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ABSTRACT 

Brain shapes do not necessarily form a continuum in some 
descriptor space, but may form clusters related to pre-deter- 
mined genetical factors or acquired diseases. As a feasibil- 
ity study for introducing a suitable descriptor space, the use 
of modal analysis was tested on a large brain database ac- 
quired in healthy young subjects. Significant shape differ- 
ences due to gender were found, and intra-gender clusters 
were determined. 

1. INTRODUCTION 

The inherent structural complexity and individual variabil- 
ity of the human neocortex left all attempts to construct a 
computer-based atlas system with a considerable maximal 
positional uncertainity in the range of 5-15 mm. The three 
principal approaches use either a single example brain [15], 
a probabilistic atlas based on a population [lo], or try to 
identify brain structures in the individual scan data directly 
[8]. All these approaches make the implicit assumption that 
all brains under study stem from a single cluster in a struc- 
tural continuum, i.e., a non-linear transformation fulfilling 
a diffeomorphic contraint is able to transform any instance 
into another one. 

However, it is well-known from neuroanatomy that struc- 
tural variants of the brain exist, some of which have to be 
considered as pathologic (e.g.. macrogyria or microgyria) or 
abnormal (e.g., callosal agenesis). But even normal brains 
exhibit a considerable variability in certain subregions. Since 
the shape and the size of the head is determined by brain 
growth - and not vice versa - the brain’s shape expression 
is expected to be govemed under some pre-determined ge- 
netic control [2]. Indeed, such structural genes for the brain 
have been identified [12]. 

Thus, it is questionable, whether brain shapes form a 
single cluster in this continuum or may better be described 
by a set of clusters, some of which may be related to gen- 
der, ethnic groups, or certain pathologic conditions. If such 
”brain shape types” exist, they may show differences in the 
disposition to diseases (e.g., react differently to a traumatic 
event). In addition, it may be necessary to revise approaches 

to parcellate the neocortical surface with respect to multiple 
shape types. 

it is possible and statistically valid to set-up classes of brain 
shapes in a normal population. To accomplish this, we need 
to (a) extract the brairi from a MRI head scan, (b) describe 
the brain surface by a set of shape descriptors, and (c) an- 
alyze the statistical properties of the brains represented as 
points in the high-dimensional feature space spanned by the 
shape descriptors. 

There is a rich and well-developed theory for describing 
shapes [6] ,  and a number of approaches were applied suc- 
cessfully in the medical domain [9, 11, 131. Just to name a 
few valid choices for our problem: Fourier descriptors [5], 
point distribution models [3], spherical harmonics [4], eigen 
decompositions of non-linear deformations [ 11. We selected 
the so-called ”modal matching” which characterizes a study 
object by the amplitude spectrum of 3D deformation modes 
required to match it with a reference object. 

So in the context of this study we were interested whether 

2. METHODS 

With respect to seminal publications of this topic (e.g. [9, 
11, 131, we will only cover the basics of modal analysis 
here. In a nutshell, the brain’s shape is represented by a set 
of salient surface points that are used to set up an biome- 
chanical Finite Element Model ( E M ) .  Modal analysis of 
this FEM yields a set of 3D deformation modes and am- 
plitudes. Two brains are related to each other by modal 
matching, i.e., a set of common deformation modes is se- 
lected based on point correspondences. By arbitrarily se- 
lecting one reference brain, all other brains may be related 
to the reference in a common coordinate system spanned by 
a subset of low-frequency deformation modes. This space 
is used to statistically explore gender differences and cluster 
brains within gender groups. 

2.1. Selection of Node Points 

A brain is represented by a set of approximately equally 
spaced points on its surface p, { p i } i , ~ , ~ , p i  E R3. The 
choice of suitable points pi is critical. We use the follow- 
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ing algorithm, using a binary voxel volume representing the 
brain as a single N26 connected component as input: 

1. Count the number of surface points ns of the object. 

2. If n, > n, scale down the-volume by a factor of 2 and 

3. If ns < n, randomly sample n - n8 surface points 

proceed with step 1. 

from the object at the next higher scale. 

4. Mark the corresponding points of the object on all 
higher scales. 

Output is a set of n marked surface points at the original 
scale. 

2.2. Modal Analysis 

Consider an object (e.g., a brain) discretized as an isopara- 
metric FEM using the n surface points p as determined 
above. The following second order differential equation de- 
fines a free, undamped vibration in an isotropical material: 

M U + K U = O  (1) 

where U corresponds to a vector of the nodal displace- 
ments, K to the symmetric stiffness matrix, and M to the 
mass matrix of the system. Equation 1 is solved as a gen- 
eral positive-definite symmetric eigenvalue problem of size 
3n: 

K 9  = Man2,  (2) 

yielding 9, {4i} i=1,sn eigenvectors (called deformation 
modes) and a, { ~ i } i = 1 , 3 ~  eigenvalues (the corresponding 
frequencies). Refer to Sclaroff and Pentland [13] for a de- 
tailed description how matrices M and K are constructed 
from the sampled points p. 

The vector of nodal shifts U is related to the amplitudes 
of the modal deformations U by: 

i=l 
(3) 

Modal analysis characterizes a brain represented by n 
surface points as a set of n deformation modes and their 
corresponding amplitude spectrum in 3D space. 

23. Object Comparison 

”Modal matching” is a method to computed point corre- 
spondences between similar objects. This method is in- 
variant with respect to scaling and translation, and robust 
to nonrigid deformation and noise. Here, we want to match 
a set of brains to an arbitrarily chosen reference. More for- 
mally, some study object represented by n, modes 9, is 

compared with a reference object described by nr modes 
a,., with generally ns # n,.. Following Shapiro und.Brady 
[I41 we compute an affinity matrix A E Rnrxna: 

where qY, 4 g  and qP correspond to the three components of 
a mode 4. The smaller the value a i j ,  the stronger the corre- 
spondence between node point i of the study and node point 
j of the object. We denote a correspondence as strong if zi,j 

is the minimum of the jth column and aj,i the minimum of 
the ith row of A. 

The modal description of a study relative to a reference 
is computed from the modal shifts ui = p,,i - p , j  using the 
-strongly corresponding points p,,i and p, , j .  For adapting 
the reference to the study, we search for a minimal squared 
error applying a minimal deformation energy [13]: 

where X denotes a Langrange paramefer (in our case, X = 
Minimization and solving for U yields: 

U = [9p% + An:] - l  *,Tu. ( 5 )  

Thus, we yield a set of deformation amplitudes U, {&}i=l,3nv 

that deform the study into the reference, based on the defor- 
mation modes 9r of the reference. Thus, we denote these 
deformation amplitudes as ”shape descriptors”, given in a 
coordinate system spanned by the deformation modes 9 r .  

Deformation modes may be divided into three groups: 
* T  = [ &,l . . . +T,S &,7 . . . @T,, &,m+l . . . &,3n, 1 --- 

rigid body mid-range higher order 
modes modes modes 

In order to provide stability against noise, only the mid- 
range modes are used to construct a modal coordinate sys- 
tem. The shape descriptors sought for are the first m ampli- 
tudes iii. We used m = 60 for our problem. 

3. EXPERIMENTS AND RESULTS 

210 subjects (103 male, 107 female, age 24.8 f 3.9 years) 
were selected from our brain data base. A MRI head data 
set was acquired in each subject on a Bruker 3.0 T Medspec 
100 scanner system using a Tl-weighted 3D MDEFT pro- 
tocol (FOV 220x192~220 mm, matrix 256x128~256, voxel 
size 0.86~1.5~0.86 111111, scanning time 16 min). Scan data 
were interpolated to an isotropical voxel size of 1.0 mm by 
a fourth-order b-spline method, aligned with the stereotac- 
tical co-ordinate system while removing the outer hulls of 
the brain, including the meninges [7]. The brain stem was 
cut at a level 60 mm below the posterior commissure. 

All brains were subjected to a post-processing by unsu- 
pervised clustering into foreground (i.e. brain tissue) and 
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background. The largest connected component in the fore- 
ground was extracted, and smoothed by applying by two 
iterations of a rank filter. The remaining single connected 
component served as input for the procedure described above. 
We selected n = 500 points to represent the brain surface, 
and all data sets were referenced to a single, arbitrarily cho- 
sen one. We obtained m = 60 amplitudes di corresponding 
to deformation modes $1 . . . $60 for each data set. Thus, 
each of the 210 brain shapes is represented by a point in the 
60-dimensional coordinate system defined by the rigid-body 
and mid-range deformation modes. 

3.1. Gender-related Differences 

The 60 shape descriptors were evaluated for gender-related 
differences using multiple linear regression (multiple r2  : 
0.4601, F : 2.068 on 60 and 145 degrees of freedom, p : 
0.0002), A post-hoc variance analysis yielded the following 
significantly different modes (see Tab. 1). 

Mode SumSq Fvalue p-value 

403 

405 

409 
41 1 

$21 

443 

454 

$13 

$23 

$24 

1.3452 
0.9449 
0.7582 
0.9333 

1.6694 

1.5087 
0.8948 

- 1.6835 

- 2.0493 

- 0.9659 

7.0267 
4.9360 
3.9606 
4.8753 
8.7940 
8.7205 

10.7050 
7.8807 
4.6744 
5.0457 

0.0089 
0.0278 
0.0484 
0.0287 
0.0035 
0.0036 
0.0013 
0.0056 
0.0322 
0.0261 

** 
* 
* 
* 

** 
** 
** 
** 
* 
* 

Table 1: Significant gender-related differences in the de- 
formation spectrum (* corresponds to p < 0.05, ** to 
p < 0.01). 

Instead of visualizing a superposition of this deforma- 
tion mode spectrum, we preferred to find the "most typical" 
female and male brain by selecting the data set closest to 
the cluster of female resp. male brains in the mode space. 
Results are shown in Fig. 1. The most common male is case 
79, the most common female case 188. 

Then, we classified male and female brain into separate 
clusters. We computed Euclidean distance matrices using 
amplitudes u 7  . . . U60 of each individuum. A hierarchical 
clustering was introduced in the male resp. female group 
using the Ward agglomeration method. An optimal cluster- 
ing was achieved with three male and three female classes. 
Most common cases were: male 0, 51, 62 (see Fig. 2), fe- 
male 122, 185, 190 (see Fig. 3). The tree plots for both 
clusterings are shown in Fig. 4 on the last page. 

Figure 1: Most typical male (left column) and female data 
set (right column). Note the difference in the structure of 
the corpus callosum and the somewhat flatter appearance of 
the female brain. 

4. DISCUSSION 

The usefulness of modal analysis as shape descriptors for 
brains was demonstrated. We found significant gender-related 
differences and introduced gender-specific classifications. 
We are aware of the following caveats of our study: 

We used the "outer" brain shape on a rather low reso- 
lution level for determination of the modal spectrum. 
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Figure 2: Most typical representatives of the three classes in 
the male subgroup. 

It would be interesting to compare these results with 
a classification based on a segmentation of the white 
matter, where the surface description is based on points 
on the gyral crowns and sulcal fundi. Another classi- 
fication may be based on the (hypothetical) lissence- 
phalic brain obtained by clipping away all gyri. A 
comparison of these three classifications may allow 
distinguishing better between genetic and develop- 
mental factors influencing brain shape. 

The classification shown here is valid for the popula- 
tion only. While some results (e.g., the gender-related 
differences) are expected to generalize (see also [ 11). 
we may expect that even more well-separated clusters 
are detected if a study includes different ethnic groups 
U61. 

Point correspondences are based on Euclidean dis- 
tance in this study. A better approach would use ana- 
tomically defined correspondences (i.e., homologue 
loci). 

A more thorough understanding of the obtained clas- 
sification in terms of brain organization needs to be 

Figure 3: Most typical representatives of the three classes in 
the female subgroup. 

performed. Do these shape differences play a role in 
the relative size of brain compartments (i.e., lobes, 
gyral volume)? 

Another interesting option is to study the progress of 
neurodegenerative diseases (e.g., Alzheimer’s disease) in 
time-series images which should reveal specific anatomical 
regions where the atrophying process takes place. 

Modal analysis as performed here appears as an easy 
and attractive means of obtaining shape descriptors, which 
may serve for a quantitative statistical analysis of biological 
objects in longitudinal or cross-section studies. 
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Figure 4: Classification tree for male (top) and female (be- 
low) subjects. 
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