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A new algorithm for the investigation of unstationary spatiotemporal signals is
ontroduced, which consists of two parts: the first determines time windows of
non-stationary signal segments and the second aims at low-dimensional dynamical
systems describing the detected unstationary behaviour. Results of an application
on simulated data, which shows a similar behaviour as a Kiippers-Lortz-instability,
are discussed.

1 Introduction

The dynamics of spatially extended systems can be measured by sets of multi-
detector arrays. The obtained data can be investigated either each channel
seperately or as a whole set a signals. Analysis of latter spatiotemporal signals
is applied in various different research fields as meteorolgy (e.g.!), hydrodyna-
mics (e.g.2) or neuroscience®*:5:6. Several methods, which fit multi-dimensional
models dynamical models in spatiotemporal signals 7:3:27:2:10 cover the data in
full time range. We introduce a method to segments a spatiotemporal signal
into parts, which can be described by fixed point dynamics and are modeled by
a nonlinear analysis in a further step. This combination is called Fixed Point
Analysis.

The segmentation step is introduced as a cluster approach in section 3, where
we derive a new cluster criterion by applying the method on the simulated
dataset from section 2. In section 4, we introduce a nonlinear analysis method
based on perturbation theory and apply it on a simulated Hopf-bifurcation,
which contains orthogonal and correlated noise. The combination of both ap-
proaches is applied on the dataset of section 2.
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2 A simulated dataset: Kiippers-Lortz instability

A 144-dimensional simulated dataset is generated by a superposition of 3 spa-
tial modes

q(t) = ZAi(t)vi: (1)

where the amplitudes A;(t) determines the temporal behaviour of spatial mo-
des v;. We choose 3 two-dimensional spatial patterns consisting of 12x12 ele-
ments (Fig. 1) and a dynamical system

Ay = €Ay — Ay [A2 + (24 b)A2 + (2 - D)A2] +T(t)

Ay = €Ay — Ap[A3 + (2+b)A2+ (2 - D) AN +T(2)

Ay = €Az — A3[A2 + (2+b)A2 + (2 - D) A +T(1)
to determine the temporal dynamics of the amplitudes. The parameters are set
toe=1,b=2and I'(t) € [-0.05...0.05] represents additive noise, which follows
a uniform deviate. This dynamical system arises in a variety of physical sy-
stems, where we want to mention the onset of convection in a Rayleigh-Bénard

experiment in the presence of rotation. The amplitude equations describe the
so-called Kueppers-Lortz instability' .

R

Abbildung 1: The basis patterns vi,vs and v3 .

The differential equation system shows six fixed points
A% = (260,00, A%, =(0,£V60) , A5 =(0,0,£Ve)".

As an example, the dynamics near the fixed A{ can be described by

t=¢b-1)z
y=—€elb+1)y (2)
z = —2ez

with A = A + (z,y,2)!. For € > 0, |b| > 1, two stable and one unstable local
manifold exist. Thus the fixed point represents a saddle point. The fixed points
A9 und A9 behave analogously.



A 3-dimensional trajectory is calculated by 2200 integration steps with the
initial condition A (¢ = 0) = (0.03,0.2,0.8) and is seen in Fig. 2. The trajectory
passes the saddle points A9 = (0,0,1), A% = (1,0,0) and A9 = (0, 1,0) in this
sequence, and then returns to AY. By a composition corresponding to Eq. 1,
we obtain a spatiotemporal signal (Fig. 3), and one recognizes that these fixed
points correspond to the spatial modes vz, vi and vs.

Now, we aim at extracting the fixed points back from the signal without using
any prior knowledge about the internal dynamics, we use the raw signal as
input for our method.

In the next section, a clustering approach is introduced and its application on
the simulated data is discussed.

A2

Abbildung 2: Trajectory of the 3-dimensional signal A(t). It starts near one corner and passes
three corners, before it returns to the initial corner. The numbers denote the timesteps of
the trajectory at their locations.
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Abbildung 3: Spatiotemporal signal as a temporal sequence of spatial patterns. One reco-
gnizes transitions between three basis patterns and a return to the initial pattern.
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3 Fixed Point Clustering

We assume a signal trajectory, which shows a sequence of segments governed
by saddle point dynamics (Fig. 4). Under the hypothesis, that these segments
comprise the main functionality of the underlying system, we aim to extract
them from the signal. According to Fig. 4, trajectories approach saddle points
along their stable manifolds whereas they leave the vicinity of the fixed points
along the unstable manifolds. The signal points accumulate close to the fi-
xed points if the signal is sampled at a constant rate. This accumulation also
represents a point cluster in data space. Subsequently, stable manifolds in
multi-dimensional signals lead to point clusters (at constant sampling rate)
and their detection can be treated as a recognition problem of these clusters
in data space '2.

In the present paper we use the K-Means Algorithm (see e.g. ') to detect re-
gions in data space with high density of data points. Though there are highly
developed and optimized routines 141516 to detect point clusters, we choose
one of the simplest methods is probed to be useful here.

‘
N
fixpoint >X

‘ trajectory

stable manifold

unstable manifold

Abbildung 4: Sketch of a trajectory, which passes two fixed points. The transition part is
denoted by a dashed line

3.1 The clustering algorithm

A N-dimensional spatiotemporal signal can be described by a data vector
q(t) € RN, where the component ¢;(¢;) represents a data point at time i and
detection channel j. The clustering algorithm aims at cluster centers {ky},
whose mean Euclidean distance to a set of datapoints q(¢;) is minimal. The
presented implementation follows Moody et. al!” and is sketched in Fig. 5. In
many clustering algorithms, the number of clusters k is unknown a priorily.
We increase k from 2 and analyze each clustering result. This approach leads
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to a criterion for valid clusters and is discussed in the next sections.

Cluster centers k° are initialized at random locations and their Euclidean di-
stances to each data point are calculated. K-Means defines memberships of
data points to a cluster by the smallest Euclidean distance to its center. Thus,
data are segmented into k clusters and new cluster centers k! are calculated as
means of clustered data points. Distances between data points and centers k™
are re-estimated until a convergence condition is fulfilled. This criterion can
be set either as a upper Euclidean distance limit between sequential cluster
centers k™, k™! or or as number of iterations. We choose to limit the number
of iterations to 25.

choose number initial cluster centers, calculate distances from
of clustersk chosen randomly data points to cluster centers

which cluster center is
nearest for every data point ?

l

calculate new cluster centers
as mean of nearest data points

|

[k"-k™fl<eor  |no
iteration number exceeded

calculate distances of datapoints | yeg
and cluster centers and plot them
over time

Abbildung 5: The implementation steps of the K-Means algorithm.

3.2 Results of clustering

In a first step, we choose the number of clusters to £ = 3 and apply the K-
Means algorithm on the 144-dimensional simulated dataset. In Fig. 6 , the
Euclidean distance from each data point to the determined cluster centers
cluster is plotted in respect of the temporal point sequence. When trajectory
points are near respectively far from a cluster center, their Euclidean distance
to a center is small resp. large. These changes can be observed in Fig. 6 by
decreasing and increasing Euclidean distances in time. We consider a data
point to be a member of the cluster whose center is closest to the point. The
hypothesis, that cluster centers are related to stable manifolds or , in general,
fixed points, thus allows an identification of regions of fixed points. The borders
of clusters are marked by vertical dashed lines in Fig. 6. A change of 3 states
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Abbildung 6: Cluster results of the K-Means algorithm with & = 3. The plot shows the
Euclidean distance of each data point to the detected clusters. Changes of the signal in
high-dimensional space between clusters are recognized.

is observed, where the first occuring cluster returns at the end of the signal.
Increasing the number of detected clusters k from 2 to 7, we obtain the distance-
time plots shown in Fig. 7. The time windows, where the signal has reached
the vicinity of a cluster center, remain similar for the investigated clustering
results. Since the algorithm has to find k clusters, though there might be only
a limited number of clusters kg < k, void clusters are detected at the borders
of valid clusters. This leads to first criterion for valid clusters. A cluster can
be called valid, if

e its width and location in time remain more or less independent of the
number of clusters,

e the Euclidean distance of data points of a cluster to the center is obvious
smaller then the Euclidean distance of points to the next nearest cluster
center, and the width of the cluster-time window is not too small

Although these criteria are rather heuristic then formal, they proved to be
useful in practice'?. Now, we try to evolve them quantitatively. The first item
can be formulated as a sum over all clustering results: valid contributions are
additive if they occur for all k, others vanish in the sum as small contributions.
Thus the contribution of a valid cluster to the sum has to be large, not reliable
clusters should contribute with small values. A good quantity for these contri-
butions is the area between the difference curves of the signal-nearest cluster-
distance and signal-next cluster-distance. This definition allows the analytical
formulation of the second item and is outlined in Fig. 8. Each data point t;
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Abbildung 7: Cluster results for £k = 2,..,7. The Euclidean distances between data points
and detected clusters is shown.

obtains an index corresponding to the cluster j it is member of. The index
. . A(.k) t;
is equal the relativ area %,
Ty, Al
summing up the indices over K cluster realizations for every data points, we

obtain a Cluster Quality Measure (CQM) for every data point:

where T is the number of data points. By

(k) (p.
AP = 240
24

K<T (k)

CQM(tl) _ k=2 AT (tl)

The application on the simulated data with K = 30 leads to CQM shown in
Fig. 9 and 4 cluster with a high CQM are recognized. Clusters are recognized
as plateaus of CQM, its borders are located at rapid changes of CQM.

The original and detected cluster time windows, shown in Fig. 6, 7 and summed
up in Fig. 9, are very similar and indicate a correct detection of the fixed points.
Now, we aim at modeling the dynamics of the detected trajectory segments
by a nonlinear spatiotemporal analysis. If we can obtain reliable models, then
the dynamics of the trajectory segments and, consequently, the whole signal is
described.
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Abbildung 8: Sketch to illustrate the introduced criterion of a clusters validity. The area A;
between two distance curves indexes the data points, which belong to cluster j. Large areas
indicates at a high measure of cluster quality.
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Abbildung 9: The Cluster Quality Measure for every data point. Plateaus denote valid clu-
sters, which are delimited by rapid changes.



4 Spatiotemporal Modelling

In this section, we introduce a nonlinear spatiotemporal analysis '?. It deter-
mines optimal projections of high-dimensional signals onto a low-dimensional
basis and fits synchronously a deterministic dynamical system describing the
low-dimensional projections.

The presented method is based on Principal Component Analysis (PCA), al-
so known as Karhunen-Loeve expansion or Empirical Orthogonal Functions.
These methods aim at a few orthonormal spatial modes and projections, which
explain most of the variance of a multi-dimensional signal. Extensions in re-
spect of fittings of deterministic dynamical model were proposed by Kirby 2°
and Ramsay et. al. 2!. But these methodes leave the basis of modes ortho-
normal. The orthogonality constraint was first abolished in metereology by
Kwasniok 22?3 and in neuroscience by Uhl et.al. 242526 We outline the latter
method in the following.

A spatiotemporal signal q(¢) can be composed by a spatial modes v; and am-
plitudes z;(¢) by

at) =3 witvi , wi(t) =avl

with viv; = d;;. The biorthogonal modes v;, v; can be determined by minimi-
zing a costfunction

V. — < (q—ziwivi)Q >
? <q?> '

where < .. > denotes the time average.
A synchronous optimal fit of a dynamical system

2i(t) =T+ Y Tha(t) + > Tiwita(t) + -
J j ok
= fi[l'j],

which describes the dynamics of the projections z;(t), can be also obtained by
a cost function

i

A mutual cost function allows the derivation of spatial modes {v;}, {v;r} and
a dynamical system f[z;] synchronously

V=p-Vi+({-p):Va+ constraints.
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The parameter p weights the optimization of spatial modes and dynamical
system. Numerical implementation of the method and its applications on epi-
lepsy data 27 and Event-Related-Potential (ERP) data 2° led to new insights
in the dynamics of brain signals. But some problems like the influence of the
weight factor p to the results and the extensive numerics for high number of
spatial modes remain. In order to improve the method, we provide an analyti-
cal derivation of optimal spatial modes and a dynamical system.

The new method optimizes a similar cost function

v=%" < (q - qwlw)? > te Y < (yi(ti;2fi[yj])2 >

<q?> >

Va

+ ZTZ']'(WIW]' — 5”) + Zal(wf — 1),
7,7 i

where 7, represent Lagrange multipliers of the added constraints and e de-
notes a weighting factor. Due to the nonlinear differential equation system
x = f[a;], the variations of V' in respect of the biorthogonal basis lead to non-
linear coupled vector equations

al av,
d
0=-2Cwy, + QCW;'f + ZTkjW]' + 68?
j=1 k
il av,
0= —ZCWL + 2(w,th;2)wk + anw;' + 2a, Wy, + ani .
i=1
These can be solved by a perturbation expansion in e:
w;rc :vk—}—epg)—l—---,ml =0—|—67’,5,1)+---
Wk :'Vk-l-er;fl)-i_-.-7ak:0+6a§€1)+.-.
oVy oVy oVy oVy oVy oVy
owl  ow] ‘ +63w;2‘1 T owy awk\o eawkh -

Here v; denote the orthogonal PCA-modes.?
Investigations of the dynamics fit V; lead to a criterion for an optimal pertur-

21t was shown in !9, that the perturbation corrections can be derived analytically for the non-
degenerated case, in analogy to Schrédingers perturbation theory in quantum mechanics.
It also turns out, that the perturbation theory for non-degenerated PCA-modes with .....
eigenvalues is only valid for low-dimensional deterministic models, whereas the degenerated
case should be applied on non-deterministic and thus noisy projections 28.
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Abbildung 10: The basis 12x12-patterns a; for the multi-dimensional signal.

bation parameter €. for a minimal V. This parameter determines the optimal
fit of spatial modes and the dynamical system. Note that e = 0 yields PCA-
projections and € # 0 new modes and dynamical systems.
As an example, we apply the spatiotemporal analysis on a Hopf-bifurcation
with correlated noise, embedded in a 5-dimensional space

5
s(t) = Z u;(t)a;

with

U = euy — wus + (aur — bus)(ul +ud) + T(t)

Uy = wuy + euy + (buy + aus)(u? +ul) + T'(t)

n
ui(t) =Y pit)Gipi,07,t)  j=3,4,5.

i=1

and spatial patterns a; (Fig. 10). The correlated noise I' € [—2.5; 2.5] is equally
distributed and the stochastic signal us 45(¢) is generated by temporal Gauss
functions G; with equal distributed factors p; € [—0.5;0.5], means pu; € [0; 7],
standard deviations o; € [0;T] and n € [0;T], where T' denotes the number
of timesteps. Since the basis modes a; represent 2-dimensional 12x12-patterns,
the spatiotemporal signal is 144-dimensional (Fig. 11). Applying the method
on the signal, we obtain a best fit of spatial modes and dynamical system for
a 2-dimensional model. In Fig. 12, projections of the signal with the first 2

HAEEN . BN LEEn

Abbildung 11: Temporal sequence of spatial patterns represent the simulated spatiotemporal
signal. Oscillations of the Hopf bifurcation are visible as rotated patterns.
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PCA-projection new projection reconstruction

Abbildung 12: Low-dimensional projections of the signal. Left: Projections on the first two
PCA-modes show a high contribution of noise. Middle: Projections on new modes wi 2
show a reduced contribution of noise. Right: Reconstructed trajectory from the determined
dynamical system. Different scales of the projections and the reconstructed trajectory occur
due to scale invariance of least-square fits.

PCA-modes and the perturbation modes are shown. An improvement in re-
spect of the noise contribution to the projections is obvious. The integration of
the determined dynamical system is presented in Fig. 12 and the reconstructed
signal represents a Hopf-bifurcation described by Eq. 3.

We conclude that the presented method determines an optimal low-dimensional
projection in respect of a deterministic dynamical system. Note that this me-
thod performs nicely even in case of correlated noise, which is present in most

natural systems 2°.

5 Fixed Point Analysis (FPA)

In the previous sections, we have addressed the problems of segmenting a
spatiotemporal signal into a temporal sequence of spatiotemporal models and
the dynamical modeling of its functional parts. A combination of both methods
leads to a full functional description of a non-stationary signal.

In the following, we apply FPA on the simulated data of the previous sections.
Each of the four detected cluster time windows Ty = [30;230], T» = [420;1010],
T3 = [1200;1570] and T, = [1760;2200] is analyzed by the spatiotemporal
method of the previous section. We obtain a good fit for 2-dimensional models
in each time window. Figure 13 shows the dynamics fit Vj; in respect of the
perturbation parameter e, the obtained optimal signal projections and the
patterns representing the reconstructed fixed points. The projected trajectories
behave analogous to the the equations 2 and the patterns are equivalent to v;
in Fig. 1.
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Abbildung 13: Results of the nonlinear analysis method for all detected time windows. Top:
Plots of V;(e) show minima at an optimal perturbation parameter e, for 2-dimensional
models in every time window. Middle: optimal projections on two new modes wi 2 for
the perturbation parameters e.. A saddle point dynamics is visible in each time window.

Bottom: reconstructed patterns, which represent the dynamical fixed points. They accord
with the patterns of Section 2.

6 Summary

An algorithm for segmenting a spatiotemporal signal was introduced, where
each segment can be described by a fixed point dynamics. A clustering method
for high-dimensional signals detects the time windows of the segments. We de-
rived a new criterion for valid clusters, the Cluster Quality Measure CQM.
The application on a simulated dataset, which shows non-stationary spatio-
temporal behaviour, shows results in good accordance with the signals proper-
ties. A nonlinear spatiotemporal analysis completes the Fixed Point Analysis
by determining spatiotemporal models for each detected time window. The
perturbational approach of the nonlinear analysis allows an analytical deriva-
tion of optimal projections and fitted dynamical systems. This guarantees fast
numerics, as well for higher dimensional behaviour.

While simulated datasets demonstrate the properties of the algorithm, the in-
vestigation of real data is even more interesting. Thus the presented approach
has been applied on data from electroencephalography (EEG) and magneto-
encephalography (MEG). The measured data show high-dimensional behaviour
in space and time and is, of course, far from thermodynamic equilibrium. Non-
stationary processes in the brain (i.e. cognitive components) carry functional
information about the brain activity. First applications of FPA on Event Re-
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lated Potentials(ERP) data 3° revealed relations between clusters and ERP-
components. A relevant application of the presented cluster algorithm is given
by the automatic detection of ERP-components.
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