
FIXED POINT ANALYSIS: DYNAMICS OFNON-STATIONARY SPATIOTEMPORAL SIGNALSA. HuttMax Planck-Institute of Cognitive Neuroscience, Stephanstr.1a, 04103 Leipzig,GermanyE-mail: hutt@cns.mpg.deF. KruggelMax Planck-Institute of Cognitive Neuroscience, Stephanstr.1a, 04103 Leipzig,GermanyE-mail: kruggel@cns.mpg.deA new algorithm for the investigation of unstationary spatiotemporal signals isontroduced, which consists of two parts: the �rst determines time windows ofnon-stationary signal segments and the second aims at low-dimensional dynamicalsystems describing the detected unstationary behaviour. Results of an applicationon simulated data, which shows a similar behaviour as a K�uppers-Lortz-instability,are discussed.1 IntroductionThe dynamics of spatially extended systems can be measured by sets of multi-detector arrays. The obtained data can be investigated either each channelseperately or as a whole set a signals. Analysis of latter spatiotemporal signalsis applied in various di�erent research �elds as meteorolgy (e.g. 1), hydrodyna-mics (e.g.2) or neuroscience3;4;5;6. Several methods, which �t multi-dimensionalmodels dynamical models in spatiotemporal signals 7;8;27;9;10 cover the data infull time range. We introduce a method to segments a spatiotemporal signalinto parts, which can be described by �xed point dynamics and are modeled bya nonlinear analysis in a further step. This combination is called Fixed PointAnalysis.The segmentation step is introduced as a cluster approach in section 3, wherewe derive a new cluster criterion by applying the method on the simulateddataset from section 2. In section 4, we introduce a nonlinear analysis methodbased on perturbation theory and apply it on a simulated Hopf-bifurcation,which contains orthogonal and correlated noise. The combination of both ap-proaches is applied on the dataset of section 2.1



2 A simulated dataset: K�uppers-Lortz instabilityA 144-dimensional simulated dataset is generated by a superposition of 3 spa-tial modes q(t) = 3Xi=1 Ai(t)vi; (1)where the amplitudes Ai(t) determines the temporal behaviour of spatial mo-des vi. We choose 3 two-dimensional spatial patterns consisting of 12x12 ele-ments (Fig. 1) and a dynamical system_A1 = �A1 �A1[A21 + (2 + b)A22 + (2� b)A23] + �(t)_A2 = �A2 �A2[A22 + (2 + b)A23 + (2� b)A11] + �(t)_A3 = �A3 �A3[A23 + (2 + b)A21 + (2� b)A22] + �(t)to determine the temporal dynamics of the amplitudes. The parameters are setto � = 1, b = 2 and �(t) 2 [�0:05:::0:05] represents additive noise, which followsa uniform deviate. This dynamical system arises in a variety of physical sy-stems, where we want to mention the onset of convection in a Rayleigh-B�enardexperiment in the presence of rotation. The amplitude equations describe theso-called Kueppers-Lortz instability11.
Abbildung 1: The basis patterns v1;v2 and v3 .The di�erential equation system shows six �xed pointsA0�1 = (�p�; 0; 0)t ; A0�2 = (0;�p�; 0)t ; A0�3 = (0; 0;�p�)t:As an example, the dynamics near the �xed A01 can be described by_x = �(b� 1)x_y = ��(b+ 1)y (2)_z = �2�zwith A = A01 + (x; y; z)t. For � > 0; jbj > 1, two stable and one unstable localmanifold exist. Thus the �xed point represents a saddle point. The �xed pointsA02 und A03 behave analogously. 2



A 3-dimensional trajectory is calculated by 2200 integration steps with theinitial condition A(t = 0) = (0:03; 0:2; 0:8) and is seen in Fig. 2. The trajectorypasses the saddle points A03 = (0; 0; 1);A01 = (1; 0; 0) and A02 = (0; 1; 0) in thissequence, and then returns to A03. By a composition corresponding to Eq. 1,we obtain a spatiotemporal signal (Fig. 3), and one recognizes that these �xedpoints correspond to the spatial modes v3, v1 and v2.Now, we aim at extracting the �xed points back from the signal without usingany prior knowledge about the internal dynamics, we use the raw signal asinput for our method.In the next section, a clustering approach is introduced and its application onthe simulated data is discussed.
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Abbildung 2: Trajectory of the 3-dimensional signalA(t). It starts near one corner and passesthree corners, before it returns to the initial corner. The numbers denote the timesteps ofthe trajectory at their locations.
Abbildung 3: Spatiotemporal signal as a temporal sequence of spatial patterns. One reco-gnizes transitions between three basis patterns and a return to the initial pattern.3



3 Fixed Point ClusteringWe assume a signal trajectory, which shows a sequence of segments governedby saddle point dynamics (Fig. 4). Under the hypothesis, that these segmentscomprise the main functionality of the underlying system, we aim to extractthem from the signal. According to Fig. 4, trajectories approach saddle pointsalong their stable manifolds whereas they leave the vicinity of the �xed pointsalong the unstable manifolds. The signal points accumulate close to the �-xed points if the signal is sampled at a constant rate. This accumulation alsorepresents a point cluster in data space. Subsequently, stable manifolds inmulti-dimensional signals lead to point clusters (at constant sampling rate)and their detection can be treated as a recognition problem of these clustersin data space 12.In the present paper we use the K-Means Algorithm (see e.g. 13) to detect re-gions in data space with high density of data points. Though there are highlydeveloped and optimized routines 14;15;16 to detect point clusters, we chooseone of the simplest methods is probed to be useful here.
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Abbildung 4: Sketch of a trajectory, which passes two �xed points. The transition part isdenoted by a dashed line3.1 The clustering algorithmA N -dimensional spatiotemporal signal can be described by a data vectorq(t) 2 <N , where the component qj(ti) represents a data point at time i anddetection channel j. The clustering algorithm aims at cluster centers fkkg,whose mean Euclidean distance to a set of datapoints q(ti) is minimal. Thepresented implementation follows Moody et. al.17 and is sketched in Fig. 5. Inmany clustering algorithms, the number of clusters k is unknown a priorily.We increase k from 2 and analyze each clustering result. This approach leads4



to a criterion for valid clusters and is discussed in the next sections.Cluster centers k0 are initialized at random locations and their Euclidean di-stances to each data point are calculated. K-Means de�nes memberships ofdata points to a cluster by the smallest Euclidean distance to its center. Thus,data are segmented into k clusters and new cluster centers k1 are calculated asmeans of clustered data points. Distances between data points and centers knare re-estimated until a convergence condition is ful�lled. This criterion canbe set either as a upper Euclidean distance limit between sequential clustercenters kn;kn+1 or or as number of iterations. We choose to limit the numberof iterations to 25.
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noAbbildung 5: The implementation steps of the K-Means algorithm.3.2 Results of clusteringIn a �rst step, we choose the number of clusters to k = 3 and apply the K-Means algorithm on the 144-dimensional simulated dataset. In Fig. 6 , theEuclidean distance from each data point to the determined cluster centerscluster is plotted in respect of the temporal point sequence. When trajectorypoints are near respectively far from a cluster center, their Euclidean distanceto a center is small resp. large. These changes can be observed in Fig. 6 bydecreasing and increasing Euclidean distances in time. We consider a datapoint to be a member of the cluster whose center is closest to the point. Thehypothesis, that cluster centers are related to stable manifolds or , in general,�xed points, thus allows an identi�cation of regions of �xed points. The bordersof clusters are marked by vertical dashed lines in Fig. 6. A change of 3 states5
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Abbildung 6: Cluster results of the K-Means algorithm with k = 3. The plot shows theEuclidean distance of each data point to the detected clusters. Changes of the signal inhigh-dimensional space between clusters are recognized.is observed, where the �rst occuring cluster returns at the end of the signal.Increasing the number of detected clusters k from 2 to 7, we obtain the distance-time plots shown in Fig. 7. The time windows, where the signal has reachedthe vicinity of a cluster center, remain similar for the investigated clusteringresults. Since the algorithm has to �nd k clusters, though there might be onlya limited number of clusters kd < k, void clusters are detected at the bordersof valid clusters. This leads to �rst criterion for valid clusters. A cluster canbe called valid, if� its width and location in time remain more or less independent of thenumber of clusters,� the Euclidean distance of data points of a cluster to the center is obvioussmaller then the Euclidean distance of points to the next nearest clustercenter, and the width of the cluster-time window is not too smallAlthough these criteria are rather heuristic then formal, they proved to beuseful in practice 12. Now, we try to evolve them quantitatively. The �rst itemcan be formulated as a sum over all clustering results: valid contributions areadditive if they occur for all k, others vanish in the sum as small contributions.Thus the contribution of a valid cluster to the sum has to be large, not reliableclusters should contribute with small values. A good quantity for these contri-butions is the area between the di�erence curves of the signal-nearest cluster-distance and signal-next cluster-distance. This de�nition allows the analyticalformulation of the second item and is outlined in Fig. 8. Each data point ti6
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timestepsAbbildung 7: Cluster results for k = 2; ::; 7. The Euclidean distances between data pointsand detected clusters is shown.obtains an index corresponding to the cluster j it is member of. The indexis equal the relativ area A(k)j (ti)TPj A(k)j , where T is the number of data points. Bysumming up the indices over K cluster realizations for every data points, weobtain a Cluster Quality Measure (CQM) for every data point:A(k)r (ti) = A(k)j (ti)Pj A(k)jCQM(ti) = PK�Tk=2 A(k)r (ti)PTi=1PK�Tk=2 A(k)r (ti) :The application on the simulated data with K = 30 leads to CQM shown inFig. 9 and 4 cluster with a high CQM are recognized. Clusters are recognizedas plateaus of CQM, its borders are located at rapid changes of CQM.The original and detected cluster time windows, shown in Fig. 6, 7 and summedup in Fig. 9, are very similar and indicate a correct detection of the �xed points.Now, we aim at modeling the dynamics of the detected trajectory segmentsby a nonlinear spatiotemporal analysis. If we can obtain reliable models, thenthe dynamics of the trajectory segments and, consequently, the whole signal isdescribed. 7
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Abbildung 8: Sketch to illustrate the introduced criterion of a clusters validity. The area Ajbetween two distance curves indexes the data points, which belong to cluster j. Large areasindicates at a high measure of cluster quality.
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Abbildung 9: The Cluster Quality Measure for every data point. Plateaus denote valid clu-sters, which are delimited by rapid changes. 8



4 Spatiotemporal ModellingIn this section, we introduce a nonlinear spatiotemporal analysis 19. It deter-mines optimal projections of high-dimensional signals onto a low-dimensionalbasis and �ts synchronously a deterministic dynamical system describing thelow-dimensional projections.The presented method is based on Principal Component Analysis (PCA), al-so known as Karhunen-Lo�eve expansion or Empirical Orthogonal Functions.These methods aim at a few orthonormal spatial modes and projections, whichexplain most of the variance of a multi-dimensional signal. Extensions in re-spect of �ttings of deterministic dynamical model were proposed by Kirby 20and Ramsay et. al. 21. But these methodes leave the basis of modes ortho-normal. The orthogonality constraint was �rst abolished in metereology byKwasniok 22;23 and in neuroscience by Uhl et.al. 24;25;26. We outline the lattermethod in the following.A spatiotemporal signal q(t) can be composed by a spatial modes vi and am-plitudes xi(t) by q(t) =Xi xi(t)vi ; xi(t) = qvyiwith vivyj = �ij . The biorthogonal modes vi;vyj can be determined by minimi-zing a costfunction Vs = < (q�Pi xivi)2 >< q2 > ;where < :: > denotes the time average.A synchronous optimal �t of a dynamical system_xi(t) = �0i +Xj �1ijxj(t) +Xj Xk �2ijkxj(t)xk(t) + � � �= fi[xj ];which describes the dynamics of the projections xi(t), can be also obtained bya cost function Vd =Xi < ( _xi(t)� fi[xj ])2 >< _x2i > :A mutual cost function allows the derivation of spatial modes fvig; fvyjg anda dynamical system f [xj ] synchronouslyV = p � V1 + (1� p) � V2 + constraints:9



The parameter p weights the optimization of spatial modes and dynamicalsystem. Numerical implementation of the method and its applications on epi-lepsy data 27 and Event-Related-Potential (ERP) data 25 led to new insightsin the dynamics of brain signals. But some problems like the in
uence of theweight factor p to the results and the extensive numerics for high number ofspatial modes remain. In order to improve the method, we provide an analyti-cal derivation of optimal spatial modes and a dynamical system.The new method optimizes a similar cost functionV =Xi < (q� qwyiwi)2 >< q2 > + � �Xi < ( _yi(t)� fi[yj ])2 >< _y2i >| {z }Vd+Xi;j �ij(wyiwj � �ij) +Xi �i(w2i � 1);where �; � represent Lagrange multipliers of the added constraints and � de-notes a weighting factor. Due to the nonlinear di�erential equation system_x = f [xj ], the variations of V in respect of the biorthogonal basis lead to non-linear coupled vector equations0 = �2Cwk + 2Cwyk + NXj=1 �kjwj + � @Vd@wyk0 = �2Cwyk + 2(wykCwyk)wk + NXi=1 �ikwyi + 2�kwk + � @Vd@wk :These can be solved by a perturbation expansion in �:wyk = vk + �p(1)k + � � � ; �kl = 0 + �� (1)kl + � � �wk = vk + �r(1)k + � � � ; �k = 0 + ��(1)k + � � �@Vd@wyk = @Vd@wyk j0 + � @Vd@wyk j1 + � � � ; @Vd@wk = @Vd@wk j0 + � @Vd@wk j1 + � � � :Here vi denote the orthogonal PCA-modes.aInvestigations of the dynamics �t Vd lead to a criterion for an optimal pertur-aIt was shown in19, that the perturbation corrections can be derived analytically for the non-degenerated case, in analogy to Schr�odingers perturbation theory in quantum mechanics.It also turns out, that the perturbation theory for non-degenerated PCA-modes with .....eigenvalues is only valid for low-dimensional deterministic models, whereas the degeneratedcase should be applied on non-deterministic and thus noisy projections 28.10



Abbildung 10: The basis 12x12-patterns ai for the multi-dimensional signal.bation parameter �c for a minimal Vd. This parameter determines the optimal�t of spatial modes and the dynamical system. Note that � = 0 yields PCA-projections and � 6= 0 new modes and dynamical systems.As an example, we apply the spatiotemporal analysis on a Hopf-bifurcationwith correlated noise, embedded in a 5-dimensional spaces(t) = 5Xi=1 ui(t)aiwith _u1 = �u1 � !u2 + (au1 � bu2)(u21 + u22) + �(t) (3)_u2 = !u1 + �u2 + (bu1 + au2)(u21 + u22) + �(t)uj(t) = �Xi=1 �i(t)Gi(�i; �2i ; t) j = 3; 4; 5:and spatial patterns ai (Fig. 10). The correlated noise � 2 [�2:5; 2:5] is equallydistributed and the stochastic signal u3;4;5(t) is generated by temporal Gaussfunctions Gi with equal distributed factors �i 2 [�0:5; 0:5], means �i 2 [0;T ],standard deviations �i 2 [0;T ] and � 2 [0;T ], where T denotes the numberof timesteps. Since the basis modes ai represent 2-dimensional 12x12-patterns,the spatiotemporal signal is 144-dimensional (Fig. 11). Applying the methodon the signal, we obtain a best �t of spatial modes and dynamical system fora 2-dimensional model. In Fig. 12, projections of the signal with the �rst 2Abbildung 11: Temporal sequence of spatial patterns represent the simulated spatiotemporalsignal. Oscillations of the Hopf bifurcation are visible as rotated patterns.11
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Abbildung 12: Low-dimensional projections of the signal. Left: Projections on the �rst twoPCA-modes show a high contribution of noise. Middle: Projections on new modes w1;2show a reduced contribution of noise. Right: Reconstructed trajectory from the determineddynamical system. Di�erent scales of the projections and the reconstructed trajectory occurdue to scale invariance of least-square �ts.PCA-modes and the perturbation modes are shown. An improvement in re-spect of the noise contribution to the projections is obvious. The integration ofthe determined dynamical system is presented in Fig. 12 and the reconstructedsignal represents a Hopf-bifurcation described by Eq. 3.We conclude that the presented method determines an optimal low-dimensionalprojection in respect of a deterministic dynamical system. Note that this me-thod performs nicely even in case of correlated noise, which is present in mostnatural systems 29.5 Fixed Point Analysis (FPA)In the previous sections, we have addressed the problems of segmenting aspatiotemporal signal into a temporal sequence of spatiotemporal models andthe dynamical modeling of its functional parts. A combination of both methodsleads to a full functional description of a non-stationary signal.In the following, we apply FPA on the simulated data of the previous sections.Each of the four detected cluster time windows T1 = [30; 230], T2 = [420; 1010],T3 = [1200; 1570] and T4 = [1760; 2200] is analyzed by the spatiotemporalmethod of the previous section. We obtain a good �t for 2-dimensional modelsin each time window. Figure 13 shows the dynamics �t Vd in respect of theperturbation parameter �, the obtained optimal signal projections and thepatterns representing the reconstructed �xed points. The projected trajectoriesbehave analogous to the the equations 2 and the patterns are equivalent to viin Fig. 1 . 12
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