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It is well-known that the problem of MEG source localization can be cast as an optimization problem. So far, there have
been many works in which various optimization methods were adopted for source localization. In this paper, we
compare the performance of three typical and widely used optimization techniques for a specific MEG source
localization problem. We first introduce a hybrid algorithm by combining genetic and local search strategies
to overcome disadvantages of conventional genetic algorithms. Second, we apply the tabu search, a widely used
optimization method in combinational optimization and discrete mathematics, to source localization. To the best of
our knowledge, this is the first attempt in the literature to apply tabu search to MEG=EEG source localization.
Third, in order to further compare the performance of the above algorithms, simulated annealing is also applied to
MEG source localization problem. The computer simulation results show that our local genetic algorithm is the
most effective approach to dipole localization, and the tabu search method is also a very good strategy for this problem.
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1 INTRODUCTION

Measurements of the magnetoencephalogram (MEG) as well as the electroencephalogram

(EEG) provide unique insights into the dynamic behavior of the human brain as they are

able to follow changes in neural activity on a millisecond time-scale ½9; 21�. In comparison,

the other functional imaging modalities (positron-tomography (PET) and functional magnetic

resonance imaging (fMRI)) are limited in temporal resolution to time scales on the order of,

at best, several seconds by physiological and signal-to-noise considerations. In the study of

MEG=EEG, we are confronted with the following inverse problem. Given magnetic field
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values at a limited number of measurement points, we have to reconstruct the sources

generating these data. Generally, given a suitable source and head model, this inverse

problem can be cast as a nonlinear optimization problem of computing the location and

moment parameters of the set of dipoles whose field best matches the MEG measurements

in a least squares sense [19]. Mathematically, it is a very difficult nonlinear optimization

problem because its objective function is very complex and always has many local optima,

especially when the number of dipole sources is large.

In order to solve this problem, various optimization techniques have been adopted. These

optimization methods can loosely be classified into two groups: gradient based Newton-type

methods such as Levenberg–Marquardt [18] and gradient-free search methods such as

the Nelder–Mead downhill simplex method [20]. However, the gradient based methods are

problematic for this specific problem because they will easily be trapped by the local optima,

which probably result in incorrect estimates of the dipole parameters. Though Nelder–Mead

downhill simplex method is better than the Newton-type technique in escaping local optima,

Khosla et al. [14] demonstrated that it is sensitive to starting parameter estimates and can also

converge to a suboptimal local optimum. Therefore, conventional gradient based optimiza-

tion methods and Nelder–Mead downhill simplex method are hardly suitable to MEG source

localization. The key requirement to any global optimization method is that it must be able to

escape in local minima and continue the search to give a near-optimal final solution whatever

the initial condition is. Simulated annealing (SA) and genetic algorithm (GA) meet this

requirement, and a majority of work along this stream is focused on how to apply simulated

annealing algorithms as an alternative to conventional gradient based optimization methods

½10; 14; 23; 24�. Unfortunately, K. Uutela et al. [25] have shown that for the dipole localiza-

tion, the performance of SA is the worst one among their chosen three types of global

optimization. Besides GA and SA, several other global optimization techniques exist, the

most popular in them is tabu search (TS) [6]. There are very few works for applying it to

continuous problems ½12; 13�. It has also been shown that stimulated annealing is a special

case of tabu search [6]. A key feature of this algorithm is a tabu list which is included in

the search process. This provides TS with some memory and endorses some intelligence

to find the optimal solution. So it is reasonable to expect that TS should be superior to

SA for the dipole localization. It remains natural to ask whether GA is the most effective

algorithm. Moreover, in Ref. [25] only conventional GA was adopted, though some new

features have been added to GA in its implementation. However, it has been shown that

the conventional GA has a very poor local performance because of the random search of GA.

Although a lot of different optimization methods exist, the efficacy of an optimization

method is always problem specific. In this paper, we compare the performance of these

three typical and widely used optimization techniques for a specific MEG source localization

problem. The computer simulation results show that our local genetic search algorithm is the

most effective approach to dipole localization.

The paper is organized as follows. Section 2 is devoted to the formulation of the problem. In

Section 3, we give a detailed description of our hybrid genetic algorithm, simulated annealing,

and tabu search and their implementations. In Section 4, we describe the procedure of computer

stimulation. Section 5 are experimental results and discussions. The final section presents a

summary of our conclusions.

2 MEG SOURCE IMAGING AS AN INVERSE PROBLEM

Given a suitable source and head model, we always need to reconstruct the source from some

given magnetic field values at a limited number of measurement points. This inverse problem
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can be cast as the following least squares problem of estimating the location and moment

parameter of current dipoles [19].

EðL;QÞ ¼ kB� GðLÞQk2
F ð1Þ

where B are current dipoles, L and Q are location and dipole moment parameters in the three

dimensions respectively, G(L) is the gain matrix, and k � kF indicates the Frobenius norm. We

refer to [19] for a detailed derivation of this formula. Thus the inverse problem is to find the

set fL;Qg to minimize this error function. In our implementation, we transferred this problem

to maximize the reciprocal of the error function f ðL;QÞ ¼ EðL;QÞ�1, which is our fitness

function. We must use some iterative optimization algorithm to solve this nonlinear optimi-

zation problem. Assuming that there exist N dipoles and k time points, then there will be 3N

location parameters and 3Nk moment parameters, for an overall of 3N ðk þ 1Þ parameters. In

practice, it is a very difficult optimization problem due to its dimension. For example, if there

are N ¼ 3 dipoles and the time points k ¼ 80, then we will have to search for a 729-dimen-

sion parameter space to find the global optimum for this problem. If this is a linear problem,

the size of the problem is acceptable, while for a nonlinear problem, its computational

complexity will be overwhelming.

Fortunately, the computational complexity of the problem can be greatly reduced by separ-

ating the linear and nonlinear parameters because B is a linear function of parameter Q. The

method to factor out the linear moments has been used by many researchers, say, [19] and

references therein, and has been mathematically justified in Gloub et al. [5]. First, for any

location parameter L, the optimal Q that will maximize f(L, Q) is

Q ¼ G�B ð2Þ

where G� is Moore-Penrose pseudo-inverse which can be found by G� ¼ VSþUT, where

G ¼ USVT is the singular value decomposition (SVD) and Sþ is the inverse of S. Then

replace Q with this pseudo-inverse solution before solving for L, the cost function of the

inverse problem then becomes

E ¼ kB� GQk2
F ¼ kB� GG�Bk2

F ¼ kðI � GG�ÞBk2
F ð3Þ

Now we can see the cost function no longer depends on matrix Q. The number of parameters

of cost function has been reduced to 3N, for example, 9 in the case of three dipoles.

It has been shown by Mosher et al. [19] that the computation process can be further sim-

plified by using some technique to compute I � GG�, and the final result is as follows.

E ¼ kP?
GBk

2
F ¼ kUT

m�rBk
2
F ð4Þ

where P?
G is projections which project the data into left null space of G and supposing

G ¼ ½UrUm�r�SVT , where r is the rank of G. For details, we refer to Mosher et al. [19].

After finding the value of L using some nonlinear optimization techniques, 3Nk moment

parameters in Q can be estimated using Eq. (2). This is computationally cheap since it

only needs to compute the pseudo-inverse of G.
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3 OPTIMIZATION METHODS

In Section 2, the problem of MEG source localization is addressed as an optimization pro-

blem. Once it is understood that MEG source localization is such an optimization problem,

the use of any technique for tackling optimization problems is obvious. In this section, we

will give an introduction to genetic algorithm, simulated annealing, and tabu search, and

the details of our implementation of these algorithms to this problem.

3.1 Genetic Algorithm

The Genetic algorithm is an iterative optimization technique, originating from the mechanics

of genetics and natural selection. A group of candidate solutions, which are described as bin-

ary sequences (chromosome), is viewed as a generation of population. Operations such as

selection, crossover and mutation are possessed upon these chromosomes to produce new

offsprings with better fitness.

Genetic algorithms (GA) have been shown to be capable of searching for optima in func-

tion which cause difficulty for gradient based methods [7]. They have many attractive attri-

butions and have been successfully applied to many nonlinear, multi-peak, continuous or

combinatorial optimization problems. The principal attractions of GA are domain indepen-

dence, non-linearity and robustness. Domain independence means that it is easy to write

one general computer program for solving many different optimization problems.

Non-linearity means that GA does not need the unrealistic assumptions of linearity, convex-

ity, differentiability which are necessary for many conventional optimization techniques. The

only requirement for GA is the ability to calculate the measure of performance, which may be

highly complicated and non-linear. The above two characteristics of GA assume that GA is

inherently robust. They can work with highly non-linear functions, and they can cope with a

great diversity of problems from different fields. For details about GA, we refer to [7].

K. Uutela et al. [25] have applied GA to the problem of MEG source localization. They

adopted the conventional GA though some new features have been added to GA in their

implementation. However, it has been shown that the conventional GA has a very poor

local performance because of the random search of GA. To achieve a good solution, great

computational cost is inevitable. Many improvements can be made in methodological deci-

sions and parametric choices to enhance the performance of GA. In this paper, several

remarkable features are added and some important extensions are also made to improve

the performance of the conventional GA. The computer simulation results have shown

that our method is able to greatly reduce the computational cost and improve the precision

of the solution. The implementation details of these features are described as follows.

3.1.1 Hybrid Algorithm

In many cases, hybridizing GA with another heuristic method can significantly enhance the

effectiveness of a GA [16]. Since GA has poor local search performance and conventional

local search methods have remarkable ability in finding local optima, we propose a hybrid

algorithm, which combines GA and a modified local search procedure. In the hybrid algo-

rithm, Hooke-Jeeves local search procedure [11], a simple but efficient local search method,

is applied to new solutions generated by the genetic operations (i.e., selection, crossover, and

mutation) to maximize their fitness value f. The local search is also applied to elite solutions

inherited from the previous populations. Some parameters are introduced into the algorithm

to control the local search. The parameter Step is used to control the initial step of the search.

308 T. JIANG et al.



The parameter e is used to control the distance from the solution to its nearest local optimum.

If we use a large value of Step and e, the local search will be fast and the computational cost

will be little though the solution will not be precise. This is what we expect in the beginning

of the algorithm. While in the end of GA, a high precise solution is needed, we should set

Step and e to be small.

3.1.2 Elitist Strategy

Two sets of solutions are stored in our algorithm: a current population and an elite set. After

genetic operation and local search, the current population is replaced with the improved

population and the elite set is updated by a new set. Local search procedure is applied to solu-

tions in the elite set without applying genetic operations to them. By preserving the solutions

appearing in one generation and adding them into next generation without any genetic opera-

tions, we can avoid losing some excellent solutions. It has been shown that only after one

adopts the elitist strategy, the GA can mathematically converge to a global optimum [7].

In our algorithm, the parameter EliteRate is the proportion of the number of solutions of

the elite set to that of the whole population. But we must be careful about the value of

EliteRate because a large value of EliteRate will make GA trapped onto a sub-optimal solu-

tion when there are many poor solutions and just one or two outstanding ones in the popula-

tion at the start of the GA. The one or two outstanding solutions will rapidly be dominant in

the group and will lead to premature convergence of the algorithm. So we set the EliteRate a

small number at the beginning and increase it as the optimization goes on.

3.1.3 Selection and Crossover Operation

In our algorithm, we adopt the roulette wheel selection mechanism. The selection probability

P(x) in the current population F can be expressed as:

PðxÞ ¼
f lðxÞ

Sx2Ff lðxÞ
ð5Þ

where f(x) is the fitness value of solution x and l is the parameter to control the scaling

procedure of selection operation. The parameter l is very important in our algorithm because

different values of l can make GA result in different solutions. When the value of l is large,

the selection mechanism is strong and competition in the group is intense, and some

outstanding solutions in the population have greater chance to survive. However, the GA

is easy to be trapped in a non-optimal value because one or two outstanding solutions in

the group will be rapidly dominant in the population and the evolution will stop at the

sub-optimal solution. This is what we do not expect in the beginning. Thus in the beginning

of GA, we give l a small value to limit the competition. When we want to stimulate it to

speed the evolution and make GA converge to a optimal solution after several generations,

we can give l a larger value. Another reason for us to adopt a scaling strategy is that the

difference of the fitness value of different solutions may be very large for MEG source

localization problem. For example, fitness of one or two solutions may be one hundred

times larger than other solutions in the beginning of the evolution though the fitness of

them is very low. In that case, naive fitness measurement may lead to a rapid takeover of

the one or two solutions and premature convergence will occur. Using the scaling

procedure, we can mitigate this problem.
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3.1.4 Parameters EliteRate, k, e, and Step in our algorithm

The performance of the algorithm largely depends on the parametric choice. In order to

reduce the computational cost, simultaneously to keep the convergence to a global optimal

solution, we carefully adjust the parameters in our algorithm in different stages of the algo-

rithm. We divide the algorithm into three stages and adjust the parameters in each stage. To

ensure the algorithm to find global optimum and avoid premature convergence to a poor solu-

tion, the competition is limited early on, but it is stimulated later. The number of elite is lim-

ited at the start and increased later. Another problem is to reduce the computational cost, this

has been realized by adjust the parameters of the local search since the main computation is

spend on local search. The strategy we adopt to adjust the parameter is listed in Table I. Our

GA is illustrated in Figure 1.

3.2 Simulated Annealing

Simulated annealing (SA) is a stochastic simulation method originally proposed by

Kirkpatrick et al. [15]. It was heralded as a simple and robust algorithm and had been proved

to be useful in a wide range of complex combinatorial optimization problems which was

difficult for conventional optimization problems. The idea of SA mainly comes from the

field of statistical mechanics. The process of annealing is analogous to the process of the

optimization, in which the value of the cost function takes the role of the energy of the sys-

tem, and the global optimum as the energy of the ground state of the system. Metropolis et al.

[17] proposed a Monte Carlo method to simulate the evolution of the system at a fixed value

of temperature T. If the system in energy state E1 is perturbed to another energy state E2, the

new state is accepted with the probability expð�DE=kT Þ, where DE ¼ E2 � E1, that is to say

when the perturbed state is of lower energy, it will always be accepted. While when perturbed

to a higher energy state, the probability to accept the new energy state will depend on DE and

T. By repeating the basic step many times, the system will evolve into thermal equilibrium

and the temperature will be lowered. As the temperature decreases, the probability of accept-

ing uphill steps will decrease and the algorithm will eventually converge into a global opti-

mum. We refer to [1] for details about SA.

Because of its outstanding performance in finding global optimal solution, SA has been

implemented in a variety of different ways to MEG=EEG source localization problem

½10; 14; 23; 24�. The implementation details of the algorithm used by us to solve the source

localization problem are provided below.

3.2.1 Move Strategy

The core of SA is the perturbation of the solution and then acceptance of the rejections based

on the Metropolis criterion. A reasonable move strategy will lead to the efficient search of the

parameter space. There are some move strategies that has been used, which include round-

robin fashion [3], simplex move by Ref. [14]. It has been shown that round-robin scheme

TABLE I Configuration of parameters in different stages of the hybrid algorithm.

EliteRate Step e l

Stage 1 0.1 No local search No local search 0.3
Stage 2 0.15 2 0.5 0.6
Stage 3 0.3 0.5 0.05 1
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can get trapped in shallow valleys not parallel to the parameter axes [3]. We adopt a simple

move strategy in which new configurations are selected from a normal distribution centered

on the current configuration, in the hope this strategy will be the most suitable to find better

solutions while at the same time have the potential to jump out of the local optima. We do not

compare the relative merit of different move strategies, but our test results show this move

strategy is rather effective.

3.2.2 Thermal Equilibrium Criterion

In order to ensure the SA can converge to a global optimum, it is important that thermal equi-

librium must be reached at each value of temperature. If this is not done, the SA may get

stuck in locally optimal value of the cost function. However, to reach thermal equilibrium,

length of the Markov chain (the number of the trial configurations generated) should be

theoretically infinite, this would result in a impractically large computational time. In

practice, some approximate methods are often used. The work of K. Sekihara et al. [23]

use Z as a value to evaluate whether thermal equilibrium has been attained.

Z ¼
jG1 � G2j

jG1 þ G2j
ð6Þ

where G1 is the number of accepted transitions that increase the cost function, G2 is the num-

ber of accepted transitions that decrease the cost function. Given a small value e, if Z < e, we

deem the equilibrium to be attained. The parameter e can be adjusted to get a trade-off

between the computational cost and the possibility of the global minimum convergence.

Another method is to give a fixed number Lk to determine the length of the Markov chain

at each temperature [1]. The number can be determined empirically. We have compared

the performance of the two methods by experiments. In our work, we use this method to

determine the length of Markov chain because this way has been shown to be simple and

effective and Lk is set to 3.

FIGURE 1 Genetic local search algorithm.
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3.2.3 Annealing Schedule

Suitable anneal schedule is most important to ensure the SA converges to a global optimum.

It includes the initial temperature ðT0Þ, temperature decrement rule and the terminate

criterion. In our work, we adopt the following strategies:

(a) Initial Temperature: Temperature is an important factor in the process of simulated

annealing, initial temperature affects the trade off of the computational cost and possibility to

find global optimum. The initial temperature should be high enough to melt the system at the

beginning of the annealing; however an overly high initial temperature will consume too

much time and computation. A principle for determining T0 is that under T0, virtually all

moves will be accepted, i.e., expð�DE=T0Þ � 1, however this will make T0 very large. In

practice, given the predetermined acceptance ratio w0, T0 is often determined by calculating

the average increase in cost function D �EE for some times (e.g., 1000) and then obtained

through the following formula [1]

T0 ¼
D �EE

logðw�1
0 Þ

ð7Þ

(b) Temperature Decrement Rule: In order to avoid an impractically long time of compu-

tation, the temperature decrement should not be too slow. However, if the decrement is too

fast, thermal equilibrium cannot be reached at each temperature. The temperature should be

decreased such that given the length of the Markov chain can establish quasi-equilibrium

after each decrement. We adopt the following decrement rule

Tk ¼ aTk�1 ð8Þ

where Tk is the kth temperature, a is the parameter to control the decrement. The typical

value for a is 0.8–0.95, and we set a as 0.85.

(c) Terminate Criterion: we set the number of the times of lowering the temperature in

order to control the computational time more easily. We did a Hooke-Jeeves high precision

local search at the end of the algorithm to make the localization more precise.

3.3 Tabu Search

Tabu search (TS) is a meta-heuristic optimization method that can be used to explore the

solution space beyond local optimality [6]. The notion of exploiting certain forms of flexible

memory to control the search process is the central theme underlying TS. Because of the

memory TS has some intelligence. It is different from the well-known hill-climbing local

search techniques in that it employs a somewhat different philosophy for going beyond

the criterion of terminating at a local optimum. By allowing the moves out of a current solu-

tion and accepting a worse solution in the hope that it will eventually find a better solution, it

does not become trapped in a local optimal solution. TS is a flexible framework. The history

record gives TS some memory and the rules give TS some intelligence to find the optimal

solution and avoid being trapped onto local optima. We refer to [6] for the details about

tabu search.

Tabu search starts with a certain solution xnow, then, follows a certain set of candidate

moves. A candidate set of moves CandðxnowÞ can be obtained from its neighborhood

N ðxnowÞ. Based on the history record of TS, some of the moves are tabu, some of the
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moves are permitted. Then the aspiration criteria is applied to candidate set, each solution in

the set is evaluated based on its value of cost function c(x), the history record H, and the

aspiration criteria. The best move in the set is selected to be the new solution xnext. Repeat

the procedure until some stop criteria are satisfied in our tabu search procedure, xnow includes

a set of solutions with the best fitness values in the optimization process and is called the best

solution list. Our algorithm may be expressed in the following manner:

Step 1 Initialization: Produce a set of solutions randomly, sort order of these solutions ac-

cording to their fitness values, put the best ones in the best solution list, and initialize

the history record (memory) with empty.

Step 2 Choice and Termination:

Step 2.1 In the neighborhood of the best solution list N ðxnowÞ, select the ones that

satisfy the tabu restrictions as the candidate moves CandðxnowÞ.

Step 2.2 Sort order of the solutions in CandðxnowÞ, do the local search to some good

solutions, and use the best ones to update the best solution list.

Step 2.3 Terminate by a chosen iteration cut-off rule.

Step 3 Update: Perform the update for the history record H and go to Step 2.

Step 2 and Step 3 of process are called an iteration. TS is illustrated in Figure 2.

To the best of our knowledge, this is the first attempt to use tabu search to solve the MEG

source localization problem. Conventional applications of TS mostly focus on combinatorial

optimization problems. However the MEG=EEG source localization problem is a continuous

optimization problem. In order to apply TS effectively to it, some strategies specific to this

problem are carefully devised. These strategies include the definition of neighborhood, some

suitable tabu restrictions and aspiration criteria and an appropriate local search method. The

implementation details of TS can be described as follows.

3.3.1 Definition of Neighborhood

The strategy to produce a set of candidate moves from current solutions is important. It

will influence the computational cost and the performance of the algorithm. In this paper,

FIGURE 2 Tabu search procedure.
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we generate the candidate list in this way: on the one hand, we combine the dipoles of the

solutions in the best solution list to find a better one after a large scale of random search,

for the good solutions have the good component (dipole); on the other hand, we still reserve

the random search method to some extent to move out of a local optimum. Since the mag-

netic field is the sum of each field generated by each dipole, our method is especially suitable

for this problem. The size of the neighborhood is closely related to the size of the best

solution list, since a larger best solution list will result in more combinations of the dipoles.

3.3.2 Tabu restrictions and Aspiration Criteria

When candidate moves are produced, they are put in the tabu list so that the repeated search

can be avoided. Tabu search method is typically used in discrete problems, and we need to

define what is a repeated search in a continuous one. It is natural to use the distance between

the corresponding dipoles in a newly generated solution and in the tabu list as the criterion. If

the distance between all the corresponding dipoles in this newly generated solution and in

some solution in the tabu list is within a given boundary value (this value will get smaller

and smaller as the optimization process goes on), the candidate move is viewed as repeated

move and is not permitted. When the next candidate moves are produced, the tabu list is

updated and here aspiration criteria work on the solution in the old tabu list.

As the optimization process goes on, the search will be more precise, and it is very likely

to find a better solution near the solutions that were taboo previously. By updating the tabu

list and the boundary value, the TS has the potential to find global optimum.

3.3.3 Local Search Strategy

In the algorithm of Tabu Search, we also use the Hooke-Jeeves Local search method as our

Local Search Strategy. For details about the Hooke-Jeeves method, we refer to Section 3.1. In

our algorithm, as the number of iterations increases, the parameters of the local search are

adjusted so that the solution will be more precise.

In this section, we have introduced different global optimization techniques and described

our implementation details of them to MEG=EEG source localization problem. In the next

sections, we will describe the design of our experiments and the results of them.

4 COMPUTER SIMULATIONS

In order to find the relative merit of the proposed optimization methods, we carefully devise

some experiments and give some mathematical measure to compare performance of these

algorithms. The performance of proposed algorithms is assessed and compared via a large

number of computer simulations. In this section, we describe the procedure of our simulation

in detail.

4.1 Assumptions

Multiple current dipoles model and a spherically symmetric conductor head model are

adopted in our simulation. The human head is assumed to be a spherically symmetric

conductor with an outer radius of 120 mm. The magnetic field data are measured by 128

evenly distributed sensors. Only the magnetic field component normal to the spherical

surface is measured, thus only magnetic fields due to the primary tangential dipole currents
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are computed, as we have discussed in Section 2. Our simulation can be easily extended to

some more complex forward model. We should note that the number and location of the

detectors can significantly influence the difficulty of source localization.

In the simulation, three dipoles ðN ¼ 3Þ are assumed to generate magnetic data. Since

the radial component of a current dipole does not generate a measurable magnetic field on

a spherical surface, this component is neglected and only the location and two tangential

components are considered. Three cases of dipoles with different location, orientation, and

time course are used to simulate. These three cases are designed to evaluate the performance

of the hybrid GA, TS and SA. The three dipoles in Case III are the closest, and their time

courses overlap most, then the dipoles in Case II, and the dipoles in Case I are relatively sepa-

rated spatially and temporally. In all cases, we assume the three dipoles are all with fixed

location and orientation, which is in accord with the real condition. The dipole parameters

are listed in Table II. A total of 100 time samples are generated in our simulation. The

shape of the dipole time courses is assumed to be double-sided Gaussian (Fig. 3(a)–(c))

since physiologically it is expected the wave forms will have smooth shapes like the ones

chosen here. Under each case, a noiseless and 2 different noisy conditions are adopted in

the comparison. We assume the noise to be Gaussian, and the power of noise to signal are

0%, 5%, 10%, respectively.

In this paper, the number of dipoles is assumed to be known. We do not consider the

unknown number case so that we can focus on the comparison of the relative performance

of different optimization techniques.

4.2 Methodology for Evaluation of Optimization Algorithms

The diversity of optimization techniques imposes a need to evaluate the relative performance

of these algorithms and understand the relationship between their free parameters and their

performances. However, the task to evaluate different optimization algorithms is much

more difficult and complex than it appears. The relative performance of different algorithms

is task specific. In a specific implementation of an algorithm, some choices have to be made

on its many parameters. Such choices affect the performance of the algorithm. Thus in our

experiments, we first use an objective evaluation and optimization procedure to give the best

parameter choices for a particular task, then we compare the efficacy of different algorithms

under the same computational time under the same computer, in another word,the same com-

putational cost.

TABLE II Dipole parameters to generate magnetic field.

Lx Ly Lz Mx My Mz

Case I
Dipole 1 �9.0 1.0 2.0 0.577 0.577 0.577
Dipole 2 1.0 9.0 �2.0 �0.577 0.577 0.577
Dipole 3 �1.0 3.0 9.0 0.577 �0.577 0.577

Case II
Dipole 1 2.8 �1.7 8.3 0.577 0.577 0.577
Dipole 2 �2.9 8.3 0.0 �0.577 0.577 0.577
Dipole 3 8.1 3.3 �1.2 0.577 �0.577 0.577

Case III
Dipole 1 2.8 �1.7 8.3 0.577 0.577 0.577
Dipole 2 �2.9 �1.6 8.3 �0.577 0.577 0.577
Dipole 3 0.0 3.3 8.4 0.577 �0.577 0.577
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To compare different algorithms, some mathematical measures are needed. Such mathema-

tical measures have been used in previous work such as localization error d and squared error

of the magnetic field E in the paper of Haneishi et al. [10], root-mean-squares error, and rela-

tive difference measure (RMD) in the paper of Khosla [14]. In this paper, we use value of the

localization error d as a measure for each dipole estimate, which is defined as follows.

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð �LLx � LxÞ

2
þ ð �LLy � LyÞ

2
þ ð �LLz � LzÞ

2

q
ð9Þ

where Lx, Ly and Lz are three coordinates of a dipole to be estimated, and �LLx, �LLy and �LLz are the

estimated coordinates of this dipole. When a solution is obtained using an algorithm, the

localization error di for each dipole can be calculated, and by repeating this process many

times, the probabilistic distribution function of the localization error of this algorithm

under each case can be obtained. We deem the estimation of a dipole to be correct when

its localization error is less than 0:06 cm, which can satisfy the requirement in application

very well.

FIGURE 3 Dipole time courses for dipole 1, 2, and 3. (a), (b), and (c) are the time courses in Case I, II and III
respectively. And (d), (e) and (f) are estimated dipole time courses. The location of dipoles are optimized using GA
after the location of dipoles is successfully estimated. The time course of each dipole is estimated using rank one
approximation from SVD for each dipole.
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4.3 Simulation Procedures

Our simulation consists of the following process:

(1) Compute the magnetic field using the forward model and dipole parameters stated above.

(2) Estimate source locations on the whole time window using hybrid GA, SA and TS

respectively by maximizing the fitness function as we described in Section 2.

1) Evaluate the performance of each algorithm when the parameter configuration is

different and get the optimal parametric choice for each algorithm.

2) Compare the performance of different algorithms when the computational cost of each

algorithm is the same.

(3) Using the estimated source location, compute best-fit dipole time course for each dipole.

5 EXPERIMENTAL RESULTS AND DISCUSSIONS

Before we present the results of the comparisons, we should mention once again that in our

experiments, we assume that correct head and source models are known. Thus in our experi-

ments, the errors due to incorrect modelling are eliminated. Our aim is to evaluate the relative

performance of these algorithms when they are applied to MEG source localization. As men-

tioned above, the performance of an algorithm is task-dependent and depends on the config-

uration of parameters. In our experiments, three cases of dipoles with different intensity of

noise are used to test the performance of GA, SA and TS. For each algorithm, a procedure

to optimize the parameter value is executed before the algorithm is used to source localiza-

tion. The results of the three algorithm under the same computational cost are listed in Tables

III–V. And we can see the three algorithms’ probabilistic distribution function of localization

error in the three cases in Figures 4–6, respectively.

5.1 Genetic Algorithm

After a large number of simulations, the optimal parameter configuration has been selected. In

our experiments, the parameters e, l, and Step have been selected according to the different

TABLE III Results using the three algorithms on different noise conditions in Case I.

Noise=signal GA TS SA

0%
Success 100% 100% 63.3%
d1 cm 0.007� 0.003 0.009� 0.004 0.410� 0.257
d2 cm 0.009� 0.005 0.011� 0.006 0.500� 2.319
d3 cm 0.007� 0.003 0.008� 0.003 0.020� 0.055

5%
Success 99.3% 97.3% 56.7%
d1 cm 0.011� 0.004 0.014� 0.014 0.431� 0.282
d2 cm 0.024� 0.013 0.197� 0.693 0.695� 2.442
d3 cm 0.008� 0.003 0.009� 0.003 0.024� 0.061

10%
Success 90.7% 90.7% 53.3%
d1 cm 0.017� 0.008 0.017� 0.007 0.424� 0.275
d2 cm 0.050� 0.024 0.214� 0.675 1.010� 3.273
d3 cm 0.009� 0.003 0.009� 0.004 0.062� 0.218

Initial solutions are randomly generated in the parameter space.
The criteria for success and the measurement di are defined in Section 4.
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configurations in Table I. We do 50 experiments for each configuration under three different

noisy conditions and test the probability it can find the correct location and the localization

error d.

5.2 Tabu Search

The strategy of TS algorithm we use has been stated in Section 3. It’s obvious that one key

factor for performance of TS is the number of iterations, since the more the number of

iterations, the larger the number of points TS have searched. Another factor that influences

TS’s performance is the size of the tabu list, for an over small one will not avoid the repeated

search, while an over large one will take too much time to search in this list. As the size

of the tabu list is directly related to that of the best solution list, we do a large number of

experiments to find the optimal size of the best solution list, which is 7.

TABLE IV Results using the three algorithms on different noise conditions in Case II.

Noise=signal GA TS SA

0%
Success 92.7% 94.0% 90.0%
d1 cm 0.008� 0.004 0.009� 0.005 0.018� 0.048
d2 cm 0.029� 0.071 0.029� 0.022 0.731� 2.886
d3 cm 0.102� 0.444 0.082� 0.308 0.070� 0.117

5%
Success 91.3% 91.3% 88.0%
d1 cm 0.009� 0.004 0.011� 0.005 0.013� 0.029
d2 cm 0.027� 0.015 0.033� 0.016 0.733� 2.889
d3 cm 0.043� 0.028 0.044� 0.306 0.082� 0.273

10%
Success 90.0% 89.3% 84.0%
d1 cm 0.011� 0.014 0.011� 0.011 0.028� 0.079
d2 cm 0.034� 0.020 0.227� 1.039 0.861� 3.271
d3 cm 0.047� 0.031 0.248� 1.004 0.072� 0.876

TABLE V Results using the three algorithms on different noise conditions in Case III.

Noise=signal GA TS SA

0%
Success 100% 100% 85.3%
d1 cm 0.008� 0.003 0.009� 0.004 0.493� 1.244
d2 cm 0.009� 0.004 0.011� 0.006 0.657� 1.729
d3 cm 0.007� 0.004 0.008� 0.003 0.103� 0.272

5%
Success 100% 100% 84.0%
d1 cm 0.011� 0.006 0.014� 0.014 0.703� 1.893
d2 cm 0.011� 0.004 0.197� 0.693 0.179� 0.476
d3 cm 0.008� 0.005 0.009� 0.003 0.568� 1.488

10%
Success 100% 98.0% 77.3%
d1 cm 0.014� 0.007 0.068� 0.398 0.823� 0.577
d2 cm 0.014� 0.006 0.073� 0.423 1.083� 2.206
d3 cm 0.012� 0.006 0.022� 0.078 0.261� 0.594
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5.3 Simulated Annealing

The most important parameter in SA are T0, a and Lk . A suitable configuration of the

parameters in SA is a key factor for its successful implementation. We have done a large

number of experiments using different parameter to test the performance of SA. In our

simulation, T0 is set at 0.4 and the start location is randomly specified in the parameter

space. For each parameter pair and each noisy condition, 50 simulation is conducted.

5.4 Comparison Among Three Cases

A lot of simulations are implemented in Case I, II and III. The results are listed in Tables III–

V, and Figures 4–6. From the results of GA, SA and TS, we can see that they all have the

potential to find the global optimum if their parameters are correctly configured and the com-

putational cost is sufficient. GA demands that the population and the number of generations

FIGURE 4 The three algorithms’ probabilistic distribution function of the localization error requirements in Case I.

FIGURE 5 The three algorithms’ probabilistic distribution function of the localization error requirements in
Case II.
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is large enough. SA requires the decrease of temperature is slow enough and the length of

Markov chain is large enough. TS requires the iteration number to be large enough.

However, in practice, the resource of computation is limited. In order to compare the perfor-

mance of them, we limited the computational cost and the average computational cost is the

same among the three algorithms.

Our experimental results show that our GA performs best in this problem. Under all three

cases, the computational errors of GA are the smallest. Moreover, it’s value of probabilistic

distribution function of localization error is the highest. This proves that our implementation

of GA is very efficient and effective to localize the dipole, since the population in our algo-

rithm is rather small compared with the previous implementation of GA to this problem [25].

We think that this results from the local search feature of our algorithm. It also illustrates that

the strategy of hybridizing conventional GA with local search is very suitable to this kind of

MEG source localization problem. Local search will make the solution close up to the global

optimum rapidly and reduce the computational cost.

TS also performs very well. It ranks second among the three algorithms. Under all three

cases, the computational errors of TS and it’s value of probabilistic distribution function of

localization error are very similar to that of GA. So given the suitable search strategy and

enough number of iterations, TS performs also very good to this problem. Moreover, TS

is a flexible framework and its performance greatly depends on the strategy it adopts.

Using the suitable search strategy will make the algorithm very efficient. Besides, new better

strategies can be easily adopted to solve this problem.

SA can also find the global minimum in most cases if we use the suitable annealing

schedule and a long enough Markov chain. But SA performs worst among GA, TS and

SA, and it seems to be easier to be trapped into the local optima. Under all cases, the com-

putational errors of SA are relatively large. This is probably because SA is a stochastic search

method. Each step in SA is randomly produced.

Moreover, from Figures 4–6 we can see the different performance of GA, TS and SA under

the three different cases. GA and TS are very similar with each other in that they both do best

in Case III, and they perform better in Case I than in Case II. This similarity is probably

because of the same local search strategy they use. We can see the reason for the different

performance in the three cases in Figures 7–9, in which the fitness value near the global opti-

mum is shown. Since in each case there are 3 dipoles to be localized, which is 9 variables in

all, and we can only see the change of cost function with 2 variables in a three-dimension

FIGURE 6 The three algorithms’ probabilistic distribution function of the localization error in Case III.
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figure, we must find the variables that their change is more likely to make the fitness function

to trap into a local optimum. We can do this by analyzing the result in Tables III–V. For exam-

ple, the effect of dipole 2’s localization is worst in Case II, so we use the x and y values of

dipole 2 as variables to draw this figure. Among the three cases, the cost function of Case III

has the best shape, which means the number of local optima is small and the shape of cost

FIGURE 7 Fitness function f in Case I.

FIGURE 8 Fitness function f in Case II.
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function is smooth. Comparing with Case III, the cost function in Case I and II is not so good,

so we think this is the reason why GA and TS perform best in Case III, and we can logically

get the result that the shape of the cost function in Case I is better than in Case II.

As for SA, there is a relatively large difference between its performance and the GA and

TS’s. Its ability to find the global optimum precisely is not so good. The performance of SA

in Case III is especially the worst, we assume this is due to the overlapping of the time

courses of the dipoles and the dipoles’ nearer distance, but in GA and TS, the local search

method plays an important role in the successfully localization of dipoles.

In sum, we find that our genetic local search algorithm is most effective compared with

simulated annealing and tabu search when their computational cost is the same. Genetic

local search algorithm is effective to find the global optimum and have a reasonable compu-

tational cost. It can be an alternative to the prevalent method for solving the MEG source

localization problem. And tabu search is also a very good method for this problem.

Simulated annealing has also the potential to give the correct estimation but it’s performance

is not so good as those of Genetic local search algorithm and tabu search algorithm. We think

that maybe hybridizing SA with another heuristic will improve the efficiency of SA where

future study is needed.

Evaluate the Dipole Moment and Dipole Time Courses After we have estimated the dipole

location L, the gain matrix G can be calculated using the forward model. Q can be obtained

using Q ¼ G�B. Then the moment and time courses of each dipole can be easily obtained by

finding the best rank one approximation for each dipole. This has been described in detail in

Mosher et al. [19]. In this paper, we give one example to calculate the dipole time courses

using a correct estimation of L obtained in GA. The estimated time courses are displayed in

(d), (e) and (f) in Figure 3.

FIGURE 9 Fitness function f in Case III.
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6 CONCLUSIONS

Measurements of the magnetoencephalogram (MEG) provides unique insights into the

dynamic behavior of the human brain as they are able to follow changes in neural activity

on a millisecond time-scale. A central problem in the interpretation of MEG measurement

data from evoked repose experiments is the localization of the neural current dipoles. It is

well-known that the problem of MEG source localization can be cast as a optimization

problem. So far, there have been many works in which various ready optimization methods

were adopted for the source localization. It is interesting to compare the performance of all

existing approaches to this problem and find out which one is more suitable to source loca-

lization. In this paper, we compare the performance of three typical and widely used optimi-

zation techniques via using it to this specific MEG source localization problem. We first

introduce a hybrid algorithm by combining genetic and local search algorithms to overcome

some disadvantages of the conventional genetic algorithms. Then we make an attempt to

apply tabu search, a widely used optimization method in combinational optimization and dis-

crete mathematics, to source localization. To the best of our knowledge, this is the first

attempt in the literature to apply tabu search to MEG source localization and compare simul-

taneously the performance of three typical global optimization methods. The computer simu-

lation results show that our local genetic algorithm is the most effective approach to dipole

location compared with simulated annealing and traditional tabu search. However, when the

local search is incorporated into tabu search, the performance of tabu search to find the opti-

mum can be dramatically improved. In fact, it is almost as good as that of the genetic algo-

rithm. So tabu search is also a good choice for EEG=MEG source localization because it has

the following advantages: (1) TS avoids entrapment in local minima and continues the search

to give a near-optimal final solution; (2) TS is very general and conceptually much simpler

than either simulated annealing (SA) or genetic algorithm (GA); (3) TS has not special space

requirement and is very easy to implement (the entire procedure only occupies a few lines of

code). Our method are also suitable for EEG source localization. In future we will consider

the parallel genetic algorithm for the EEG=MEG source localization to improve the accuracy

and speed.
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