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Summary: Recently, we have proposed a new concept for analyzing EEG/MEG data (Uhl et al. 1998), which leads to a dynamical systems based mod-
eling (DSBM) of neurophysiological data. We report the application of this approach to four different classes of simulated noisy data sets, to investi-
gate the impact of DSBM-filtering on source localization. An improvement is demonstrated of up to above 50% of the distance between simulated and
estimated dipole positions compared to principal component filtered and unfiltered data. On a noise level on which two underlying dipoles cannot be
resolved from the unfiltered data, DSBM allows for an extraction of the two sources.

Key words:  EEG/MEG; Dipole source modeling; Signal filter; Signal reconstruction; Dynamical systems.

Introduction
A major goal of the analysis of electro- and

magnetencephalographic (EEG/MEG) data is the local-
ization of brain activity during cognitive tasks. Source
modeling in terms of fitting position, orientation and
strength of dipole sources (Brenner et al. 1975; Scherg
and von Cramon 1986; Mosher et al. 1992) has become a
valuable tool for understanding brain functions.

Despite the success of dipole modeling, there are
still open questions concerning dipole source localiza-
tion, such as the definition of components (Rösler 1982)
and corresponding time intervals for a basis of the fitting
algorithm, and such as the choice of constraints to reduce
the ambiguities of the inverse electromagnetic problem.
Although the high temporal resolution of EEG/MEG
measurements is one of the major advantages of this mo-
dality, conventional dipole modeling is not based on
temporal aspects for an estimation of spatial parameters.
In a recent paper (Uhl et al. 1998) we proposed a new con-
cept for analyzing EEG/MEG data aiming at a recon-
struction of the signal and its dynamics. The approach is
based on a simultaneous fit of spatial and temporal pa-
rameters to given data sets, which we will call in follow-

ing "dynamical systems based modeling" (DSBM). The
reconstruction is achieved by minimizing a cost function
considering signal representation - as it is done in princi-
pal component analysis (PCA) (Donchin and Heffley
1978) - and dynamic interactions. In our view, this may
lead to more objective criteria for the characterization of
EEG/MEG data sets, since interactions can be described
and quantified.

In this paper we study the impact of DSBM as a recon-
struction (or filter) technique with respect to source mod-
eling. To investigate the performance, different data sets
are simulated, different with respect to spatial and tempo-
ral characteristics as well as with respect to different noise
levels. Since our approach can be viewed as an extension
of PCA, source modeling results of PCA-filtered signals
are compared with results of DSBM-reconstructed and
unfiltered data sets.

Dynamical Systems Based Modeling
(DSBM)

EEG/MEG signals represent electromagnetic poten-
tials/fields measured on the scalp surface due to neuronal
interactions in the human brain. The high-dimensional
complex dynamical system on the neuronal level exhibits
low-dimensional behavior on the level of measurements
on the scalp surface, observed by correlation dimension
studies (Babloyantz et al. 1985) as well as source modeling
leading to low-dimensional dipole models. Therefore, one
expects that the measurements q(t) (with the vector com-
ponents representing the channels of the measurement)
can be expressed as a combination of different field maps
ui weighted by factors xi depending on time:
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Since information processing in the human brain is
based on interactions of cell assemblies, the amplitudes
xi(t) are not independent from each other, but reflect the
interactions, which may be expressed in terms of differ-
ential equations:

d
dt

x fi i= ( ).x
(2)

A rigorous mathematical derivation for the emergence
of low-dimensional dynamics in high-dimensional systems
can be found in (Haken 1983, 1987) and applications of this
concept to brain dynamics are reviewed in (Kelso 1995;
Nunez 1995; Haken 1996; Kelso et al. 1998; Uhl 1998).

In a previous paper (Uhl et al. 1998) we outlined the
link of EEG/MEG signals, brain functioning and dynami-
cal systems, and presented an algorithm to dissociate the
dynamically relevant subspace and the irrelevant subspace
(noise) from given data sets. The interpretation of the fitted
dynamical systems led to a new definition of components
and we suggested that from this concept, more objective
criteria for analyzing EEG/MEG data may evolve.

In this paper we present a slight modification of the
algorithm presented in (Uhl et al. 1998) and discuss its
application as a filter to improve source localization.

Algorithm

Based on the concept presented above, the goal of our
approach is to decompose an event-related poten-
tial/field (ERP/F) signal q(t) into time-dependent ampli-
tudes, yi(t), and spatial field distributions, vi, and to obtain
a model in terms of differential equations of the underly-
ing dynamics. An approximation of the spatio-temporal
model may be obtained by minimizing a cost function, C,
consisting of least-square-error functions of signal repre-
sentation, CS, and dynamics representation, CD:
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with the brackets < …  >t denoting averaging over time.

Note that, compared to our cost function defined in
Uhl et al. (1998), we slightly changed the definition: The
results are similar, however the cost function (equation
3) is more transparently connected to the goal of decom-
posing the signal and modeling its amplitudes. To re-
duce possible ambiguities in the solution space, we
constrain the amplitudes to

< ⋅ > =y t y ti j t ij( ) ( ) .δ (6)

After introduction of a set of biorthogonal modes
v i

+ with v vi j ij
+ ⋅ = δ , the unknown amplitudes can be

written as a projection of the signal onto the biorthogonal
modes:

y t ti i( ) ( )= ⋅+v q (7)

Therefore, this projection procedure considers all
channels, which has been shown to quantify spatially ex-
tended dynamics more reliably than single-channel
methods (Lachaux 1997). Now, the cost function repre-
sents a function of spatial modes, v vi i

+ , , and coefficients
of the function gi describing the dynamics:

[ ]C C gi i i= +v v, , .
(8)

Some of the parameters in the cost function can be
eliminated analytically (Uhl et al. 1998), leading to a
non-linear cost function depending on v i

+ only:

[ ]C C i= +v .
(9)

The constraint, (equation 6), can be considered for fur-
ther reduction of parameter space (Uhl and Friedrich 1998).

The global minimum of the non-linear cost function
has to be obtained by numerical methods, e.g., by a ge-
netic algorithm (Holland 1987), and it represents the best
choice to describe the signal and its dynamics with re-
spect to the L2 norm as defined in equations 4 and 5.

This approach represents an alternative to principal
component analysis (PCA) (Donchin and Heffley 1978),
which is also based on the minimization of a cost func-
tion, CPCA, which is equivalent to the cost function CS of
our approach:
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Here, the minimum (for all n) with respect to wi can
be given analytically:
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with the eigenvalue λi of the correlation matrix Cij = < qiqj
>t. The essential difference between PCA and our ap-
proach relies on the term CD of the cost function. It deals
with the interactions on which the signal is possibly
based on. Mathematically, this represents a non-linear
extension of PCA and leads to additional terms of higher
order correlation tensors in equation 11.

Simulations
To evaluate DSBM as a filter technique and to inves-

tigate its effect on source localization, we simulated four
different data sets q(t), consisting of the relevant signal
s(t) and additive noise n(t):

q(t) = s(t) + n(t) (12)

Signals

The signals are modeled by dipoles d1 and d2 in a
three-spheres head model. Its geometry is defined by ra-
dii of 94.8 mm, 88.2 mm and 83.8 mm with a conductivity
relation of 1:0.0127:1. The center of the spheres is located
at (x, y, z) = (7.4 mm; -2.9 mm; 56.0 mm) of the orthogonal
coordinate system xyz with the posterior-anterior axis as
the x-axis and the vertical axis z.

By solving the electromagnetic forward problem,
potential field maps u1(d1) and u2(d2) on the scalp surface
are obtained.

In our simulations, the time courses of the dipole
strength are given by the amplitudes x1(t) and 0.4 · x2(t) with

equal power of the amplitudes,

< > =< > =x t x tt t1
2

2
2 1( ) ( ) , (13)

Thus we obtain

( ) ( ) ( )s u d u d( ) . ( )t x t x t= ⋅ + ⋅ ⋅1 1 1 2 2 20 4 (14)

To reflect different aspects of temporal and spatial
characteristics, we introduce four classes of simulated
signals using two sets of amplitudes x1(t), x2(t) and two
sets of current dipoles leading to spatial field maps u1(d1)
and u2(d2). The two sets of amplitudes show typical be-
haviour of dipole models (Mosher et al. 1992) in time and
just differ in the relation of polarity to each other (figure
1a,b). Both the set with similar amplitudes and the set
with different amplitudes are modeled by systems of dif-
ferential equations, which are discussed in Appendix A.

The two sets of spatial field maps are also chosen to
pairs of similar and different maps. Their underlying
models are explained in Appendix A as well.

The resulting four classes of simulated data are
shown in table I.

Noise

The noise term of the simulated data sets consists of
three randomly chosen field maps wi and random ampli-
tudes ηi(t):
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Figure 1. Amplitudes x1(t), x2(t), obtained from numerical integration of a) equations 27 and 28 (signals 1 and 2, overlap-
ping amplitudes, same polarity) and b) equations 29 and 30 (signals 3 and 4, different polarity).



The factor n allows for tuning the signal-to-noise ratio.
Each of field maps wi are obtained by the forward solution
of randomly chosen 16 radial dipoles from a pool of 210 po-
sitions equally distributed in the spherical head model.
The random amplitudes are modeled by the formula
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with a random-variable τi equally distributed in the time
interval (0, 200). The factor Ni is introduced to normalize
the amplitudes to ( )< > =ηi tt2 1. Besides the presented
temporal noise model, further noise models e.g., dealing
with varying spatial distributions are also possible. Fu-
ture investigations of dipole models by the presented
method should deal with these noise models.

For each signal the noise intensity is varied by tun-
ing the value n:

n = 0.05, 0.10, 0.15,..., 0.90, 0.95 (17)

The obtained signal-to-noise ratios (SNR) according to

S N t t t/ )) ( )= =< >pow( )
pow( ) with pow( (s

n a a 2

(18)

are shown in figure 2. We want to remark here, that the
ratios are similar for signal classes 2-4 and smaller than
signal class 1, since
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and 0.4 < x1x2 >t u1 . u2 is small compared to u1
2 for signal

classes 2-4.

Results
We compare results for the four simulations of the

unfiltered signal q(t), the DSBM filtered signal q'DSBM ( ),t

q' v vDSBM ( ) ( ) ( )t y t y t= ⋅ + ⋅1 1 2 2 (20)

with the amplitudes yi(t) and spatial distributions vi ob-
tained by the algorithm described in a previous section,
and PCA-filtered signals: a filtered signal based on one
spatial distribution,

q' wPCA t z t1 1 1( ) ( ) ,= ⋅ (21)

and a filtered signal based on two spatial distributions,

q' w wPCA t z t z t2 1 1 2 2( ) ( ) ( ) .= ⋅ + ⋅ (22)
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Figure 2. Signal-to-noise ratios (18) for the different classes of signals.
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Table I. Spatial and temporal characteristics of simulated
signals 1-4.



Three measures will be utilized to compare the per-
formance of the filters: data representation, signal repre-
sentation and dipole position error as obtained by source
modeling of the filtered signals. Note, that we distinguish
between data, q(t), and signal, s(t), as defined in equation
12: we denote data as the underlying signal plus noise.

Residual variance of data representation

The residual variance of the data representation is
given by

( ) ( )( )< − >
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q q'

q

t t

t
t

t

2

2 ( ) (23)

which is plotted for the four data classes in figure 3. Two
features are observed: (1) The residual variance for the class
1 signals are considerably lower than the ones of the other
signal classes. This is due to the similarities of the simulated
spatial field maps as well as the simulated amplitudes. (2)
With respect to this measure, the DSBM-filtered signal has a
better performance than the PCA1-filtered data, since the
two modes of the DSBM-filtered data capture more of the
data than in the one-mode PCA-filtered case. It has an infe-
rior performance than PCA2-filtered data, since both are
based on a two-mode expansion, and PCA being solely
based on an optimization of data representation.

Residual variance of signal representation

The goal of filtering ERP/F data sets is to separate
signal from noise, and therefore the measure (equation
23) is not appropriate to quantify the filter quality. We

chose the residual variance with respect to signal repre-
sentation instead:
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Results are plotted in figure 4 for the different signal
classes. We included the unfiltered data set (dashed line)
to emphasize the filtering effect. DSBM-filtered data
show a lower residual variance than unfiltered and
PCA-filtered data, which corresponds to a better noise
separation by the DSBM method. PCA-filtering in
contrast fails to separate signal from noise: PCA1-
filtering reduces noise only for class 1 and 3 signals for a
noise level above a certain threshold; below the
threshold and for the signal classes 2 and 4, even the un-
filtered data captures more of the signal than the
PCA1-filtered data. PCA-filtering based on two-mode
interactions only leads to small improvements in the case
of type 4 signals, for all other types, PCA2-filtering is
useless for signal reconstruction, since the unfiltered
signal shows the same residual variance.

The failure of PCA-filtering with respect to separating
signal from noise is due to the underlying optimization
(compare equations 10 and 11) and resulting orthogonal
modes wi: wi · wj = δij. If the noisy part of the data is not or-
thogonal to the signal, n(t)· s(t) ≠ 0, it cannot be resolved by
PCA. Since our approach does not assume an orthogonal
decomposition, (i.e., wi · wj ≠ δij), we introduced a
biorthogonal set of modes( )i. e. , w wi j ij⋅ =+ δ . The intro-
duction of further degrees of freedom by the modes w i

+ is
compensated by an additional cost function CD, which can
be regarded as a temporal constraint. Therefore, we are
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Figure 3. Residual variance of data representation (23) for
the four classes of signals.

Figure 4. Residual variance of signal representation (24)
for the four classes of signals.



able to partly separate signal from noise for the realistic case
of data sets consisting of nonorthogonal signal and noise.

Comparison of dipole solutions

The impact of the improved signal-from-noise separa-
tion is investigated by a comparison of source models
based on the inverse solution of the filtered and unfiltered
data. The dipole fits are based on the spherical head model
of the forward model (boundary element method) and
were performed with ASA (A.N.T. Software b.v., Hengelo,
Netherlands) by a non-linear Marquardt algorithm. As a
starting point for the fitting algorithm we tested both the
exact solution, d1and d2, of the forward model and the solu-
tion of the dipole fit of the precedent noise level. The latter
choice of starting points generally led to better solutions.
The obtained dipole solutions are denoted as

~
d i and their

distances to the exact positions represent a measure of the
impact of DSBM-filtering:

( ) ( )d d d d1 1
2

2 2
2

− + −~ ~
(25)

Errors are shown in figure 5 for the different signal
classes and noise levels. Classes 3 and 4 show an ex-
tremely bad performance of the PCA1-filtered data sets,
due to the spatial inhomogeneity of the underlying field
maps (compare table I); results of PCA2-, DSBM- filtered
and unfiltered data sets are similar, with an advantage
for DSBM-filtered data of 3-5 mm (10-20%) for a noise
level of 0.7 ≤ n ≤ 0.9. For class 2 data, the DSBM-filtered
signal yields the better improvement of dipole positions
the higher the noise level is chosen: up to 10 mm (25%) in

the case of noise level n = 0.95. Best results of the DSBM
filter are obtained with class 1 data. PCA fails for noise
levels n ≥ 0.4 while DSBM improves dipole solutions by
12-17 mm (35-56 %) in the noise range of 0.5 ≤ n ≤ 0.65. For
even higher noise levels (n > 0.65) it is not possible to ex-
tract a two-dipole model from the unfiltered data. In the
DSBM-filtered case the two-dipole model is still observ-
able and yields only for high noise levels (n > 0.9) an error
range above 40 mm.

To illustrate the problem of resolving the two di-
poles in signal class 1, we plotted in figure 6 the distance,

( )~ ~
,d d1 2

2
−

(26)

of the two dipoles fitted to the unfiltered and the PCA-
and DSBM-filtered data: For noise levels n > 0.65, the dis-
tance between the two dipole positions obtained from
the unfiltered data vanishes, and thus they cannot be re-
solved anymore. The solutions of the PCA-filtered data
sets show a distance of above 60 mm for n ≥ 0.5. How-
ever, in the DSBM-filtered case, the distance is close to
the exact value (20 mm, solid thick line) for n < 0.8 and in-
creases for higher noise levels, while a two-dipole solu-
tion can be still obtained.

The success of DSBM-filtering especially in the case
of class 1 signals is due to the spatial and temporal
similarities of the two underlying components. In
practical applications, if two adjacent cortical areas are
activated during a cognitive task, both with the same
polarity and a short latency between the components,
DSBM-filtering may help to resolve the two components
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Figure 5. Absolute error of fitted dipole model (25) for the
four classes of signals. Figure 6. Distance of obtained dipole soultions (26) for

class 1 signals.



and may lead to a source model which cannot be ob-
tained by the unfiltered or PCA-filtered data.

Conclusions
We presented a new algorithm for modeling

EEG/MEG data based on dynamical systems theory,
which can be regarded as a filter technique. Its perfor-
mance on separation of signal and noise from given mea-
surements was studied by simulated data sets. We have
shown that this filter technique is superior to principal
component analysis and can improve source localization
by more than 50% of the distance between simulated and
estimated dipole position of the unfiltered or PCA-filtered
data sets. For small signal-to-noise ratios the underlying
dipoles still can be resolved by DSBM-filtered data in con-
trast to the failure of PCA-filtered and unfiltered data. Ad-
ditionally, the method improves the separation of
temporal activity of dipoles and the determination of rela-
tions between their amplitudes. When constraining the
solution space by integrating realistic head models (Dale
and Sereno 1993), the presented approach may lead to a
deeper insight in spatio-temporal brain functioning.

Appendix
The characteristics of amplitudes and spatial field

maps are implemented as follows:

Amplitudes

1. Two similar components with same polarity are ob-
tained by numerical integration of

( )[ ]d
dt

x x x x x x1 1 1 2 1 21 4 1 4 4= ⋅ ⋅ − + ⋅ − + ⋅ +/
(27)

( )[ ]d
dt

x x x x x x2 2 2 1 2 11 4 1 4 4= − ⋅ ⋅ − + ⋅ − + ⋅ +/
(28)

and initial conditions x1(t = 0) = x2(t = 0) = 0.08. Ampli-
tudes are obtained after scaling by 1 2/ .< >x i t They
represent the amplitudes of the signal classes 1 and 2.
2. Two components with opposite polarity and smaller
overlap are obtained by numerical integration of

( )[ ]d
dt

x x x x x x x1 1 1 1
2

2 2 11 4 1 2 4 4= ⋅ ⋅ − ⋅ + + ⋅ − ⋅ +/

(29)

( )[ ]d
dt

x x x x x x x2 2 2 2
2

1 1 21 4 1 2 4 4= − ⋅ ⋅ + ⋅ + + ⋅ − ⋅ −/ .

(30)

As initial conditions, x1(t = 0) = 0.05, x2(t = 0) = -1 ×

10-6 are chosen, and again scaling of the amplitudes by
1 2/ < >x i t is applied. These amplitudes represent tem-
poral dynamic of the simulated signal classes 3 and 4.

Spatial field maps

1. Similar field maps u1 and u2 are obtained by the for-
ward solution of radial current dipoles with coordinates
d1 = (-60, 20, 60) and d2 = (-60, 20, 80). The orientation
vectors show just a small difference in the z-coordinates
and thus lead to similar field maps. They are used for the
signal classes 1 and 3.
2. Different field maps used in signal classes 2 and 4 are
due to radial current dipoles with coordinates d1 = (-60,
20, 60) and d2 = (60, 20, 100). Here, the orientation of the
dipoles differ much more than in the upper case, which
leads to different spatial field maps. They contribute to
the signal classes 2 and 4. In order to illustrate the
method, the simple case of two radial current dipoles is
chosen. The presented method is not restricted to this
choice of number and orientation of dipoles.
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