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1. ABSTRACT

Localising the current distribution in the human brain from extracranial EEG/MEG-
measurements is an Inverse Problem whose solution requires the repeated simulation of
the electric/magnetic propagation for a given dipolar source in the brain using a volume-
conduction head model. The simulations are referred to as the Forward Problem. In order
to model the head most realistically, the different head tissues first have to be segmented
and then assigned individual conductivity tensor material parameters. The T1-MRI-based
CSF–skull boundary  identification is problematic. In this paper we present techniques for
an improved skull segmentation by means of multi-MR-imaging protocol registration and
segmentation strategies. Recently, a formalism has been described for relating the
effective electrical conductivity tensor of white matter tissue to the effective water
diffusion tensor as measured by diffusion MRI, the DTI-EMA. Whole-head diffusion
tensor data have been acquired in order to improve white matter modelling in future
investigations. The use of fast techniques to solve the linear equation systems arising from
the 3-D finite element method is necessary with regard to an appropriate solution time for
high resolution models and inverse source localisation. This paper compares different
iterative strategies for sparse linear equation systems and their parallelisation.
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2. INTRODUCTION

It is normal practice in cognitive research and in clinical routine and research to localise
dipolar primary current sources in the human brain. Examples are the study of
functional cortical organisation in epilepsy and cognition by means of measured
(evoked) Electroencephalography (EEG) and/or Magnetoencephalography (MEG). The
primary sources pj

r

are electrolytic currents within the dendrites of the large pyramidal

cells of activated neurons. Under knowledge of the head tissue conductivities σ , the
electric potential φ  arising from a known pj

r

 can be described by means of the

quasistatic approach of Maxwell’s equations of electrodynamics
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In this formula, scalpΓ is the surface of the head Ω and refφ the potential at the reference

electrode. The magnetic flux Φ  through an MEG-magnetometer L  can then be
calculated using a corollary from Biot-Savart’s law:
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µ in this formula is the magnetic permeability of the vacuum. Seen from the view of
numerical optimisation, the Inverse Problem is a minimisation problem, in which the
calculation of the difference between EEG/MEG measurements and a particular forward
solution (data term) plus a source regularisation (model term) is an objective function
evaluation (1, 2).
Today’s commercially available source-reconstruction tools model the head as a
realistically shaped three-layer-model with constant and isotropic conductivity (IC) on
each of the layers skin, skull and brain. Under these
assumptions the differential equation (1) can be transformed
into an integral equation which can be solved by means of
the boundary element method (Fig.1). The arising linear
equation system used in practise has about 4000 unknowns
and a full and asymmetrical geometry matrix. After inverting
this matrix once, the solution for every primary source needs
one matrix-vector operation (40002 mult., not taking into
account the numerically important isolated problem
approach). A second technique of volume conductor
modelling is offered by the 3D-finite element method
(Fig.2), which numerically solves equation (1) in the variational formulation. This
method is able to treat geometries of arbitrary complexity and inhomogeneous and
anisotropic conductivity material properties. Nevertheless, most of the in vivo
conductivity measurements found in the literature were conducted 30 years ago and the
values obtained vary over a wide range. They differ not only between in vivo and in
vitro measurements, but also depend on age, state of health, environmental factors, and
personal constitution (see overview in 3). A strongly anisotropic conductivity (AC) with
a ratio of 1:9 (normal:parallel to fibers) has been measured for brain white matter. If the
whole skull, from a more macroscopic point of view, is regarded as one unit consisting

Fig.1: BE-Model
(1500 nodes).



of a soft bone layer enclosed by two hard bone layers, its conductivity shows a
comparable anisotropy (radially: tangentially to the skull surface). In the latter case, the
principal directions of the conductivity tensor for every finite
element can be determined from the segmented skull surface
making modelling much simpler than for white matter. To
summarise: Methods are needed that can give the best
possible estimates of the individual conductivity parameters
inside the human head. This should hopefully also lead to
better standard models for quantitative cognitive research. In
today’s science two such methods are under investigation:
Electrical Impedance Tomography (EIT) (4) and the Diffusion
Tensor Imaging Effective Medium Approach (DTI-EMA) (5).
Our study will use high resolution FE-techniques, multi-MR-image protocols for skull
segmentation, and DTI-EMA for a more realistic white matter modelling to improve the
volume conductor model.

3.METHODS

A prerequisite for an appropriate modelling of the volume conductor is the segmentation
of head tissues with different resistivity properties. It has been shown that the modelling
of the inhomogeneous (6) and anisotropic (7) low-conducting properties of the human
skull is of special importance for EEG/MEG-source localisation. The identification of
the cerebrospinal fluid(CSF)–skull boundary based on T1-weighted MRI (T1-MRI) is
problematic, and Proton-Density-Weighting (PD-MRI) is most suitable for this task. To
exploit both MR-imaging protocols, the PD-MRI has to be registered onto the T1-MRI.
We examined two registration techniques: a linear non-rigid edge registration of the pre-
segmented outer skull surfaces on both image protocols using genetic optimisation (8)
and a voxel-similarity based rigid registration without any pre-segmentation using a cost
function based on mutual information and an optimisation by means of Powell’s
direction set method (9). Segmentation of ventricles, white matter, grey matter, skull
and scalp-tissues was then carried out using the toolkit BRIAN (10).
Basser et al. (11) introduced the assumption that the effective electrical conductivity
tensor shares the eigenvectors with the effective diffusion tensor of water, which can be
measured for white matter tissue by DTI-MRI. A linear relationship between the
eigenvalues of both tensors for small intracellular diffusion and high resistivity of the
cell membrane was proposed by Tuch et al. (5). Their proposition is based on a self-
consistent differential effective medium approach (EMA) for the dielectric constant (for
low frequencies the conductivity) of porous media, derived from a multiple scattering
formula from solid state physics developed by Sen et al.(12). Latour et al. (13) derived a
similar EMA for the effective water diffusion in biological cells. The coupling of both
EMA-formulae through the unknown porosity variable led to the linear dependence of
the eigenvalues described in (5).
A geometry-based (1) and a voxel-based (14) mesh generator were coupled to the finite
element tool CAUCHY (1,2). Several parallel linear equation solvers were implemented
on the NEC Cenju-4 supercomputer whose 64 processors (MIPS R10000) are arranged in
a multi stage interconnection network (15,16). The Quasi-Minimum-Residual (QMR)
method for symmetric matrices is diagonally preconditioned and requires only one
matrix-vector multiplication per iteration. The BI-CGSTAB algorithm exploits
Incomplete LU preconditioning with Threshold (10-2) (ILUT). The effect of the Reverse
Cuthill-McKee (RCM) matrix ordering for reducing the bandwidth was also investigated.

Fig2: FE-Model



4.RESULTS

Magnetic resonance imaging was performed on a 3 Tesla whole-body scanner (Medspec
30/100, Bruker, Ettlingen/Germany). The 3D T1-MRI was acquired using an inversion
recovery MDEFT (17) sequence. For the PD-MRI a 3D FLASH (18) protocol was
employed. The resolution
was 1×1×1.5mm3 in both
acquisitions. Fig.3 shows
the registration result of the
PD-MRI onto the T1-MRI
using the voxel-similarity
based rigid registration
method (middle) and the 6-
tissue-segmentation
exploiting the edge-
registration method (right).

Whole-head-DTI was performed using a 4-slice displaced U-FLARE (19) protocol with
centric phase-encoding. Diffusion weighting was implemented as a Stejskal-Tanner type
spin-echo preparation. Although echo planar imaging (EPI) is being widely applied for
DTI purposes, U-FLARE was preferred to EPI in
order to avoid spatial misregistration between the
DTI data and the 3D data sets due to magnetic field
inhomogeneities. The effective echo time was Teff =
120 ms, and TR = 11 s. The diffusion weighting
gradient pulses had a duration of 22 ms, and their
onset was separated by 40 ms. Four different b values
evenly spaced between 50 and 800 s/mm2 were
applied through variation of the gradient strength.
The slices were axially oriented and 5 mm thick. In-
plane resolution was 2×2 mm2. In order to increase
the signal-to-noise ratio, 5 to 16 images (depending
on the b value) with identical diffusion weighting
were averaged. Due to the long measurement time (50 min for 4 slices) data acquisition
was split into 8 sessions. Coregistered T1-MDEFT images of the same slices allow
registration of the DTI data on the 3D data sets. Diffusion tensor calculation (20) was
based on a multivariate regression algorithm in IDL (Interactive Data Language,
Research Scientific, Bolder, Colorado/USA). Fig.4 shows a colour-coded map of the
direction with the largest principal diffusivity (green = horizontal, red = vertical, blue =
through-plane), overlaid upon a T1 image. Colouring
in regions of low diffusion anisotropy was
suppressed. The image correctly reproduces the white
matter fibre directions and the relative isotropy of
grey matter and CSF.
A four-layer spherical test volume conductor with
constant and isotropic conductivity values on every
layer was constructed and a 4mm isotropic cube
mesh was generated using the voxel-based mesh
generator. The symmetric geometry matrix

  
Fig.3: T1-MRI (left), voxel-registered PD-MRI (middle),
segmentation result exploiting edge registration (right).

Fig.4: DTI-MRI

Fig.5: Solver Performance



corresponding to this test mesh - with an order of 71,403 and 1.402,157 non-zero entries
- was set up with CAUCHY. A radially oriented primary source was placed in the inner
sphere and the equation system was solved with the three proposed solution techniques.
The execution times depending on the number of processors are depicted in Fig.5.

5.DISCUSSION

The important segmentation of the low conducting skull has been solved by registering
a PD-MRI onto the corresponding T1-MRI. If just a T1-image is used, the inner skull
surface can only be approximated by smoothing and dilating the segmented brain
surface (1). Nevertheless, MR-image protocols contain nonlinear distortions and these
are not identical for different protocols. In future studies, we will examine algorithms to
correct for the relative nonlinear distortion differences between different protocols.
Further studies will be carried out to examine the sensitivity of source reconstructions
(focal and distributed sources, and diverse locations, orientations, and depths in the
brain) to segmentation and AC of the skull and to white matter AC. The white matter
AC will be calculated by means of DTI-EMA using the presented whole-head diffusion
measurements. Preliminary results concerning the influence of white matter AC on the
EEG/MEG forward solution for focal sources in different depths (21) encourage us to
systematically study the extent of the inverse mislocalisation caused by the simplified
white-matter modelling. A further goal is the validation of the DTI-EMA with a rabbit
study using implanted physical sources.
In order to be able to apply high resolution FE-modelling for the inverse current
reconstruction, efficient parallelised sparse matrix solvers are indispensable. The
diagonally preconditioned QMR method for symmetric matrices showed the best time
and scaling behaviour of the three techniques compared. In fact, on 64 processors the
QMR speedup is slightly superlinear (i.e., 65) due to cache effects. The solvers tested
within this paper are most appropriate for high-resolution forward modelling with great
demand for memory or for forward modelling with a moderate number of dipoles (e.g.,
functional MRI-constrained source reconstructions exploiting the high temporal
resolution of EEG/MEG). However, in most studies the forward solution has to be
calculated for many different sources during the inverse optimisation procedures.
Therefore parallelisation on the dipole level (every processor calculates a solution for
one dipole to assemble the lead field matrix) (22) is most efficient, but only practicable
if the demand for memory is not beyond the available resources. In future investigations
we will couple iterative solvers and dipole level parallelisation with the efficient
preconditioning of the Incomplete Cholesky Factorisation with Threshold (ICCT) or of
Sparse Approximate Inverse techniques, which can be tuned for a maximal exploitation
of the available memory resources and a minimal demand for subsequent iterations after
preconditioning.
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