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Abstract. White matter lesions are common pathological findings in
MR tomograms of elderly subjects. These lesions are typically caused by
small vessel diseases (e.g., due to hypertension, diabetes). In this paper,
we introduce an automatic algorithm for segmentation of white matter
lesions from volumetric MR images. In the literature, there are methods
based on multi-channel MR images, which obtain good results. But they
assume that the different channel images have same resolution, which
is often not available. Although our method is also based on T1 and
T2 weighted MR images, we do not assume that they have the same
resolution (Generally, the T2 volume has much less slices than the T1
volume). Our method can be summarized as the following three steps: 1)
Register the T1 image volume and the T2 image volume to find the T1
slices corresponding to those in the T2 volume; 2) Based on the T1 and
T2 image slices, lesions in these slices are segmented; 3) Use deformable
models to segment lesion boundaries in those T1 slices, which do not
have corresponding T2 slices. Experimental results demonstrate that our
algorithm performs well.

1 Introduction

White matter lesions are common pathological findings in MR tomograms of
elderly subjects, which are typically caused by small vessel diseases (e.g., due to
hypertension, diabetes). It is currently under debate how much the presence of
these lesions is related to cognitive deficits in elderly subjects. So an automatic
analysis is very useful. But building reliable tools to segment MR images with
pathological findings is a nontrivial task. Manual segmentation is a fundamen-
tal way to segment MR images, but it takes a trained specialist a lot of time
because of the large amount of image data. Moreover, different specialists may
give different segmentation results. Compared with manual segmentation, the
advantages of automatic segmentation include increased reliability, consistency,
and reproducibility.

In the literature, several brain lesion segmentation methods have been in-
troduced [1,2,3,4,5,6,7], and many of them concentrate on multiple sclerosis
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(MS)[3,4,7]. Some of these algorithms use only T1-weighted images [5,6], others
are based on multi-channel volumes [1,3,4]. In [1], a semi-automatic method is
introduced, in which typical tissue voxels (white matter, cerebral spinal fluid,
and gray matter, lesions) are selected by the user to train an artificial network,
then it is used to analyze the MR images; Leemput, et al. [3] view lesions as
outliers and use a robust parameter estimation method to detect them. A multi-
resolution algorithm is used to detect Multiple Sclerosis lesions in [4]. Kovalev,
et al. [5] take advantage of texture analysis to extract features for description
of white matter lesions. In [7], models of normal tissue distribution are used for
brain lesion segmentation, but they label lesions in the transformed data space,
instead of the original image volume.

The main obstacle to white matter lesion segmentation is that the intensities
of white matter lesions and gray matter are very similar in T1-weighted images
, therefore they can not be distinguished only by intensities of the T1 images
(see Fig. 1). It is expected that multi-channel based methods will obtain better
results. On most current scanners, it takes an inacceptable long time to acquire a
T2-weighted image volume at the same resolution as a T1-weighted volume, that
is approximately 1 mm in all spatial directions. Thus, most imaging protocols
only allow for the acquisition of a sparse set (20-30) of T2-weighted slices at a
typical slice thickness of 5-7 mm. The aim of this paper is to develop a white
matter lesion segmentation algorithm based on multi-channel MR volumes, but
we do not assume that T1 volumes and T2 volumes have the same resolution.
Our algorithm can be summarized as follows: 1) Register the T1 image volume
and the T2 image volume to find the T1 slices corresponding to those in the
T2 volume; 2) Based on the T1 and T2 image slices, lesions in these slices
are segmented; 3) Use deformable models to segment lesion borders in those
T1 slices, which do not have corresponding T2 slices. The deformable model is
initialized according to the neighboring segmented lesions based on both T1 and
T2 slices.

The rest of the paper is organized as follows: Section 2 is devoted to the
segmentation of lesions based on both T1 image and T2 image slices. We de-
scribe how to apply deformable models for lesion segmentation in Section 3;
Experimental results are given in Section 4; A summary is made in Section 5.

2 Lesion Segmentation Based on T1 and T2 Slices

As for the T1 image volume and the T2 image volume are of the same person
and are scanned almost in the same time, registration methods based on rigid
transformation are enough for our requirements. We use the registration method
[8] to find which T1 slices correspond to those T2 slices. And these T1 slices
form a T1 volume denoted by S with the same resolution as the T2 volume.
At the same time, the T1 volume is transformed using the same transformation
parameters.

We firstly segment lesions in those T1 weighted slices that have corresponding
T2 slices. These segmented lesions provide some location and shape information
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Fig. 1. Illustration of image parts, which can not be distinguished only by T1
image.

of the lesions in other slices. The steps to segment lesions based on T1 and T2
slices are as follows:

– Both the selected T1 image volume S and the T2 volume are segmented
using a C-fuzzy mean algorithm [9]. Only those voxels, which are similar
with gray matter in T1 channel and similar with CSF in T2 channel are
classified as lesions. This can be expressed as follows:

Γles = {v|pv,gm(T 1)pv,csf(T 2) > β} (1)

where pv,gm(T 1) and pv,csf (T 2) are the memberships indicating in how much
context voxel v belongs to gray matter in T1 volume and belongs to CSF in
T2 volume, respectively.

– From the segmented lesions, we can obtain some statistical lesion information
(mean value µles and standard deviation σles).

Some slices of the T2 image volume, its corresponding T1 slices and the seg-
mented lesions are shown in Fig. 2.

3 Lesion Segmentation by Applying Deformable Models

Following the lesion segmentation in the corresponding slices, it is necessary to
process those slices without corresponding T2 slices. We assume that the lesions
in neighboring T1 slices are similar, that is, the location and shape of the lesions
does not greatly vary. This is likely, when the T1 volume resolution in the slice
direction is high (our image data is 1mm) and the lesions are not very small.
We can make use of the the location and shape information obtained from the
segmented lesions based on both weightings. We use deformable models to ac-
complish this task. The deformable model is firstly initialized by the neighboring
segmented lesions, then adapts itself according to the current image slice.
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Fig. 2. Original slices and segmented lesions. The first row is the mapped T1
slices; The second row is original T2 slices; And the last row is the segmented
lesions.

3.1 Representation of the Discrete Contour Model

In this section, we give a brief description of the original model ( refer to [10] for
details). The model is made up of a group of vertices connected by edges (see
Fig. 3). The position of vertex Vi is represented by vector pi. The unit vector
of the edge between vertex Vi and Vi+1 is denoted by di. The unit tangential
vector at vertex i is defined as

ti =
di−1 + di

||di−1 + di|| (2)

The radial vector ri is obtained by rotating the tangential vector π/2 clockwise.
Each vertex moves along its radial vector during the deformation. The movement
of each vertex is based on the sum of the internal, external, and a damping
force. The internal force, which is based on the curvature ci = di − di−1, makes
the dynamic contour smooth. The damping force fdamp,i is proportional to the
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Fig. 3. The model consists of a set of vertices Vi, which are connected by
edges Di.
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velocity of the vertex. The contour deformation is computed in discrete positions
in time

pi(t + ∆t) = pi(t) + vi(t)∆t (3)

vi(t + ∆t) = vi(t) + ai(t)∆t (4)

ai(t + ∆t) = fi(t + ∆t)/mi (5)

fi = wexfex,i + winfin,i + wdampfdamp,i (6)

where ai, vi and mi are vertex acceleration, velocity and mass, respectively;
wex, win, and wdamp are weights for the external, internal, and damping forces,
respectively. For a special application, it is important to define the external force.

3.2 External Forces

For an application of the discrete contour model, it is of great importance to
define a proper external force. Our external force includes an edge based compo-
nent, a balloon component and a shrinking component. Often there are multiple
boundaries near the lesions. We assume that the initial contour is placed near
the real edge of the lesions. The assumption is true, when the T1 image volume
has high resolution along the slice direction and the lesion is not too small. And
we also define the balloon and shrinking force to cope with the cases that the
assumption is not true. The total external force is:

fex,i = fex,i,ege + fex,i,bal + fex,i,shr (7)

– Edge based component: we search the nearest edge in the direction of ri.
The point on this direction can be represented by pi + xri. The intensities
of the points pi + xri form an function g(pi + xri) with −L < x < L, where
L is a constant. The nearest edge point is

p� = pi + x�ri (8)

where x� is the minimum of x, which satisfies g(2)(pi + xri) = 0. The edge
based component is then calculated by

fex,i,ege = ((p� − pi)·ri)ri = x�ri (9)

– Balloon component: In some cases, the initial vertex is inside the lesions, so a
balloon force is required to let the vertex move outside. We use Γi to denote
the set made up of vertex i and its four nearest neighbors. if |Ij−µles| < σles,
j ∈ Γi, then fex,i,bal = −γ. Here Ij is the intensity of pixel j; µles and σles

are the mean value and standard deviation of the lesions, respectively, which
are obtained during the lesion segmentation based on both weightings.

– Shrinking component: The initial vertex sometimes locates outside the le-
sions, therefore we add a shrinking component to let the vertex move inside.
if |Ij − µles| > 2σles, j ∈ Γi, then fex,i,shr = γ.
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Fig. 4. Some slices of segmented lesions of one patient.

4 Experimental Results

Our experimental image volumes were obtained by a 1.5 Tesla clinical MR scan-
ner. The voxel size of the T1 volume is 0.977× 0.977× 1 mm; The T2 volume is
0.498 × 0.498× (5.0 − 7.0) mm.

In our experiment, some important parameters are as follows: β = 0.2, ∆ =
0.5, mi = 1, wex = 2.5, win = 2, wdamp = 1, L = 5, γ = 1. In Fig. 4 and
Fig. 5, some slices of the segment results of different patients are displayed, in
which the boundaries of the lesions are shown. Validating the extent of the white
matter lesions is difficult: Lesion borders are faint, and sometimes the distinction
between a lesion and grey matter of a fundus region is hard to draw. Thus, we
resort to a critical visual inspection of the results by a neuroradiologist. Note
that the caudate nucleus that is similar in intensity to grey matter and is often
adjacent to a white matter lesion, is correctly excluded from the lesion area here.

The effect of the internal force is to make the curve smooth. The larger the
parameter win, the smoother the curve. The external force try to let the curve
approach the image edges. The final obtained curve is a trade-off between the
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Fig. 5. Some slices of segmented lesions of another patient.

external force and internal force. For our image datasets, the above parameter
values are proper. It seems that they are too many parameters. In fact, for a
set of image volumes, we can adjust them once and they can be used for all
other image volumes. In all of the parameters, the user must adjust β. For our
image volumes, β = 0.1 − 0.2 is proper, which can be seen from Fig. 6. Because
the deformable model adapts itself based on the image slices, the result is not
sensitive to parameter β.

5 Summary

In this paper, we developed a novel and effective white matter lesion segmen-
tation algorithm. Our method is based on T1 and T2 image volumes. But we
do not assume that they have the same resolution. We firstly analyze those T1
slices, which have corresponding T2 slices. The segmented lesions in these slices
provide location, shape and intensity statistical information for processing other
neighboring T1 slices without corresponding T2 slices. This prior information is
used to initialize a discrete contour model in the segmentation of the remaining
T1-weighted slices.
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Fig. 6. Effect of parameter β, from left to right β = 0.1, 0.15, and 0.2, respec-
tively.
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