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This paper proposes to extend independent compo-
nent analysis (ICA) of functional magnetic resonance
imaging (fMRI) data from single subjects to simulta-
neous analysis of data from a group of subjects. This
results in a set of time courses which are common to the
whole group, together with an individual spatial re-
sponse pattern for each of the subjects in the group. The
method is illustrated using data from two fMRI experi-
ments. The results show that: (a) ICA is capable of ex-
tracting nontrivial task related components without any
a priori information about the fMRI experiment; (b) in
analysis of group data, ICA identifies components com-
mon to the whole group as well as components mani-
fested in single subjects only. o 2002 Elsevier Science (USA)

INTRODUCTION

McKeown et al. (1998a,b) proposed using indepen-
dent component analysis (ICA) as a method for analyz-
ing functional brain imaging data from individual sub-
jects, obtained using functional magnetic resonance
imaging (fMRI). They suggested that ICA would sepa-
rate out not only signals originating from the stimula-
tion, which subjects receive during fMRI experiments,
but also signals from other sources, such as “slowly
varying” sources and subject movements. ICA requires
no a priori information about the kind of signals to
extract and thereby circumvents the need for specify-
ing, e.g., the hemodynamic response convolving the
stimulus related neuronal activation. ICA has also
been used successfully in analysis of EEG (Makeig et
al., 1996) and MEG (Vigéario et al., 1998) data.

In this article, we consider extending this approach
to simultaneously analyzing fMRI data from a group of
subjects. This yields a set of temporal patterns (time
courses) common across the group and, for each time
course, a separate image for each of the subjects. It is
common practice to repeat fMRI experiments across
groups of subjects, but the subsequent analysis nor-
mally computes a per-voxel average over the group,
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which will reduce the effective spatial resolution and
hide individual differences. In contrast, ICA retains
the resolution of the original data and preserves indi-
vidual differences in the spatial response patterns.

The fact that ICA of group data is restricted to use a
common set of time courses for all subjects in the group
has a number of consequences. It means that weak
sources with different temporal characteristics across
subjects, which should primarily include noise sources,
will tend to get suppressed. However, as the results
below illustrate, ICA still appears to have the ability to
separate out distinct stimulus related components con-
fined to single subjects. Another effect is that regions
with small differences in their time courses (e.g., aris-
ing from noise), which may be represented by separate
components following an ICA of data from a single
subject, are merged into a single component when the
data from the subject are included in a group ICA.
Finally, compared to single subject ICA, components
with similar spatial as well as temporal characteristics
across subjects will be easier to detect by manual in-
spection.

Next, we describe ICA, its application to fMRI single
subject data and how it can be extended to deal with
data from a group of subjects. We then give two exam-
ples of our new approach applied to data from two fMRI
experiments: one with a block trial design and a visual
stimulation, involving five subjects, the other with a
single trial (event related) design and auditory stimu-
lation, involving three subjects. We compare these re-
sults with those obtained from ICA of the data from the
individual subjects.

MATERIALS AND METHODS

ICA

ICA (Cardoso, 1998; Hyvarinen, 1999b; Lee et al.,
2000) can be regarded as a generalization of the more
well-known principal components analysis (PCA) (Jol-
liffe, 1986). Just like PCA, ICA linearly separates an
N-dimensional data set into N components. However,
whereas PCA yields components which are uncorre-
lated, ICA tries to find components which are indepen-
dent. These two conditions are identical when the com-
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FIG. 1. The independent image, resulting from group ICA of the data from the visual experiment, corresponding to the time course
showing the highest correlation with the performance of the task; this time course is plotted in the uppermost plot of Fig. 3. Each row
corresponds to one subject and the columns correspond to brain slices, the with the lowest slice shown to the left. The independent image has
been normalized to zero mean and unit variance, thresholded at +1.65, and overlaid on the anatomical images of the five subjects. The
blue-cyan voxels represent negative correlation with the time course, red-yellow voxels positive ditto; a,., = 28.5.

ponents have Gaussian distributions, as is assumed by
PCA (Tipping and Bishop, 1999), but ICA assumes that
this is not the case. Given that the observed data were
generated by linearly mixing independent sources with
non-Gaussian distributions, ICA will separate the mix-

ture into the original sources. It achieves this by com-
puting a linear transform that unmixes the mixed
sources; if we think of the mixing transform as a ma-
trix, ICA computes a matrix comparable to its inverse
but for scaling and row order.
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FIG. 2. The independent images, resulting from single subject ICA of the data from the visual experiment, corresponding to the time
courses showing the highest correlation with the performance of the task for each individual; these the time courses are plotted in the second
upper to lowest plots of Fig. 3, matching the order of the rows in this figure. The images have been visualized as the image shown in Fig. 1,
except that the normalization was done individually for each subject.

To make this more concrete, let x denote the N-dimen- X = As, (1)
sional random variable corresponding to the observed
signals, and s the N-dimensional random variable corre- where Aisa N X N full rank unknown mixing matrix.
sponding to the underlying sources. We can then write Note that we assume that the observed variables are
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observed without noise, but ‘noise’ may still be repre-
sented in the data by one or more of the sources.

Most ICA estimation procedures take their starting
point in the assumed independence of the original
sources, which simply means that the probability dis-
tribution function of the random vector s can be writ-
ten as the product of marginal distributions of the
vector elements,

N
p(s) =[] p(sy). (2)

Based on this assumption, the goal is to find an unmix-
ing matrix, W, such that the recovered sources,

y =Wx =W As, (3)
are maximally independent. Several measures for in-
dependence have been proposed in the ICA literature
and they can all be related to each other (Hyvéarinen,

1999b). Here we restrict our attention to the mutual
information, defined as

N
I(y) = 2 H(yn) — H(y), (4)

where

H(y)= — f p(y)In p(y) dy (5)

is the differential entropy for the random vector y with
a probability distribution p(y). We see directly from (2),
(4) and (5) that the mutual information is zero when
the recovered sources, Y4, Y, . . ., Yu, are independent
and it can be shown to be strictly positive otherwise.

Assuming that W in (3) is of full rank, (4) can be
written

I(yl! Yo, oo yM)

& (6)
= > H(yn) — H(x) — In(abs(det(W))).

If we consider minimizing this expression with respect
to W, restricting its row vectors to be unit length, we
note that the last term on the right hand side will be
minimized when W is orthogonal, while the first term
is minimized when the marginal distributions p(y.,) are
as non-Gaussian as possible.” However, these marginal

2 For a random variable with given mean and (co)variances, the
Gaussian distribution is the distribution that maximizes the differ-
ential entropy.
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distributions are unknown, a complication which also
affect all related measures of independence.

Several approximate schemes have been proposed,
most of them primarily aimed at obtaining an estimate
of the gradient of the objective function (e.g., (6) above)
with respect to its parameters (W in (6)); these esti-
mates are computed by averaging over a data set rep-
resenting a sample from the observed variables. Once
the gradient has been obtained, the optimization can
be carried out using stochastic gradient or Newton
methods.

ICA of fMRI Data

Applied to fTMRI data, ICA tries to separate the se-
guence of recorded MR images into a set of independent
source images.® Each recorded image is treated as finite
sample from an observed random variable, and the voxels
in the image are instances in that sample. McKeown et
al. (1998b) motivate this with the argument that the
spatial localization of brain areas activated by perform-
ing the task in an fMRI experiment should be indepen-
dent of the spatial localization of signals arising from
sources such as head movement or system noise.

Note that this is opposite to how ICA has been ap-
plied to EEG and MEG data, where the aim is to
extract independent time courses, with accompanying
spatial configurations. As pointed out by Friston
(1998), this is usually not possible for fMRI data, since
the number of images is (much) smaller than the num-
ber of recorded voxels. This means that the collected
images will not span the space they live in, in which
case we can find as many independent time courses as
there are samples, but these will normally not tell us
anything about eventual common sources.

Sticking with the spatial ICA of McKeown et al.
(1998b), the mixing matrix (A in Eq. (1)) will contain the
corresponding set of time courses, specifying how the
source images have been mixed to form the observed set
of images. For example, we expect that the images that
represent the cognitive task have time courses that some-
how reflect this. We obtain the mixing matrix directly as
the inverse of the unmixing matrix found by ICA.

ICA of fMRI Group Study Data

The idea of using ICA to analyze fMRI group data is
based on the following observations:

o All subjects in an fMRI experiment are carrying
out the same task sequence. Thus, the individual
source images corresponding to the performance of the
task ought to have similar time courses.

e The union of two samples from N independent

® Throughout the rest of this article, we will use the terms sources,
components, and images interchangeably, to refer to the indepen-
dent source images (the rows of s in Eq. (1)).
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sources simply gives a larger sample where the N
sources are still independent. This holds even when the
two samples contains different sources.

With reference to the last point, we of course still
expect that two samples in the form of fMR images
from the same experiment will primarily contain
sources with similar characteristics.

These two observations lead us to propose the follow-
ing model (using the notation of Eq. (1)):

[X1, Xz, ..., Xkl = A[S1,S,, - . ., Skl (7)
Here, X, represents the data collected for subject k, in the
form of a N X L, matrix; N is the number of images
collected for each subject during the experiment and L, is
the number of voxels inside the brain mask for subject k.
Accordingly, s, represents the matrix of independent
source images of subject k. K is the number of subjects in
the group and the [. , .] operator denotes row-wise concat-
enation of matrices. A, finally, denotes the mixing matrix,
which is common to all subjects.

This means that we are extracting spatial compo-
nents with common time courses across all subjects.
Compared to the approach of McKeown et al., we are
also trying to obtain independent images, but the im-
ages now contain the voxels of all subjects. This ap-
proach does not require coregistration of the images
from different subjects, since the spatial locations of
the voxels are irrelevant to ICA. Thus, the resulting
independent images have the same effective resolution
as the original fMRI data.

Note that the ordering of the sources for an individ-
ual subject is arbitrary to ICA, and is determined only
by the ordering of the columns in the common mixing
matrix. Thus, we can readily assume that the task
related source images have the same indices (row in-
dices in the s, matrices) for all subjects. Note also that,
there is nothing preventing physical sources, such the
task induced activation, to manifest themselves in
more than one source image.

Data Sets

For the results presented in this paper we used data
from two fMRI experiments. The first data set comes
from a block trial experiment with a visual stimula-
tion, whereas the second comes from an experiment
with a single trial design and an auditory stimulation.
Both data sets were recorded using a Bruker Medspec
30/100 3.0T MR system.

Visual stimulation. This experiment used an ON/
OFF block trial design and a visual alternating check-
erboard stimulus (Kruggel et al., 2000). The experi-
ment was performed with five different subjects, from
each of which data were collected from three slices
(64 X 64 matrix, 5-mm slice thickness with 2-mm gap,
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TE 30 ms, TR 1333 ms, EPI). In addition to the func-
tional data, a high resolution anatomical image was
obtained for each slice and individual. We restrict our
attention to a selected set of 228 functional images
containing the first 9 blocks.

Auditory stimulation. In the second example below,
we use data from an fMRI experiment with a single
trial design intended for investigation of the neuronal
correlates of sentence comprehension in the brain
(Meyer et al., 1998). Subjects had to decide whether an
aurally presented sentence contained a syntactical vi-
olation or not. The experiment was performed with
three different subjects, from each of which data were
collected from four slices (128 X 64 matrix, 6 mm slice
thickness with 2 mm gap, TE 40 ms, TR 2 s, EPI). Just
like in the previous experiment, the functional data
were accompanied by high resolution anatomical im-
ages obtained for each slice and individual.

Data processing. The images from each subject of
the respective experiments were arranged into ma-
trices, as described in Egs. (1) and (7), which were
then passed to the ICA algorithm. For the examples
presented below, we have used the extended infomax
algorithm (Lee et al., 1999), but we have also ob-
tained similar results with the FastICA algorithm
(Hyvarinen, 1999a). The ICA algorithm was run with
a learning rate of 0.0001 performing up to 500
sweeps through the training set for the single subject
data sets and up to 400 sweeps for the group data
sets. Each sweep consisted of one pass through the
entire data set divided into blocks of 500 data points
(voxels), with the unmixing matrix being updated
after each block. The algorithm terminated if the
sum of the squared differences between the elements
of the unmixing matrices from two subsequent
sweeps was less than 10 °.

Most ICA algorithms, including the ones just men-
tioned, whiten the data (a transformation also known
as sphering) using PCA (see, e.g., Hyvarinen, 1999b,
sec. 5.2), as a first step in the extraction of independent
components. Thus, there is the possibility to reduce the
dimensionality of the data and thereby the number of
independent components, by only retaining the M most
principal components in the whitening. This technique
was used to reduce the dimensionality of the single
trial design auditory data from 864 to 200. This dimen-
sionality reduction retained 99.76% of the variance of
the original data set.

RESULTS AND DISCUSSION

Results

Following ICA, task correlation scores—correlations
between the time courses in the resulting mixing ma-
trix and a function representing the performance of the
task after having taken account of the delay in the
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FIG. 3. Time courses (solid red) corresponding to the independent images shown in Fig. 1 (top) and 2 (second to bottom, matching the
rows of Fig. 2), plotted together with a time-shifted “box-car” function (dashed blue) representing the performance of the task after
hemodynamic correction. The time courses and the function representing the task have been normalized to zero mean and unit variance prior
to plotting. The scale on the horizontal axes runs from 0 to 304 (s), on the vertical axes from —2.0 to 2.0.

hemodynamic response—were computed, to identify Visual stimulation. Figures 1 and 2 show the inde-
task related components (McKeown et al., 1998b). Fur- pendent images from the group and single subject ICA,
thermore, the results were inspected manually, to de- respectively, associated with the time courses showing
tect other interesting components. the highest correlation with the performance of the
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FIG. 4. Anindependent image resulting from group ICA of the data from the visual experiment. The corresponding time course is plotted
in Fig. 5. The image has been visualized in the same fashion as in Fig. 1; a,., = 18.2.

task, overlaid on the anatomical images of the five
subjects. The corresponding time courses are shown in
Fig. 3, plotted together with the function representing
the performance of the task.

In the response pattern in the group image, most of
the response is located to the subject S4, but the re-
sponse appears in the corresponding anatomical loca-
tion also in the other subjects. In the images resulting

from ICA of the individual subjects, the spatial re-
sponses are more similar across the group. This differ-
ence between group and single subject ICA results is
largely due to the varying strength (or scale) of the
response between subjects in the group, combined with
the normalization across all subjects; in the case of the
single subject ICA results, the normalization is done
for each subject individually. If the group image is



558

SVENSEN, KRUGGEL, AND BENALI

TABLE 1

Voxel Count Statistics from the Independent Images Resulting from Group and Single Subject ICA
of the Data from the Visual Experiment

> 1.65 > 1.96 > 2.58 > 3.27
Subject 1 Group, grp norm. 153 (3.3%) 100 (2.1%) 64 (1.4%) 37 (0.8%)
4703 Group, s.s. norm. 240 (5.1%) 183 (3.9%) 102 (2.2%) 69 (1.5%)
Single subject 232 (4.9%) 187 (4.0%) 127 (2.7%) 96 (2.0%)
Subject 2 Group, grp norm. 135 (2.6%) 107 (2.0%) 65 (1.2%) 46 (0.9%)
5223 Group, s.s. norm. 207 (4.0%) 152 (2.9%) 111 (2.1%) 74 (1.4%)
Single subject 306 (5.9%) 206 (4.0%) 113 (2.2%) 73 (1.4%)
Subject 3 Group, grp norm. 309 (4.9%) 233 (3.7%) 163 (2.6%) 119 (1.9%)
6306 Group, s.s. norm. 306 (4.9%) 229 (3.6%) 162 (2.6%) 118 (1.9%)
Single subject 250 (4.0%) 183 (2.9%) 127 (2.0%) 91 (1.4%)
Subject 4 Group, grp norm. 352 (7.9%) 305 (6.8%) 227 (5.1%) 183 (4.1%)
4479 Group, s.s. norm. 202 (4.5%) 174 (3.9%) 121 (2.7%) 81 (1.8%)
Single subject 194 (4.3%) 141 (3.1%) 88 (2.0%) 65 (1.5%)
Subject 5 Group, grp norm. 113 (2.0%) 83 (1.4%) 38 (0.7%) 21 (0.4%)
5727 Group, s.s. norm. 283 (4.9%) 203 (3.5%) 130 (2.3%) 94 (1.6%)
Single subject 298 (5.2%) 211 (3.7%) 114 (2.0%) 66 (1.2%)

Note. The first column simply labels the subjects and gives the total number of voxels inside the brain mask for that subject. The second
column subdivides the rows according to group and single subject ICA and, for group ICA, between group and single subject normalization.
Columns 3-6 give the number of voxels in the (part of the) independent image for the subject, whose absolute values exceed the limits given
in the column headers; the percentages given parentheses express these numbers as fractions of the total number of voxels inside the brain

mask for the subject.

normalized for each subject individually, the result is
very similar to those obtained from the single subject
data. These images are also in good agreement with
the Z maps obtained by conventional analysis of this
data set (Kruggel et al., 2000). However, as pointed out
by McKeown et al. (1998b), the spatial response pat-
tern resulting from ICA of fMRI data are not directly
comparable with the activation maps resulting from
conventional methods, even though they often look
similar. A more quantitative comparison between the
results obtained from group and single subject ICA is
given by the voxel count statistics in Table 1. For the
group image these statistics are given for normaliza-
tion across the group as well as for per-subject normal-
ization.

The time courses from individual and group ICA,
shown in Fig. 3, all look fairly similar. The time course
from the group (top) is the most regular one, which also
shows the highest task correlation (0.91). This is ex-
pected, since this time course needs to match all the
subjects the group and thus becomes a kind of average.
The task correlation scores computed for the individual
subjects were, second to bottom, 0.87, 0.82, 0.89, 0.90,
and 0.80. From the time courses, it is clear that these
differences are partly due to individual differences in
the hemodynamic response.

Figure 4 shows another independent image from the
group ICA, whose time course is shown in Fig. 5. This
time course is correlated with the absolute derivative
of the function representing the task, i.e., it is corre-
lated with the block transitions between resting and
performing the task. The differences between the sub-

jects are also in this example primarily reflecting a
difference in the scale of the response of the subjects. In
comparison to the highlighted regions in the image
shown in Fig. 1, which are situated in the visual cortex
(V1), the region of the visual field which is activated
during the ON-phase, the highlighted regions in this
image correspond to the peripheral parts of the visual
field. Thus, this component might reflect an attentional
mechanism forcing the focus to the central visual field
during the ON phase, while suppressing activity in the
periphery (Smith et al., 2000). Another possible expla-
nation would be to relate this activity to a default mode
of brain function, as suggested by Raichle et al. (2001).

This component is also found when doing ICA of the
individual subjects. However, whereas group ICA
gathers this component from individual subjects into a
single group component, highlighting the similarities
in the spatial response patterns, detection of these
spatiotemporal similarities in the results from single
subject ICA relies on manual inspection and compari-
son of the spatial components and associated time
courses found in the different subjects. Unless some
characteristics of these similarities are known a priori,
e.g., a common time course or a common spatial re-
sponse region, this is a tedious and potentially error
prone task.

As a final example from this data set, Fig. 6 shows
the spatial response pattern of a single subject found in
one group component (bottom) and two components
found doing ICA of the data from this subject alone
(middle and top); the corresponding time courses are
shown in Fig. 7. Both the spatial response patterns and
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the time courses suggest that the group component is
summarizing the two separate components found in
the single subject ICA. In the bottom plot, the ‘group
time course’ (red) has been plotted together with a time
course (dotted black) constructed through a least
squares regression on the two ‘single subject time
courses’. This linear combination lies notably closer to
the group time course than any of the two single sub-
ject time courses alone (RMS difference 0.39, compared
to 1.23 (top) and 0.53 (middle)). The time courses of all
three components suggest that these are, at least par-
tially, related to the performance of the task. The
peaks in the spatial response patterns are located to
secondary visual areas.

Also worth noting is that more than nine out of ten
voxels (91%) in the group image with an absolute value
above 3.27 were located to the subject shown in Fig. 6.
This should be contrasted with the fact that this sub-
ject contributes with less than one fifth (17%) of the
total number of voxels in the independent image from
the group.” The few voxels located to other subjects did
not appear in the same spatial regions or show any
common spatial pattern. Thus, this component seems
to primarily reflect a source from this subject only. We
will return to this effect when discussing the results
obtained with the data from the auditory experiment
next.

Auditory stimulation. The results from ICA of the
data from the auditory experiment were very similar to
those obtained from the visual experiment. For the
independent images associated with the time courses
having the highest correlation with the performance of
the task, the differences in the results from group and
single subject ICA were primarily due to differences in
the response strength between subjects in the group.
As was the case with the data from the visual experi-
ment, these independent images were in good agree-
ment with those resulting from conventional analysis.
As expected, the peaks in the spatial response patterns
were located to the primary auditory cortex (Heschl's
gyrus). Voxel count statistics of the kind given in Table
1 for the visual experiment data did not reveal any
systematic differences between group and single sub-
ject ICA. Also here, the time courses from the group
and single subject were very similar, where again the
time course corresponding to the group image was the
smoothest and the most regular. However, the highest
correlation between the extracted time courses and the
function representing the performance of the task was
observed for a single subject component (0.82), closely
followed by the group component (0.80). We have cho-
sen not to illustrate these results here, because of their

* We only count the voxels within the brain masks of the respective
subjects.
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similarity with the corresponding results obtained
from the visual experiment data.

Instead we turn our attention to the following im-
ages, as ranked by the correlation between the corre-
sponding time courses and the time-shifted stimulus
function. These have spatial response patterns, where
the regions containing the signal peaks are largely
confined to a single subject. An example of this effect
was seen in the results obtained with the data from the
visual experiment above (see last paragraph preceding
this section). For the auditory data, these images are
shown in Fig. 8, for each image only including the part
of the image (the subimage) corresponding to the sub-
ject where these signal peaks are localized. The top
subimage contains more than 98% of all the voxels in
the group image with an absolute value above 3.27,
even though the number of voxels in this subimage
only represents 30% of the total number of voxels in the
group image. Similarly, the bottom subimage contains
more than 99% of all the voxels in the group image
with an absolute value above 3.27, even though the
number of voxels in this sub-image only represents
35% of the total number of voxels in the group image.
For both group images, the few voxels located to other
subjects did not appear in the same spatial regions or
show any common spatial pattern.

There is a notable similarity between the images in
Fig. 8, even though they are localized in two different
subjects and slice planes, and since the corresponding
time courses are both correlated with the stimulus,
these images may represent the same cognitive process
in both subjects. We identify the region where peaks of
the spatial response patterns appear to be Broca's
area, believed to be associated with syntactical process-
ing. A question is why this process is split over two
components. The perhaps most probable reason is that
the signal arising from the cognitive process is being
mixed with signals corresponding to other sources such
as noise and baseline drifts, which are different in the
different subjects. Inspection of the time courses® sug-
gests that this could be the case.

These results show that ICA of group data can ex-
tract components common to the group as well as com-
ponents primarily localized to single subjects.

Discussion

ICA of fMRI data. ICA offers a complementary ap-
proach to model-driven methods for the analysis of
fMRI data. As shown above and in examples from the
literature, ICA is capable of separating out the signal
induced by the performance of the task as well as
signal changes arising from other changes of the ex-

® We have chosen not to include plots of these time courses, since
plotting them at an adequate resolution—each time course contains
864 time steps—would require unreasonable amounts of space.
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FIG. 5. Time course (solid red) corresponding to the independent image shown in Fig. 4, plotted together with a time-shifted “box-car”
function (dashed blue) representing the performance of the task after hemodynamic correction. The time course and the function representing
the task have been normalized to zero mean and unit variance prior to plotting. The scale on the horizontal axis runs from 0 to 304 (s), on

the vertical axis from —1.7 to 2.6.

FIG. 6. The top two rows show two independent images resulting from ICA of the data from a single subject (S4). The bottom row shows
the part corresponding to the same subject of an independent image resulting from ICA of the whole group of subjects. The images have been
visualized just like the image shown in Figs. 1 and 2. The corresponding time courses are shown in Fig. 7.

perimental conditions (Biswal and Ulmer, 1999).
Maybe most interesting is the possibility of detecting
sighals that would not necessarily emerge out of con-
ventional analysis. One example of this was shown in
Figs. 4 and 5; another one, involving components re-
lated to the stimulus in a nonlinear fashion, was pre-
sented by Berns et al. (1999). In contrast to conven-
tional regression-based techniques, ICA requires no a
priori description of what to look for in the raw data. It
belongs to the group of so called unsupervised tech-
niques, to which also PCA and clustering methods are
counted. However, compared to PCA, ICA seems to be
better suited for the separation of stimulus correlated

components from the observed raw data (McKeown et
al., 1998b; Biswal and Ulmer, 1999).

At the same time, whereas the statistical maps—
e.g., Z or F maps—resulting from conventional meth-
ods can be given a direct interpretation, indicating the
confidence in the hypothesis that the agreement be-
tween observations and an a priori specified model is
not coincidental, no such interpretation exists for the
independent images. This is a direct consequence of the
weak assumptions made in ICA, which neither include
any a priori specified model for the time courses, nor
any explicitly specified noise model that would account
for discrepancies between the model and the observa-
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FIG. 7. Time courses (solid red) corresponding to the independent images shown in Fig. 6, plotted together with a time-shifted “box-car”
function (dashed blue) representing the performance of the task after hemodynamic correction. The additional time course plotted in black
in the bottom plot is a linear combination of the time courses in the first and second row. The time courses and the function representing the
task have been normalized to zero mean and unit variance prior to plotting. The scale on the horizontal axes runs from 0 to 304 (s), on the

vertical axes from —3.0 to 3.0.

FIG. 8. Subimages from two different group ICA images containing the voxels of two different subjects from the auditory experiment. The

images have been visualized as in Fig. 1.

tions.® The lack of common underlying assumptions
make the formal justification for quantitative compar-
isons of independent images and statistical maps dif-
ficult. McKeown (2000) tries to bridge this gap between
ICA and traditional analysis by proposing a hybrid
model, where time courses extracted by ICA are sub-
sequently used in traditional linear regression models.

®In ICA, any ‘noise’ is being accounted for by one or more inde-
pendent components, but no assumptions are made about the nature
of this ‘noise’.

ICA of fMRI group study data. Applied to group
data, ICA has the same advantages and disadvantages
as when applied to single subject data, but also some
new aspects emerge. The most important distinction,
compared to performing ICA of the data from the sep-
arate subjects in the group individually, is the extrac-
tion of a single set of time courses common to the whole
group. This is accompanied by a set of individual spa-
tial response patterns for the subjects in the group. For
any particular component, the significant peaks of this
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spatial response pattern may be isolated to a few or a
single subject(s). Thus, ICA may extract components
specific to a subset of the group or even to single sub-
jects, as was illustrated in Fig. 8. In contrast to con-
ventional methods for analyzing group data, our ICA
approach avoids the need for any spatial normalization
or a priori specified temporal behavior.

An unavoidable consequence of restricting ICA to a
common set of time courses for the whole group is that
weak sources with different temporal characteristics
across subjects will get suppressed. This does not nec-
essarily have to be negative, since noise sources in the
different subjects will almost certainly have different
temporal characteristics and hence be among those
sources that get suppressed. Another possible conse-
guence is that some more subtle differences between
subjects may get lost in an ICA of a group data set.
Figure 3, for example, illustrates what appears to be
small differences in the hemodynamic response be-
tween the different subjects in the group, differences
which cannot be seen from the group ICA result.

When choosing between doing group and single sub-
ject ICA for groups of subjects, one is probably best
guided by the purpose of the analysis. With group
analysis components common to the group can be cap-
tured and identified relatively easily, whereas analysis
of single subjects will be better suited to reveal indi-
vidual features. Our results do not suggest that there
would be any substantial differences between group
and single subject ICA in the spatial response patterns
representing the same cognitive process, although a
process that might be split into two or more compo-
nents by single subject ICA may be represented as a
single component by group ICA, as illustrated in Figs.
6 and 7.

From a computational point of view, working with
data from a group of subjects, will obviously require
more computation than if we are working with data
from a single subject from that group. However, the
computational effort does not have to grow linearly.
Our approach effectively means that we are increasing
the number of samples from the observed variables,
and hence the computation may converge with fewer
iterations through the (larger) data set.

In this paper, we have concentrated on the task
related independent components. If we consider other
components, it has been suggested that ICA finds com-
ponents corresponding to e.g. head movements and
baseline drifts. Whether this is also the case when
doing group ICA remains to be investigated. However,
since the corresponding sources are likely to have dif-
ferent temporal characteristics in different subject,
they should either appear in components with the
peaks of the spatial response pattern localized to a
single subject or not at all, i.e. get suppressed.

Another interesting question is whether ICA could
also be applied to group study data from EEG or MEG
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experiments. As already pointed out, ICA of EEG/MEG
data is carried out in the temporal rather than in the
spatial domain, as is the case with fMRI data. Thus,
ICA of group study EEG/MEG data would result in a
set of spatial response patterns common to the whole
group, combined with individual temporal responses
for each subject.

During the final stages of preparation of this manu-
script, we became aware that Calhoun et al. (2001)
have recently proposed an alternative scheme for ICA
of fMRI data from a group of subjects. However, their
method differs from ours in several ways. The perhaps
most important difference is that their method yield a
mixing matrix which “will be approximately separable
across subjects.” In other words, their method yield
separate time courses for the different subjects in the
group. In contrast, our method result in a mixing ma-
trix which is common to all the subjects in the group,
although certain components may be primarily located
to single subjects.

CONCLUSION

ICA offers a new approach for analyzing fMRI group
study data, to be added to the collection of already
existing tools. Like any other method, ICA has its pros
and cons, that have to be taken into account whenever
its merits for analyzing a particular data set are being
considered. We believe that its most useful role will be
as an exploratory tool, for identifying components
which are related to, although perhaps not directly
correlated with the performance of the task, as well as
for differentiating between components common to the
whole group and components that only manifest them-
selves in a smaller set of subjects.
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