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ABSTRACT 

One of the major clinical applications of magnetic reso- 
nance imaging (MRI) is to detect pathological features in 
human body parts. While results are available in a digital 
format, their evaluation is performed by a trained human 
observer, which is still considered as the "gold standard". 
However, providing additional quantitative figures (e.g., le- 
sion size or count) is tedious for a human and may better 
be obtained from automatical image processing methods. 
Three example brain lesion types (as revealed by MRI) and 
methods for their detection are described. Special emphasis 
is led on the way prior knowledge about the specific lesion 
type is incorporated in the algorithm. 

1. INTRODUCTION 

Detecting pathological features in magnetic resonance imag- 
ing (MRI) data sets of the human head is considered a non- 
trivial segmentation task. Segmentation approaches require 
prior knowledge about the lesion charactistics (e.g., their 
expected compartment, size and shape, their signal statistics 
in relation to the embedding tissue), and thus, are generally 
targeted for detection of a specific lesion type (e.g., [9,13]). 
For historical reasons and their medical significance, most 
approaches focused on white matter lesions due to Multi- 
ple Sclerosis (e.g., [7]), while methods for segmenting large 
focal lesions appeared only recently (e.g., [6]). 

Herein, we focus on approaches that are targeted to au- 
tomatically detect (a) large unilateral lesions, (b) small mul- 
tifocal lesions, and (c) diffuse white matter lesions. While a 
trained human observer is still outperforming automatic ap- 
proaches for lesion detection and discrimination, estimating 
the lesion size (in the case of large unilateral or diffuse le- 
sions), count and position (in the case of multifocal lesions) 
is tedious or even impossible. 

The aim of this work is to provide quantitative descrip- 
tors for different lesion types. According to their properties, 
different approaches were found useful. Especially, these 
three example algorithms incorporate prior knowledge in 
fundamentally different ways, as explained in more detail 
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below. The quantitative descriptors may be considered as 
useful measures in statistical evaluations of a patient's clin- 
ical status. 

2. SEGMENTATION OF FOCAL BRAIN LESIONS 

Focal brain lesions are a consequence of head trauma, cere- 
bral infarcts or intracerebral hemorrhages. Properties of the 
lesion (i.e. position, extent, density) are known to be related 
to cognitive handicaps of a patient. Visual e x m a t i o n  of 
the lesions suffers from inter- and intra-observer variability 
[13]. Semi-automatic or automatic methods for analyzing 
lesions in MR data sets are advantageous because consistent 
and reproductible criteria are employed to yield quantitative 
lesion descriptions. 

Figure 1: Top: A typical unilateral lesion as revealed by 
a TI (left) and a f i  weighted (right) MR image. Lesions 
are detected as significant differences in the signal statistics 
between small homologeous subregions (below). 
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As a first approximation, the brain is mirror-symmetric 
with respect to the mid-sagittal plane. Unilateral lesions 
should be detectable as symmetry violations of a certain ex- 
tent (see Fig. 1). Thus, the core idea of the segmentation 
method proposed here is to compare the signal statistics be- 
tween both brain hemispheres. In more detail, the process- 
ing chain consists of 4 steps: 

1. Preprocessing: In order to enhance the sensitivity of 
lesion detection, we employ high-resolution TI -weight- 
ed datasets (Bruker 3.0 T Medspec 100 scanner sys- 
tem, 3D MDEFT protocol, FOV 220x192~220 mm, 
matrix 256x128~256, voxel size 0.86x1.5x0.86 mm) 
and T2-weighted datasets (20 axial slices, FOV 250x250 
mm, matrix 512x512, voxel size 0.48x0.48x7.0 mm). 
First, TI -weighted images are interpolated to an isotrop- 
ical voxel size of 1 mm and aligned with the stereotac- 
tical coordinate system [IO]. Then, an affine transfor- 
mation determined by a voxel-based registration al- 
gorithm is used to align the T2-weighted image with 
the high-resolution dataset. 

2. Computing the lesion probability map (LPM): A fo- 
cal lesion is typically confined to a single hemisphere, 
while the homologeous area on the contralateral side 
is healthy. The lesion segmentation problem may there- 
fore be stated as finding compact areas with an inten- 
sity statistic that differs significantly from the con- 
tralateral side. 
Denote by V a small subregion and by V’ a corre- 
sponding region on the contralateral side. The matrix 
X (resp. X’) contains the p = 2 measurements (TI 
and T2-weighted data) from the n voxels of both sub- 
regions (see Fig. 1). A Hotelling T2 test is used to 
compare the intensities between V and VI: 

T = ( M - M ’ ) T S i ’  ( M - M ‘ )  (1) 

where M,M’ correspond to the vectors of means in 
the regions and S, to the pooled covariance matrix: 

s, = ~ (XTX + X ‘ T X ’ ) .  (2) 2(n - 1) 

The Hotelling T-score is related to an F-score by: 

n ( 2 n - p -  1) 
2p (2n - 2) 

F =  T. (3) 

Finally, F-scores are converted into Z-scores and com- 
piled in a map. 
The 3D volume is scanned, and for each pair of sub- 
regions a Z-score is calculated. A sign is addressed to 
the Z-values that depends on the sign of the compo- 
nents of the matrix M - MI. We obtain therefore a 3D 
lesion probability map where areas with high signal 
asymmetries are depicted by high Z-scores. 

Figure 2: The advantage of this lesion detection method is 
that it depicts the whole tissue loss, e.g. by including parts 
of the consequitively enlarged ventricle (top), but spares 
anatomical sulci (below). 

3. Post-processing: Since we perform a voxel-wise test, 
we must correct for the multiple comparison problem 
before addressing a significance to a connected region 
representing a possible lesion. We apply an equa- . 

tion that was proposed in the context of functional 
MRI data analysis [4]. LPMs are thresholded by a 
certain Z-score, and the size of all connected com- 
ponents is computed. Based on the component size, 
the size of the search region (i.e., the brain) and the 
smoothness of the LPM, a probability is addressed to 
a connected component. If this probability is below 
a pre-set threshold (e.g., p < 0.05) then we accept 
this connected component as a probable lesion. Non- 
significant regions typically contain less than 10 vox- 
els. The behavior of the algorithm is demonstrated 
here on two cases (see Fig. 2). The lesion borders 
depend obviously on the threshold value Z. If it is too 
low, the lesion might be overestimated, otherwise it 
would be underestimated. 

The method is straightforward to implement, fast and 
robust. Using a statistical framework for lesion definition is 
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expected to yield more consistent and better reproduceable 
results than manual or semi-automated procedures. 

3. SEGMENTATION OF MULTIFOCAL SMALL 
LESIONS 

Enlarged Virchow-Robin spaces (VRS) correspond to small 
gaps between the white matter and its supplying deep pen- 
etrating arteries. They appear as small tubular structures 
filled with cerebro-spinal fluid (CSF) that (ideally) are radial 
to the brain surface. Typically, they are close to the spatial 
resolution limit of current MRI methods (1 -3 mm in diam- 
eter and 3-15 mm long), and a single brain may contains 
hundreds of such lesions. So far, these lesions are evaluated 
visually in the acquired data sets and rated by semiquantita- 
tive scales [ 1 I]. 

Figure 3: An example of VRS detection: (a) Original axial 
slice, (b) detected VRS, (c) Coronal slice corresponding to 
VRS 3, (d) Sagittal slice corresponding to VRS 3. 

Structure and distribution of VRS have motivated the 
following approach. Firstly, a VRS typically represents sev- 
eral voxels forming a tubular shape (see Fig. 3). Thus, an 
approach based on a geometrical object appears suited for 
this problem. Secondly, VRS are not uniformly localized 
and some regionally higher occurence can be observed. In- 
teractions between objects were included in the model to 
favor clustering of VRS while suppressing an overlap of dif- 
ferent VRS. 

The template theory introduced by Grenander allows 
modeling random shapes [5] .  Here, the object’s shape model 
is simple and will be represented by a small segment. The 
complexity of the model lies in the different object interac- 
tions we will introduce. Therefore, we have preferred the 
marked point process framework here [l]. A point process 

defined with a Poisson density measure models the number 
of objects and their localization in the scene. This process 
may include interactions between points such as explicit re- 
lations or clustering properties. Shape parameters are asso- 
ciated with the points to define the object geometry (e.g., 
length and orientation of an object). A certain shape vari- 
ability (length and diameter of the tubular structures in our 
case) and data noise have to be taken into account that intro- 
duce local minima of the cost function related to the model. 
To overcome this problem, we consider a stochastic frame- 
work. Model optimization can be achieved by an Reversible 
Jump Markov Chain Monte Carlo algorithm (RJMCMC) [3] 
embedded in a simulated annealing scheme. 

Figure 4: Cumulative spatial distribution of VRS collected 
from 37 datasets, together with the reference brain. A 
higher prevalence of VRS is found in the area supplied by 
the medial and lateral striate arteries (e.g., putamen and pal- 
lidum) and in  the area supplied by the long penetrating ar- 
teries, especially in the frontal white matter compartment. 

First, results are presented for a particular dataset that 
has been selected among cases with a high prevalence of 
VRS. Figure 3 shows sample orthogonal slices and their 
detected lesions. To achieve an idea about the spatial dis- 
tribution of VRS, 37 brain datasets of elderly people were 
analyzed by this procedure and registered to the same brain 
using a non-linear procedure based on fluid dynamics. The 
obtained displacement fields were used to transform the de- 
tected VRS into a common space. Figure 4 shows the cumu- 
lative spatial distribution of VRS collected from all datasets, 
together with the reference brain. A higher prevalence of 
VRS is found in the area supplied by the medial and lateral 
striate arteries (e.g., putamen and pallidum) and in the area 
supplied by the long penetrating arteries, especially in the 
frontal white matter compartment. 
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4. SEGMENTATION OF DIFFUSE BRAIN LESIONS 

Changes in the cerebral hemispheric white matter are often 
detected in MFU brain datasets of elderly persons [12]. The 
pathogenesis, clinical significance and morphological sub- 
strate of these changes are incompletely understood [2]. In 
order to deduce the clinical significance of these findings, 
it is necessary to derive quantitative descriptors for them. 
The usual clinical practice is to evaluate images visually on 
the basis of a semi-quantitative rating scale [ 1 11. Using tex- 
ture features to segment diffuse white matter hypointensities 
(DWMH) appears a worthwhile and attractive approach. 

VQI number 
Figure 5: Calculation of a representative co-occurrence ma- 
trix for segmentation of DWMH. (a) Typical example of 
DWMH sample region defined as 7 x 7 ~ 7  mm VOI with the 
center pointed out by crossing lines. (b) Distances to the 
mean lesion co-occurrence matrix for 65 lesion and 65 con- 
trol VOIs. 

We suggested using 6dimensional co-occurrence matri- 
ces [SI for describing regional texture features that are com- 
prised of intensities Z(i),Z(j) of voxel pairs, their gradients 
G ( i ) ,  G ( j ) ,  the angle between gradients a( i7 j ) ,  and their dis- 
tance d(i, j ) .  For this example, dimensions were binned as 
follows: 4 intensity bins (64 units each), 6 angle bins (30 de- 
grees each), 4 distance bins (d = l - 4"). CO-occurrence 
matrices are collected within a certain volume-of-interest 

(VOI), and represented as a point in the 6-dimensional fea- 
ture space. Texture-based segmentation can be performed 
in four steps: 

Calculating a representative lesion descriptor: A train- 
ing set that includes VOIs representing sample lesion 
regions and corresponding control regions is construct- 
ed. Selecting a proper VOI size is a compromise: it 
must be big enough to capture the typical pattern of 
the lesion, but small enough to provide a reasonably 
precise segmentation of the lesion borders. Since im- 
age VOIs are supposed to be of the same size, there is 
no need to normalize co-occurrence descriptors. The 
representative descriptor can be calculated as an av- 
erage matrix over the lesion image VOIs given in the 
training set. 

Selecting a similarity metric: The purpose of this step 
is to select and tune a suitable function that maps 
distances between the current and representative VOI 
descriptors into a lesion probability map. A suitable 
choice is a simple L1 norm that addresses a nonzero 
probability to distances found for lesion samples and 
zeros for distances close to control VOIs: 

where vi correspond to the elements of the co-occur- 
rence matrix of the lesion and the control regions. 
Note that control VOI samples are included for this 
tuning process only. 

Segmentation: An image is scanned with a given VOI 
size, calculating the distance from the current VOI to 
the representative one in feature space and addressing 
a corresponding probability label to the central voxel 
of the current VOI. Thus, a voxel of the probability 
map corresponds to the similarity of a neighborhood 
with the lesion VOI. 

Post-processing of the probability map: It is unlikely 
that all image VOIs within the box-shaped scanning 
area are consistent with respect to the lesion similar- 
ity criteria. Therefore, some post-processing is nec- 
essary to remove false-positive map labels outside of 
the typical lesion space (here, the WM compartment). 

Experimentation revealed a VOI size of 7 x 7 ~ 7  mm to be 
adequate. The training set was formed from 3 patient and 
4 control datasets and included 65 DWMH and 65 control 
VOIs. Figure 5 shows example slices of a patient dataset 
and the L1 mapping in feature space. To compute DWMH 
probability maps, a linear mapping of the distance to the 
label range 0-255 was used, where the maximal value 255 
was associated with 0.42 (mean distance over 65 DWMH 
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Figure 6: Result of the DWMH segmentation. (a) Original 
image slice. (b) Probability map of the lesion for the slice 
depicted in (a). (c)-(d) Two directly rendered views of the 
3-D lesion map. 

VOIs) and the minimal label 0 with 0.69 (mean distance 
between both VOI classes). 

Figure 6 shows example segmentation results as 2-D 
sections of the probability map for a reference image slice 
(upper row) and two 3D rendered views of the map (bot- 
tom). Lesion maps produced by this technique have a voxel- 
by-voxel correspondence with the original brain dataset and 
can be used for a quantitative estimation of lesion severity. 

. 

5. SUMMARY 

Three methods were described for the detection of large uni- 
lateral brain lesions, small multifocal lesions and diffuse le- 
sions of the brain’s white matter. All methods were tested 
on a large number of clinical cases, and have proven their 
reliability. Their use may be considered as supplementary 
information of a clinical report, in statistics for clinical trials 
or therapeutic monitoring. 
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