
946 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 8, AUGUST 2002

Computional Cost of Nonrigid Registration
Algorithms Based on Fluid Dynamics

Gert Wollny* and Frithjof Kruggel

Abstract—Though fluid dynamics offer a good approach to non-
rigid registration and give accurate results, even with large-scale
deformations, its application is still very time consuming. We in-
troduce and discuss different approaches to solve the core problem
of nonrigid registration, the partial differential equation of fluid
dynamics. We focus on the solvers, their computional costs and the
accuracy of registration. Numerical experiments show that relax-
ation is currently the best approach, especially when reducing the
cost/iteration by focusing the updates on deformation spots.

Index Terms—Computional cost, fluid dynamics, medical im-
ages, registration.

I. INTRODUCTION

NONRIGID image registration is a problem in medical
computer vision that has many applications. For instance,

nonrigid registration can be used to detect changes in magnetic
resonance (MR) time series images, arising when pathological
processes (e.g., tumor growth, scarification, and atrophies) are
monitored by a temporal series of MR examinations. Another
application is nonrigid image-atlas registration that is used to
locate brain-structures in the images.

Registration is achieved by applying one transformation to
one image (which we call the study image), in order to match
another (reference) image with respect to a given cost function.
In practice, these transformations must accommodate both very
complex and large deformations.

Early approaches of nonrigid registration, first introduced by
Baiscyet al. [1], [2], later by Evanset al. [3], Miller et al. [4],
and Christensenet al. [5], were all based on linear elasticity.
As linear elasticity restricts the registration to globally smooth
and therefore to locally small deformations, these methods fail
to achieve very complex and/or large deformations. In an ex-
tension to their initial work, Christensenet al. [6] described a
registration approach in which a viscous fluid model was used
to control the deformation. In particular, the study image is mod-
eled as a viscous fluid which is able to flow so as to match the
reference. In this model internal forces disappear gradually, due
to the attenuation in viscous fluids. This way, the desired defor-
mation can be fully achieved, even if large-scale deformations
are required. Other approaches to nonrigid registration are dis-
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cussed in the literature (cf. e.g., [7]–[9]), but will not be consid-
ered in this paper.

The original implementation of fluid dynamics based registra-
tion, based onsuccessive over-relaxation(SOR), is demanding
with respect to computional cost and is thus time consuming.
Bro-Nielsenet al. [10] proposed a further algorithm, based on
convolution filters(CONV). They suggest that its performance
results in a speedup of at least an order of magnitude.

In this paper, we will compare the original algorithm of
Christensen [6], to the convolution based algorithm of Bro-
Nielsen [10], and to an alternative, which is based on themin-
imum residual algorithm(MINRES), in terms of speed, memory
usage, and registration accuracy. We will study optimization by
employing an adaptive update scheme, which focuses on regions
with significant deformations. Finally, we will demonstrate
that it is possible to achieve good registration results for high
resolution MR imaging (MRI) brain image data sets, in a
reasonable amount of time on workstation class computers.

II. REGISTRATION BASED ON FLUID DYNAMICS

If not indicated otherwise, all numbers, vectors, matrices, and
functions considered in this paper are real. Vectors are denoted
as bold lower case characters, such as,, and , matrices appear
as bold face upper case letters.

An image is defined as a mapping , with
being the image domain and being the

(intensity-) range. The ordered pair of a co-
ordinate, and its corresponding intensity value is called a voxel
(volume element). In the following denotes the ref-
erence and the study image.

The transformation of an image is a mapping of
the image domain to itself, andis the set of all such transfor-
mations. Following Christensenet al. [6], we use anEulerian
reference frameto describe a transformation. Here, voxels
of the deforming image are tracked by their position. Given a
vector field , and a voxel originating at , at time .
With being the displacement of this voxel at time, its
new location will be . Hence, transformation is
defined as . The concatenation of two
transformations and with the displacement fields and

is given by

(1)

Additionally, the velocity field in an Eulerian reference frame is
determined by [6]

(2)
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with the latter term accounting for the kine-
matic nonlinearity of the voxels.

The purpose of registration is to find a transformation ,
which minimizes a given cost function in conjunc-
tion with some energy normalization (or smoothness measure)

(3)

with being a Lagrangian multiplier to balance registration ac-
curacy and transformation smoothness.

Solving this minimization problem (3), can be done by
finding the zero point of its first-order derivative

(4)

As we study synthetically generated transformations only, the
study image as well as the reference image will have the same
intensity distribution. Hence, we use the simplest case of a sim-
ilarity measure,1 the so-calledidentity relationship[15], which
yields the sum of squared intensity differences as a cost function

(5)

Its first-order derivative is then used as the forceto drive the
registration

(6)

Using fluid dynamics as the energy regularization, and with
(4) finally reads

(7)

with and being Lamé’s elasticity constants [16]. The term
is the Navier–Stokes operator, modified

to account for nonmass-conserving deformations [17].
Solving the registration problem is done iteratively over a

time step of . In each step, (7) is solved for a constant time to
estimate the current velocity field, which is then used to up-
date the displacement fieldby a time integration step derived
from (2)

(8)

To solve the registration problem, the continuous image do-
main is discretized by using a grid constant

(9)

1For a detailed discussion of similarity measures, see [11]–[14]

With , the discretization of a vector field on
the domain corresponds to a -dimensional vector

. Given ,
the th component is also denoted as .

Since we work on a discretized image domain, the transfor-
mation is not preserving topology,per se. Therefore, we have
to keep the minimal value of the Jacobian of transformation
[18]

(10)

from falling below a certain threshold. Christensenet al. [6]
achieve this by re-gridding: Every time drops below the
heuristic value 0.5, the global deformationis updated

by using the current transformation ,
and a new template is generated by applying the current trans-
formation . The displacement field and time are
set zero, and for further registration the new templateis used.

To avoid local minima and to speed up computation, a
coarse-to-fine multi-resolution scheme can be employed
voluntarily: We start with a coarse discretization of the image
domain , introduced by a low grid constant. If registration
is achieved at a certain grid level, the grid constant will be
increased. The obtained transformation is tri-linearly interpo-
lated on the higher resolution, thus assuming that the minimal
value of the transformation’s Jacobian is still positive. The
multi-resolution iteration is stopped when the grind constant

is as large as the finite resolution of the input images. For
implementation details of the registration algorithm, please
refer to the software we made available online under the terms
of the GNU public license [19].

To compare the results of registration approaches, finally a
measure for registration accuracy has to be introduced. Since the
synthetical transformation, used to deform the images, usually
will not minimize the energy regularization term, comparing
this transformation to the obtained registration transformation is
not an option. Instead, we propose an accuracy measure based
on the relative value of the cost function: With identity mapping

, the accuracy of registration achieved by
the transformation is defined as

(11)

Given a perfect registration, the accuracy becomes infinite. For
interpolation of the image date during registration introduces
errors in the image data, we do not expect infinite registration
accuracy in our experiments.

III. A PPROACHES FORSOLVING THE LINEAR PDE

The time consuming step of this registration algorithm, and
therefore its core problem, is the solution of PDE (7) for a con-
stant time and force. We will now discuss different approaches
for its solution on the discretized coordinate domain, namely
A): successive over-relaxation; B): successive over-relaxation
with adaptive update; C): the minimal residual algorithm; and
D): CONV. We will compare the approaches in terms of speed,
memory usage, and accuracy of the resulting registration.
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A. Successive Over-Relaxation (SOR)

Discretizing (7), using finite differences [20], yields a linear
system

(12)

One method to solve (12) issuccessive over-relaxation(SOR)
[20]–[23]. Splitting into a diagonal ma-
trix , a lower left matrix , and an upper right one

(13)

we obtain the iteration rule of SOR, with the iteration index
and the over-relaxation factor

(14)

In each iteration, the component of vector field is updated
with a residual

(15)

Note, that in the term , i.e., to evaluate

, already updated elements ofare used.
The sparse structure of yields that one update of the dis-

cretized velocity field needs an order of floating point
operations ( FLOPs) [19]. The update scheme does not
require additional memory cells for the iteration process.

B. Successive Over-Relaxation With Adaptive Update

Nonrigid registration is usually preceded by rigid registration.
Thus, we only expect differences between the images in certain
regions of interest. Since we do a coarse-to-fine multi-resolution
processing, large differences are roughly registered at coarser
levels, yet. Hence, large regions of the images may have little
(if any) influence on the solution of PDE (7).

By deriving the residuum (15), in each iteration
depends only on the 19 values with indexes

(16)

Therefore, it makes sense to update only if at least one
residuum is larger then a threshold valueevaluated in
the preceding iteration step

otherwise
(17)

with

(18)

To obtain all residues initially, this threshold is set
to zero during the first iteration. Later on, the threshold is set
to the average over the square normsof the residual vectors
combined with a term which involves the evolution of the re-
spective residuum and another term to decrease the threshold
in subsequent iterations, generally. With an increasing number
of iterations, the solution search space thus increases and con-
verges to the search space of the original SOR. Hence, if SOR
is convergent, then SOR with adaptive update (SORA) will also
converge. This update scheme (SORA) can also be seen as a
variant of the Gauss–Southwell-Relaxation [24].

The number of operations, needed for one update of the ve-
locity field, depends on the input data, but is well below the

FLOPs that are needed for the unmodified SOR. Addi-
tional storage is required for residues and update markers.

C. The Minimum Residual Algorithm (MINRES)

The solution of the linear system (12) can also be regarded as
the minimum of

(19)

If is a symmetric matrix, though not necessarily a positive
definite one, the MINRES2 [21], as a variant of the conjugate
gradient method, can be employed to solve this minimization
problem.

In the linear system (12), the diagonal elements ofare
, thus the system can be considered as treated with a

Jacobi pre-conditioner. For the simple structure, a multiplica-
tion with is achieved with only FLOPs [19]. Hence,
solving (12) by using MINRES seems feasible. In summary, this
algorithm requires FLOPs/iteration [19]. No storage
for is required, but the algorithm requires storage cells
for temporary vectors. Employing an adaptive update, similar
to the one given for SORA, would break the search strategy
of MINRES, which depends on orthogonal search directions.
Thus, an adaptive update was not considered.

D. Convolution Filters

Bro-Nielsenet al. [10] suggested the usage of CONV for
solving (7). A linear operator comprising the form of (7) is given
as

(20)

With a filter width parameter , the filter components
, as given by Bro-Nielsen [25], and

, the solution of PDE

2The usage of the standard conjugated gradient method (CG) is discouraged;
without any boundary conditions,A is singular and thus not positive definite.
Even with boundary conditions specified, for largenA becomes ill conditioned,
which will lead to an instable operation of CG.
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TABLE I
COMPUTIONAL COST TOSOLVE (7)

TABLE II
RATIO OF COST OFITERATIVE METHODSWITH RESPECT TOCONV

(7) at can be calculated by convoluting the impulse
response of operator with the input force

(21)

The filter components can be pre-calculated. For
each location ( ) in (21) a product with a 3 3 matrix
and the sum of two 3-D vectors have to be calculated. The
computional cost for solving (7) on the discretized gridis

FLOPs, therefore. Additional storage space
is only needed for the filter components; it can be neglected,
because the filter width is small compared to the image size. A
given filter width restricts the maximum length of the deforma-
tion during a transformation step in the registration algorithm.
For a filter width smaller than the largest image dimension, it is
not possible to obtain an accurate solution of PDE (7). Thus, a
multi-resolution approach for solving the registration problem
is mandatory to accommodate large deformations [10].

We now compare approaches A–D with respect to the re-
spective computional costs, as obtained in (Table I). MINRES
needs nearly twice as many FLOPs/iteration as SOR does.
Since CG-based methods are known for their fast convergence,
MINRES may perform better. The cost of CONV increases
very quickly with a growing filter width.

To get a first impression of the performance ratio between
CONV and iterative methods, we additionally summarize the
number of iterations, with which the theoretical computional
cost of these methods exceed the ones of the convolution based
solver (Table II). These numbers indicate, that using CONV
with large filter sizes does not offer an advantage compared to
iterative solvers, if the number of iterations can somehow be
restricted with these methods. On the other hand, we have to
consider which filter sizes are sufficient to solve (7) with an ad-
equate precision to achieve a good registration.

IV. EXPERIMENTS AND RESULTS

Convergence properties of solvers for systems of linear equa-
tions, such as SOR, SORA and MINRES, are well known from
literature (e.g., [20]). Nevertheless, we first ran a test to deter-
mine the performance of the iteration methods alone, i.e., out-
side the context of the registration problem, since the actual con-
vergence properties are also problem specific. Discrete random
force fields on a grid of 128 128 128 voxels were gener-
ated, and (7) was solved. Every time the relative residuum of the
solution dropped below a certain threshold during the iteration,

(a)

(b)

Fig. 1. (a) MINRES shows the best convergence properties in term of iteration
count. (b) However, in terms of execution time, SOR and SORA perform best,
because their cost/iteration is well below that of MINRES.

time and number of iterations were measured. If matrixis a
symmetric, positive definite, tridiagonal, or block-wise tridiag-
onal matrix, the theoretically optimal relaxation factorcan be
approximated by

(22)

with being thespectral radiusof [20]. Since
it is difficult to calculate the spectral radius, we used relaxation
factors of 0.8, 1.0, 1.4, and 1.8. A dynamic adaption scheme,
known as Chebyshev acceleration [20], was also examined, but
did not offer any improvement.

Fig. 1(a) shows3 that the minimal residual method (MINRES)
requires least iterations to achieve a given relative residuum. In

3Relaxation factors of 0.8 and 1.8 did not yield superior results over factors
1.0 and 1.4 and were omitted from figures.
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TABLE III
TIME AND ACCURACY FORSOLUTION OF PDE (7) USING CONV

Fig. 2. Registration of a synthetic study (top-left) and an example reference (top-right). Results are shown in the middle row, and the obtained deformations in
the lower row. Iterative methods were applied using a limit of ten iterations and" = 0:01. Note the registration error when using a small filter width (CONV).

terms of computation time, (using a 450 MHz Pentium II based
workstation), however, successive over-relaxation was faster
[see Fig. 1(b)].

In the generated fields, forces are distributed evenly over
the domain, therefore the adaptive update showed only a slight
advantage. We expect better results on realistic data, because
forces will typically be localized. An over-relaxation factor of
1.0 achieved best results for the relaxation based methods, and
it was used in the following registration experiments. On the
basis of this experiment, we expect SOR or SORA to perform
better than MINRES.

The same test was run with CONV. Especially by using small
filter widths, results for the solution of PDE (7), were not satis-
factory (Table III). This conforms with the statement that CONV
does not yield a proper solution of (7), if the filter width is much
below the image dimensions. Filters of higher order were not
tested, since their high computional costs do not offer an advan-
tage compared to the iterative methods.

For our second experiment, the performance of the different
methods was tested in the framework of the registration algo-
rithm by using synthetic images of size 6464 64 (see also
Fig. 2). Twenty reference images were generated, deforming the

study with a smooth random deformation field, and the study
was registered to these references. We choose and
the multi-resolution start grid constant .

Results in Table IV demonstrate, that it is not necessary to
solve (7) with a high accuracy. A limit of ten iterations only,
yields a registration quality nearly as good as any higher number
of iterations. For CONV, a minimum filter width of five is nec-
essary to achieve results which are similar to those of the other
methods (see Table III and Fig. 2). The bad registration results
for a filter width of 3, again show that a small filter is not suf-
ficient to solve (7) with an adequate accuracy. The number of
iterations in the iterative methods can be reduced significantly,
i.e., it is not necessary to evaluate the velocity fieldaccu-
rately from the deforming force in each iteration step. Thus
the computational cost of CONV is similar to those methods,
and any speed advantage vanishes. Only with a filter width of
three CONV offers an advantage, in terms of speed but not in
terms of accuracy. These results correspond to the ratio of com-
putational costs, as compiled in Table II.

Now, we were interested in testing how algorithms scale
on the image resolution, using the optimal parameters as
determined in the preceding experiment. For the iteration based
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TABLE IV
REGISTRATION OFSYNTHETIC IMAGES (ITERATIVE METHODS)

TABLE V
REGISTRATION OFSYNTHETIC IMAGES (CONVOLUTION FILTERS)

Fig. 3. Scaling of the execution times with image size: All methods show a
subproportional time increase with respect to images of size 64� 64� 64.
SORA scales best.

methods, we set the maximum number of iterations to 10, or
stopped if the relative residuum dropped below 0.01. Convo-
lution filters were applied with a filter width of 5. Although
methods for solving (7) need FLOPs, the time needed to
achieve registration of synthetic images increased at a lower
rate than the number of voxels (see Fig. 3).

As another conclusion, SOR and SORA scale better than
MINRES and CONV. The super-scalar speed increase for small
resolutions (i.e., 32 32 32) is a consequence of caching
[26]. SORA proved to be the fastest method.

Finally, we explored the performance of registering high-res-
olution medical image data. Acceptable results of the registra-
tion of pairs of 250 250 192 MR image of the head were
achieved in approximately 3 hours.

V. CONCLUSION

We compared two iterative methodssuccessive over-relax-
ation (SOR), and theminimal residuum algorithm(MINRES),
and a direct approach CONV, as methods for the solution of the

core problem of nonrigid registration, based on fluid dynamics.
In terms of computional costs, we found that MINRES required
fewer iterations to solve (7) with a given accuracy, but SOR re-
quired less memory cells as well as less time to achieve the same
result, and is thus considered superior. Numerical experiments
on synthetic data demonstrated the possibility of restricting the
numbers of iterations drastically, without a significant loss of
accuracy of the registration result. With this optimization, SOR
outperformed CONV in terms of speed while the registration ac-
curacy maintains. Furthermore, we were able to speedup SOR
by introducing an adaptive update scheme (SORA). In sum-
mary, SORA proved to be the best approach to solve (7).

Although our implementation is neither fully optimized for
workstation architectures nor parallelized we were able to ob-
tain results for MRI volumetric data of high resolution, in ap-
proximately three hours of computation time. By optimizing our
implementation (e.g., by improving the use of the memory cache
hierarchies of the processor and by introducing parallelization),
a further speedup is expected.
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