time is 221s (AMD Athlon 1800+ machine, Linux 2.4 operating system).

2.2 Generating an Artificial PD-weighted Image

Given reference datasets iT1 ref and iPD ref , an artificial PD-weighted image iPD stu

for a study subject is computed using iT1 stu. A non-linear registration from iT1 ref

onto iT1 stu yields a field of deformation vectors idef . In principle, any method for
non-linear registration may be used here that accomodates large-scale deformations.
We used an approach based on fluid dynamics [5], [23]. The deformation field idef

is applied to the reference dataset iPD ref to yield an artificial PD-weighted image
iPD stu. Our registration algorithm was implemented in C++ using the BRIAN envi-
ronment, the computation time is about 22min (due to image dependent optimization,
measured on an AMD Athlon 1800+ machine, Linux 2.4 operating system).

In summary, if T1- and PD-weighted datasets are available for the same subject,
an ICV mask is generated using the first algorithm. If only a T1-weighted dataset is
available, an artifical PD-weighted dataset is computed from a dual-weighted reference
by non-linear registration, and an ICV mask is segmented from this artificial dataset.

3 Evaluation

Subjects: The MPI maintains a database of subjects enrolled for functional MRI exper-
iments. Before admission, a brief history and physical inspection is taken by a physi-
cian. Subjects are included in this database if they comply with the informed consent for
conducting general fMRI experiments, pass the examination and do not exhibit patho-
logical features (e.g., unilateral ventricular enlargements, subarachnoidal cysts) in their
MR tomograms. Twelve subjects were selected, for which high-resolution T1- and PD-
weighted datasets were available, generally acquired in separate sessions.
Image Acquisition: Magnetic resonance imaging (MRI) was performed on a Bruker 3T
Medspec 100 system, equipped with a bird cage quadrature coil. T1-weighted images
were acquired using a 3D MDEFT protocol [14]: FOV 220×220×192 mm, matrix
256×256, 128 sagittal slices, voxel size 0.9×0.9 mm, 1.5 mm slice thickness, scanning
time 15 min. PD-weighted images were acquired using a 3D FLASH protocol with the
same resolution parameters.
Preprocessing: T1-weighted images were aligned with the stereotactical coordinate sys-
tem [13] and interpolated to an isotropical voxel size of 1 mm using a fourth-order
b-spline method. Data were corrected for intensity inhomogeneities by a fuzzy seg-
mentation approach using 3 classes [17]. PD-weighted images were registered with the
aligned T1-weighted images (6-parameter transformation for rotation and translation,
normalized mutual information cost function, simplex optimization algorithm). Finally,
the registered PD-weighted images were corrected for intensity inhomogeneities using
2 classes.
Processing: Data of one subject were considered as a reference. Artificial PD-weighted
images were computed for the other 11 subjects by the method described above. ICV
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1 2 3 4 5 6 7 8 9 10 11 12
∆V 1.68 1.82 2.03 2.11 3.54 2.25 1.93 1.73 2.14 1.46 2.73 1.23
dc 0.969 0.970 0.966 0.967 0.962 0.961 0.971 0.964 0.968 0.972 0.969 0.971

Table 1. Averaged volume differences ∆V (in percent) and overlap dc (Dice similarity
index) for each reference vs. the 11 study subjects.

masks were determined from the real and the artifical PD-weighted images. Their vol-
ume differences ∆V (in percent) and overlap dc (as measured by the Dice similarity
index [6]) were computed. So in total, 12 by 11 comparisons were made. Note that a
low volume difference (< 2%) and a high Dice index (> 0.96) correspond to a good
adaptation of the ICV mask. Averaged results for each reference are compiled in Table
1. The volume difference ranged between 0.02% and 8.69%, the Dice index between
0.934 and 0.981. Best results were achieved if using sets 10 or 12 as reference.

Results Discussion: Although the algorithm may appear complex at first sight, it re-
quires a set of only 10 basic image processing operations. The validity of the built-in
anatomical heuristics were carefully checked for our database, and are expected to be
valid for any (normal) MR image of the head.

Several factors influence the ICV segmentation: (a) The quality of the reference
datasets. Head motion, flow and DC artifacts impede good segmentation results. (b)
A high flow in the sinuses may lead to a low signal at the border of the intracranial
cavity in the PD-weighted image, leading to possible segmentation errors at the ICV
border. However, the induced volume error was found to be less than 0.5%. (c) In areas
of the convexity of the skull where the tabula interna is very thin, the partial volume
effect may smear the signal intense dura mater with the bone marrow, so that parts of
the bone marrow are included in the ICV mask. Again, only a small induced volume
error (0.2%) was found. In summary, the ICV mask should be checked visually when
selecting datasets as a reference.

Other factors influence the adaptation quality of the artificial ICV mask: (a) We
noted a significant relation between the volume difference ∆V before and after reg-
istration, e.g. a difference in the ICV volume between the reference and the study of
200ml leads to a volume error ∆V of 40ml (or 3%) in the artificial ICV mask. Most
likely, this is a consequence of the partial volume effect in the registration procedure,
since the ICV border layer has a volume of typically 65ml. (b) One may ask whether the
deformation field generated from a non-linear registration of T1-weighted datasets is a
good model for the anatomical inter-subject differences, and thus suitable for applying
it to the PD-weighted dataset. In particular, this is true for study cases where we found
a low Dice index. In summary, the ICV difference between reference and study image
should be small to yield a good ICV estimate for the study dataset.

In practice, one or more reference datasets should be chosen from a larger group by
the method discussed above. Selection criteria are a low volume difference (< 2%) and
a high Dice index (> 0.96) for all adaptations in the group. The mean error may be used
as an estimate for the expected error in the generation of the study ICV mask.



Determination of the Intracranial Volume: A Registration Approach 259

4 Discussion

A new approach for the determination of the intracranial volume in MRI datasets of
the human head was described. In a nutshell, an ICV mask is computed from a high-
resolution PD-weighted dataset. If such an image is not available, a non-linear registra-
tion between a T1-weighted dataset of a reference and a study subject yields a defor-
mation field that is applied to the reference PD-weighted dataset in order to obtain an
artificial study PD-weighted dataset. An ICV mask for the study subject may then be
generated. Using a suitable reference, this approach yields an expected volume error of
less than 2% and an overlap of better than 0.97. The process is fully automatical and re-
liable: On a 4 processor cluster, we generated ICV masks for a database of 540 normal
subjects in 68h.

Compared with the three approaches mentioned in the introduction, manual delin-
eation of the intracranial cavity, as previously used in our [21], [22] and other studies
[1], [7], [8], [10], [11], [18] is tedious (about 1.5h of work per dataset). If performed by
an expert, it may still be considered as the gold standard, although small ambiguities
due to the partial volume effect and inter-rater variability induce a volume error of the
same magnitude as our method.

Alfano et al. [2], [3] suggested to use multispectral MRI datasets for ICV segmen-
tation, while Lemieux et al. [15], [16] base their approach on T1-weighted data only.
Our method lies somewhat between both of these approaches: we use the helpful infor-
mation provided by the PD-weighted datasets for ICV segmentation, but do not require
that multispectral data are available for all subjects in a study. If high-resolution T1-
weighted data are provided, this method may even be used retrospectively.

As noted in the introduction, the ICV is closely related to the brain size of young
healthy adults. Thus, ICV measures may be used to estimate the premorbid brain size,
which is useful to compute the amount of atrophy in brain degeneration due to dif-
fuse diseases (e.g., Alzheimer’s disease, anoxic encephalopathy, microangiopathy) or
following focal brain damage (e.g., cerebral infarction or hemorrhage, after tumor re-
moval).
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