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An Object-Based Approach for Detecting Small
Brain Lesions: Application to Virchow-Robin Spaces

Xavier Descombes*, Frithjof Kruggel, Gert Wollny, and Hermann Josef Gertz

Abstract—This paper is concerned with the detection of mul-
tiple small brain lesions from magnetic resonance imaging (MRI)
data. A model based on the marked point process framework is
designed to detect Virchow-Robin spaces (VRSs). These tubular
shaped spaces are due to retraction of the brain parenchyma from
its supplying arteries. VRS are described by simple geometrical
objects that are introduced as small tubular structures. Their
radiometric properties are embedded in a data term. A prior
model includes interactions describing the clustering property of
VRS. A Reversible Jump Markov Chain Monte Carlo algorithm
(RJMCMC) optimizes the proposed model, obtained by multi-
plying the prior and the data model. Example results are shown
on 1-weighted MRI datasets of elderly subjects.

Index Terms—Features extraction, marked point processes, re-
versible jump MCMC, Virchow Robin spaces.

I. INTRODUCTION

DETECTING focal lesions in magnetic resonance imaging
(MRI) data sets of the human head is considered a

nontrivial segmentation task. Segmentation approaches require
prior knowledge about the lesion charactistics (e.g., their
expected compartment, size and shape, their signal statistics
in relation to the embedding tissue), and thus, are generally
targeted for detecting a specific lesion type (e.g., [6], [18], [24],
and [29]). For historical reasons and their medical significance,
most approaches focused on white matter (WM) lesions due
to Multiple Sclerosis (e.g., [15], [19], [26]), while methods
for segmenting large focal lesions appeared only recently
(e.g., [13]).

Different types of small focal lesions are typically found in
MRI scans of elderly subjects. Their neuropathological sub-
strate and their influence on cognitive abilities is still under de-
bate [10]. The neurobiological background of this work is to aid
in discriminating healthy from pathological aging as revealed by
MRI brain data sets.

While a trained human observer is still outperforming auto-
matic approaches for lesion detection and discrimination, esti-
mating the lesion count and describing their position is tedious
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Fig. 1. An example of the tubular shape of VRS.

due to their multitude. So typically, these lesions are evaluated
visually in the acquired data sets and rated by semiquantitative
scales [22]. One such lesion type is called “enlarged Virchow-
Robin space” (VRS) that corresponds to a small gap around a
deep penetrating artery supplying the WM. Such lesions appear
as small tubular structures filled with cerebro-spinal fluid (CSF)
that are (ideally) radial to the brain surface. Typically, they are
close to the spatial resolution limit of current MRI methods
(1–3 mm in diameter and 3–15 mm long), and a single brain
may contain hundreds of such lesions.

Herein, we consider an approach to detect small lesions that
are nonuniformly distributed in space, have some shape prior
and some constraints for their relative positions. Our frame-
work is based on a marked point process and general under these
hypotheses.

Structure and distribution of VRS have motivated the fol-
lowing approach. First, a VRS typically consists of several
voxels forming a tubular shape (see Fig. 1). Thus, an approach
based on a geometrical object appears suited for this problem.
Second, VRS are not uniformly localized and some regionally
higher occurence can be observed (see Fig. 2). Interactions
between objects are included in the model to favor clustering of
VRS while suppressing an overlap of different VRS. A certain
shape variability (length and diameter of the tubular structures
in our case) and data noise have to be taken into account
introducing local minima of the model-related cost function. To
overcome this problem, we consider a stochastic framework.

The template theory introduced by Grenander allows mod-
eling random shapes [9]. Within this pattern theory framework,
several kinds of objects can be considered and complex scenes
containing several objects can be represented by a graph [17]. In
our context, the object’s shape model is simple and represented
by a small segment. The complexity of the model lies in the dif-
ferent object interactions we will introduce. Therefore, we have
preferred the marked point process framework here [1], [2]. This
framework has been successfully applied in image analysis, e.g.,
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Fig. 2. An example of the clustering property of VRS: (a) axial, (b) coronal,
and (c) sagittal sections.

in the context of cell segmentation [14], [21] or road network
extraction [23]. A point process with a Poisson density measure
models the number of objects and their localization in the scene.
This process may include interactions between points such as
explicit relations or clustering properties. Shape parameters are
associated with the points to define the object geometry (e.g.,
length and orientation of an object).

Model optimization can be achieved by a birth and death
process [2], a jump diffusion [17] or a Reversible Jump Markov
Chain Monte Carlo algorithm (RJMCMC) [5], [8]. Birth and
death processes require the computation of a birth (or death)
rate map which leads to costly algorithms on a three–dimen-
sional (3-D) volume. The main advantage of the RJMCMC ap-
proach lies in the flexibility of the derived algorithms. Within
this framework, we can define dynamics adapted to the target
distribution. Therefore, we prefer a RJMCMC algorithm em-
bedded in a simulated annealing scheme. We define a proposi-
tion kernel mixing different subkernels allowing us to move or
to add and suppress objects. Some specific subkernels allow us
to speed up the convergence rate of the algorithm.

In the Section II, we describe a data model for VRS. Fil-
ters designed as VRS indicators define the space where the first
points of the objects are located. The subsequent section intro-
duces the marked point process that consists of the prior model

(i.e., the geometry of the object and their interactions) and the
data term (i.e., the filter output). The RJMCMC algorithm is
described in Section IV. Section V is devoted to results. Finally,
some conclusions are drawn in Section VI.

II. DATA MODEL

In this section, we derive filters which can be interpreted as
VRS indicators. These filters extract the information provided
by the radiometry (grey level of voxels). However, this infor-
mation is not sufficient to characterize the lesion, so a prior is
defined to include knowledge about the relative localization and
geometric properties of VRS. Filter results serve to define the
data term and the volume where the point of the process de-
fined in Section III are living. In a first approach, they can be
modeled as small tubular structures, with a diameter close to
the data resolution (typically 1–3 mm, [3]). Their length varies
with an average of 3–4 mm but can reach up to 15 mm in ex-
ceptional cases. The data representation of these structures is
discrete due to the discrete nature of the image lattice. The in-
duced discretization is far from being isotropic. Therefore, we
can only consider the three main directions ( ) defined by
the data without loosing significant information. For these three
directions we design filters that take the diameter variability and
the partial volume effect into account. A filter lies in the plane
perpendicular to the considered direction, say . It consists of
a central voxel , the eight surrounding neighbors ,
and the next 16 neighbors (see Fig. 4). A VRS
is characterized by three properties: 1) VRS contain CSF that
should appear as low-intensity voxels in -weighted datasets.
2) Surrounding tissue (i.e., WM or GM voxels) may increase
lesion intensities due to the partial volume effect. Thus, neigh-
boring voxels will have higher intensity and 3) are contrasted
with the VRS voxels. We define three filters corresponding to
these three properties ,
and , where represents the grey
level of voxel in the data. Note that these three properties
are not equivalent. Considering only one of them leads to false
alarms in the CSF compartment for property 1), in the WM for
property 2), and in the thin GM structures for property 3). The
three defined functions depend on the data statistics and are de-
fined on Fig. 3. We combine these three properties as shown in
(1) at the bottom of the page. To avoid multiple detections of the
same VRS, the final filter is written as follows:

if
otherwise

(2)

To compute the mean and standard deviation of the CSF, GM,
and WM, we used a segmentation based on a region growing

(1)
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Fig. 3. The three filters characterizing VRS data: � , � , and �

represent the mean of CSF, GM, and WM, � being the associated standard
deviations.

approach [12]. The presence of lesions leads to local segmen-
tation errors. Since their total volume is small [13], we neglect
this influence on the grey level statistics of the different classes.

III. THE MARKED POINT PROCESS

To increase the sensitivity and reduce the false alarms rate,
we have to consider geometric information about VRS. Besides,
VRS are not distributed uniformly in the brain. The information
on their location obtained from medical studies has to be con-
sidered. The marked point process framework is adapted here
because it can embed such properties. The number of objects
is random (we do not know a priori the number of VRS in
a dataset), some prior knowledge concerning the geometry is
modeled by the object definition and by a density on the under-
lying parameters. Besides, some interactions between objects

Fig. 4. VRS indicator filter: central voxel s in black, first neighborhoodN (s)
in white, and second neighborhood N (s) in grey.

allow us to take into account the information concerning the lo-
calization and the relations between the different VRS.

The full model for the marked point process consists of
the prior model and the data term

(3)

Both terms are now discussed in detail.

A. Prior Model

The prior model takes the geometry of a detected object and
its interactions into account. Each object is represented by a
point with attributes (or marks) that define its geometry. The

resulting configurations is a set of marked points

where and

is a vector in . We restrict the volume to the space
of points that satisfy ,
where , and are the filters defined in Section II.

We consider objects as small oriented segments with ending
points and where and ,

( ) corresponds to the minimum (maximum) segment
length. We define a distribution on the configuration space
whose density with respect to a Poisson measure is written as
follows:

(4)
where defines a neighborhood relation. is a density pa-
rameter which drives the number of objects in the configura-
tion (note that the density corresponds to a Poisson

process with intensity ). The term represents a
prior on the segment length and is defined as follows:

(5)

In our experiments, we have chosen and ,
according to the length of VRS observed in our datasets and

reported in the literature [10], [11]. The term
defines interactions between neighboring segments. We con-
sider three kinds of interactions (see Fig. 5): 1) an explicit term
which penalizes intersecting segments; 2) a clustering term
which favors neighboring segments with similar orientation;
and 3) a repulsive term which penalizes neighboring segments
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Fig. 5. Explicit (left), clustering (middle) and repulsive (right) interactions.

with different orientations. To define the different interactions,
we consider the silhouette of the segment as the
discrete projection of the segment onto the lattice. We use the
following explicit interaction to penalize intersecting segments
(hard core interaction):

(6)

Denote the three coordinates of by . Two seg-

ments and have a similar -direction if and only if

(7)

If and have a similar -direction, we have a clustering
interaction

(8)

This interaction is easily extended to segments having similar
or directions. Finally if two segments have no similar direc-
tions, we define a repulsive interaction as follows:

(9)

Note that and are mutually
excluding. Since we found VRS pairs with no similar direction
and , we have chosen and in our experiments.

B. Data Term

We now define the data term . Assuming that data are
independent conditionally to the segments we can write

(10)

The data term corresponding to a segment consists of two
parts. The first part is proportional to the filter values along the
segment as defined in Section II. In the second part, we assume

Fig. 6. The prolongating filter: � , � , and � represent the mean of
CSF, GM, and WM, � correspond to the associated standard deviations.

that voxels at the segment end have a high intensity as they do
not belong to the VRS. The data term is then written as follows:

(11)

where is the number of voxel in and (12), shown at the
bottom of the page, holds, where is defined on Fig. 6.
Similar definitions are used for and .

IV. RJMCMC ALGORITHM

In this section, we derive an RJMCMC algorithm to optimize
the model . For details about the theoretical background
of this algorithm we refer to [8]. The optimal solution is de-
fined by the configuration maximizing the density distribution

. We consider a simulating annealing scheme by iteratively
sampling the distributions , while the tem-
perature parameter is decreasing. Contrary to more classical
models such as Markov random fields, the number of random
variables is not fixed because we do not know the number of
segments beforehand. The Metropolis-Hastings algorithm must

if

if

(12)
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be extended to allow jumps between configurations of different
dimension, which can be achieved by the RJMCMC algorithm
proposed by Green [8].

A. General Algorithm

In this section, we briefly recall the RJMCMC algorithm.
First, we define a simulated annealing scheme by considering
the following procedure.

1. Set to , to 0.
2. Compute iterations of the RJMCMC al-
gorithm to simulate .
3. If exit, else set to ,

(with ) and go to 2.

To simulate a distribution , we consider several transi-
tion kernels corresponding to different moves
(birth/death of a segment, changing the mark of a segment,
etc.) in the configuration space. The global transition kernel
is then given by with

. An iteration of the RJMCMC algorithm is then
written as follows.

1. Select a move with probability .
2. Select according to .
3. Compute the acceptance ratio

(13)

where is the reverse move asso-
ciated with
4. Accept the transition with prob-
ability

For some move (e.g., a birth), the dimension of may differ
from the dimension of , say . In that case,
we have to match the dimension by considering auxilliary
random variables , which are sampled using a distribution

, and such that there exists a bijective transformation
with . Then, we have

(14)

where is the Jacobian and is the probability
to propose the forward jump [in the birth example

].

B. The Different Moves

Hereafter, we describe the different moves. These moves and
their associated acceptance ratio are summarized in Table I. The
derivations of the acceptance ratios are given in the Appendix .

We first consider a birth and death move. This move is essen-
tial to establish the real number of segments in the configuration.
Besides, it guaranties the irreductibility property. This move is
chosen with probability . It consists in adding a new segment
with probability or removing a segment from the configura-
tion with probability . In the case of a death move,
the segment is chosen uniformly among the segments of the cur-
rent configuration. For the birth move, we propose a new seg-

TABLE I
DIFFERENT MOVES DEFINING THE RJMCMC ALGORITHM: x IS THE

CURRENT CONFIGURATION AND x IS THE PROPOSED ONE

(SEE THE APPENDIX FOR DETAILS AND NOTATIONS)

ment uniformly in the parameter space. To overcome the low ac-
ceptance ratio of the death move when the current configuration
contains only a few segments, we propose to move a segment.
We choose a segment uniformly within the configuration and
select a new location and new marks uniformly within the pa-
rameter space. The move is made with probability . With this
move, we can change the segments having a low probability. To
allow a local improvement of the segments localization with re-
spect to the data we consider the move of end points. This move
is made with probability . We choose a new location of the
end point uniformly in a neighborhood of its current position.
This move may also extend segments in partially detected VRS.
A VRS can be covered by several nonoverlapping segments
during optimization. Extending segments has a very low accep-
tance ratio in this configuration because it may induce overlap-
ping, which is penalized by the explicit interaction term. A death
move followed by an extension has also a low acceptance ratio
because all the segments within this local configuration fit the
data well. Therefore, we have introduced a move which merges
neighboring segments. The reverse move corresponds to split-
ting a segment in two parts. This move is made with probability

. A merging is proposed with probability and a splitting
with probability . Segments having an opposite di-
rection cannot be merged because the constraint imposing that
the first point of each segment should belong to leads to diffi-
culties in the computation of the acceptance ratio. To merge such
configurations we define a new move which returns a segment.
It is proposed with probability .

C. Convergence

The optimization is performed by a MCMC sampler em-
bedded into a simulated annealing scheme. If the considered
point process is stable, which is the case here, the sampler
converges to a stationary measure, which is the defined process.
Convergence is reached for any initial configuration, e.g., the
empty configuration chosen here. Convergence is achieved
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(a) (b)

(c) (d)

Fig. 7. An example of VRS detection: (a) Original axial slice, (b) detected
VRS, (c) Coronal slice corresponding to VRS 3, and (d) sagittal slice
corresponding to VRS 3.

in theory with only birth and death moves. However, adding
other moves speeds up the optimization process. The weighting
between the different moves defining the kernel has been set
empirically to optimize the convergence rate. The simulating
annealing scheme provides a convergence to a Dirac measure
on the configuration maximizing the defined density. This con-
vergence property has been proved for a logarithmic decrease
of the temperature. In practice, to speed up the process, we
consider a geometric decrease of the temperature.

V. RESULTS

The target application of the algorithm described above is the
detection of VRS in MRI brain data sets. Since VRS are a typ-
ical sign of an aged brain, we selected a random subsample of
datasets acquired in a clinical study of minimal cognitive dys-
function in a population of elderly subjects [27].

All 3-D datasets were acquired on a Siemens Vision 1.5-T
scanner using a -weighted MPRAGE protocol (TR 11.4 ms,
TE 4.4 ms, 128 sagittal slices, matrix 256 256, voxel size
0.9 0.9 1.5 mm). An affine transformation using b-spline
interpolation [25] was applied to yield a dataset aligned with
the stereotactical coordinate system [16] at an isotropical reso-
lution of 1 mm.

For all experiments, we used the same parameters: ,
, , , , and . The huge

value of parameter is used to forbid overlapping segments in
the result. Other parameters were set by trials on a single dataset.

A. Detail Analysis on One Example

First, we present results on a particular dataset. This dataset
has been selected among cases with a high prevalence of

Fig. 8. Detected VRS in relation to the brain surface in the example dataset of
Fig. 7, views from top and top-frontal.

VRS. Fig. 7 shows the result on a sample axial slice and the
detected lesions on Fig. 7(b). The coronal and sagittal slices
corresponding to one particular VRS are, respectively, shown
in Fig. 7(c) and (d). A 3-D vizualization of the result is shown
on Fig. 8. We performed a shape analysis of the different
connected components. As seen on Fig. 9, the anisotropy of the
VRS indicates that the tubular structures are not very elongated.
A possible explanation is that we are detecting only a part of
the VRS which is mostly within the WM compartment. Indeed,
the detected lesions do not reach the cortical surface.

B. Evaluation on a Database

Now, we report about results obtained on a database of 37
subjects. To compare with current practice in neurobiology,
datasets were rated by an independent expert (HJG) for the
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Fig. 9. Moments of the connected components. X axis: average value of the
two lowest moments; y axis: Highest moment; and z axis: Number of connected
components.

presence of VRS using a semiquantitative rating scale [22]: 9
cases as 1 (corresponding to a few VRS), 22 cases as 2, and
8 cases as 3 (corresponding to many VRS). The number of
connected components as determined by our approach was
considered for comparison. We used the same parameters (as
defined in Section V-A ) for all datasets. Fig. 10 shows a plot
of the cumulative distributions of detected VRS count for the
datasets rated as 1 (left curve), 2 (middle curve), and 3 (right
curve). The subset rated as 3 is clearly discriminated. Indeed,
the minimum obtained value is 70 connected components
whereas the maximum value of the two other subsets is 44.
Although there is a reasonable shift between the cumulative
distributions corresponding to the subsets 1 and 2, we observe
an overlap between the distributions. A visual inspection of
the results indicates that the overlap between level 1 and 2 is
also due to a certain amount of rater bias. A linear regression
between the ratings and the VRS count yields a correlation
coefficient of 0.77 ( ).

All 37 brain datasets were registered to the same brain using a
nonlinear procedure based on fluid dynamics [4], [28]. The ob-
tained displacement fields were used to transform the detected
VRS into a common space. Fig. 11 shows the cumulative spatial
distribution of VRS collected from all datasets, together with the
reference brain. A higher prevalence of VRS is found in the area
supplied by the medial and lateral striate arteries (e.g., putamen
and pallidum) and in the area supplied by the long penetrating
arteries, especially in the frontal WM compartment.

Since VRS lesions are at the resolution limit of the scanner
and often hard to discriminate from other lesion types (e.g., la-
cunes), a formal validation requires the comparison of high-res-
olution MRI data (at 0.25 mm resolution or better) with histo-
logical slices. Such analyses are currently performed at MPI.
As an informal evaluation of the method’s performance, VRS
were marked manually in the 7 datasets rated as 3 by two ex-
perts in two separate runs. An average of 597 lesions were found

Fig. 10. Cumulative distribution functions of detected tubes (x axis) versus
expert rating level 1 (left curve), 2 (middle curve), and 3 (right curve).

Fig. 11. Cumulative spatial distribution of VRS collected from 37 datasets,
together with the reference brain. A higher prevalence of VRS is found in
the area supplied by the medial and lateral striate arteries (e.g., putamen and
pallidum) and in the area supplied by the long penetrating arteries, especially
in the frontal WM compartment.

Fig. 12. Sagittal slice through the temporal horn of the lateral ventricle.
Arrows mark locations where false positive detections may occur.
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by the experts, compared with 668 automatically detected VRS.
A type I error of 13.0% (false positives) and a type II error
of 2.7% (false negatives) was determined. The intraclass cor-
relation coefficient (ICC [20]) between both experts was 0.96,
within experts 0.97, the ICC between experts and the automatic
detection was 0.87. About half of the false positive detections
(40) were found at locations that resemble VRS but belong to
healthy structures (e.g., at the anterior tip of the temporal horn
of the lateral ventricle, see Fig. 12). Even with normal datasets
(rated as 0), false positive detections at these sites may occur. It
is suggested that atlas information may be used as an additional
prior to improve the specificity. The other false positive detec-
tions (31) were addressed to other pathologic features of these
datasets (e.g., lacunar infarctions).

VI. CONCLUSION

We applied a marked point process framework to derive
a model for multiple small brain lesions detection that was
optimized by a RJMCMC algorithm. A special feature of this
approach is the object based modeling. In our application
example, VRS are not considered at a voxel level but as
geometrical shapes. This induces robustness with respect to
noise and, thus, a good detection sensitivity. The sensitivity is
further improved by the prior model which embeds specific
interactions. The clustering interaction appears to be well
adapted to VRS. Future work will consist of improving the
specificity further by removing false positives.

The proposed model involves several parameters. The pa-
rameters defining the data term are derived from the intensity
statistics of the dataset provided that a segmentation into the
compartments CSF, WM, and GM is available. The prior model
parameters and the hyper-parameters weighting the prior model
and the data term were calibrated. Estimating these weights
would be an improvement toward a fully automatic approach.
However, using the same parameter values for all the datasets
yielded satisfactory results which proves the robustness of the
approach with respect to the parameters involved. Parameters
of the prior model are relatively data independent. Therefore,
spending extra computation time for parameter estimation ap-
pears unnecessary here.

The usual drawback of MCMC algorithms is the computa-
tion time necessary for model optimization, which may become
critical in this 3-D case. Therefore, we have reduced the volume
by using the filters defining the data term. Depending on the
number of detected VRS, the computation time varies between
10 min and 2 hours on a personal computer (Intel 750-MHz pro-
cessor). The optimal choice of the weighting between the dif-
ferent moves in the RJMCMC algorithm is considered an open
issue.

Future work is twofold: we will study the correlation of
VRS with clinical variables to address their significance for
the process of aging. Second, this model may be modified for
similar problems, such as detecting small lesions in Multiple
Sclerosis. Our approach is quite general and suitable for
detecting multiple lesions. However, for other lesion types, the
object geometry and object relations in space must be revised
and adapted to the target application.

(a) (b) (c)

Fig. 13. Splitting move. (a) Initial segment ! IJ , the arrow indicates
candidate points for splitting (� = 3). (b) First resulting segment, the
initial point I and the 3� 3 candidates for the final point. (c) Second resulting
segment, the final point J and the candidates for the initial point (D = 1).

APPENDIX

In this appendix, we derive the acceptance ratio for the
different moves involved in the proposed RJMCMC algo-

rithm. We denote the current configuration

.

A. Birth and Death

This move consists in adding a new segment with proba-
bility or removing a segment from the configuration with
probability . In the case of a death move, the seg-
ment is chosen uniformly among the segments of the current
configuration and uniformly on the parameter space for the a
birth. The birth kernel is given by . De-

note , we then have

(15)

The transformation from to is the identity, so its
Jacobian is equal to 1. The inverse transition consists in re-
moving the segment from the segments contained
in . The acceptance ratio is, therefore, given by

(16)

Applying the same considerations, the death kernel
has the acceptance ratio

(17)

B. Move a Segment

We choose a segment uniformly within the configuration and
select a new location and new marks uniformly within the pa-
rameter space. This move is identical to its reverse. Therefore,
we have

(18)
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C. Move the End Point

We choose a new location of the end point uniformly in a
neighborhood of its current position. As for the previous move,
the acceptance ratio is given by

(19)

D. Split and Merge

This move merges neighboring segments. The reverse move
corresponds to splitting a segment in two parts. A merging is
proposed with probability and a splitting with probability

.
The dimension matching is not easily achieved here. We say

that two segments and
are candidates for merging if the first or second equation shown
at the top of the page holds. The merged segment is given by

in the former case

and in the latter
case.

To define splitting we have to consider the discrete nature of
the data (see Fig. 13). We first define the voxel where the seg-
ment , where , will be split. To
obtain the discrete segment we compute the direction cor-
responding to the maximum value of . Let us as-
sume that the maximum is obtained for . Then, we have
voxel in ( represents the integer part). Candidate split
points are such that and . We
first uniformly select a point within the candidate points and
denote . In practice, is chosen among point
of for which and ,
so that . The segment

is then split into and with , ,
where and are uniformly chosen in

. Therefore, the split-
ting transformation can be summarized as follows (omitting
the identity terms):

(20)

The Jacobian of is then given by

(21)

The density of the auxilliary variables are given by

(22)

and

(23)

The acceptance ratio for the split move is written as follows:

(24)

where is the number of candidate pairs for merging. The
merging acceptance ratio is the reverse of the splitting accep-
tance ratio. In practice, we have chosen .

E. Return a Segment

The segment becomes provided that belongs to .
The reverse move is the identical and we have

(25)
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