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INTRODUCTION 
 Finite Element (FE) techniques are now commonly employed for 
simulating bio-mechanical properties of the head, e.g. in surgery 
simulation [1-3] or impact simulation [4-5]. To compute such forward 
simulations, the magnitude and directions of forces acting on the head 
need to be specified. If this prior information is not available, time se-
ries examinations may be employed and registered by a non-linear 
transformation. The resulting deformation field is used to derive a 
force field, based on incorporated realistic material parameters. Force 
fields need to be analyzed for their singularities (force �sources� and 
�sinks�) in order to provide a comprehensive 3D visualization. In 
analogy to the inverse problem of localizing sources of electromag-
netic brain activity from potential measurements on the scalp, we de-
note this approach as �inverse� bio-mechanical models. We focus here 
on the problem of setting up a suitable modeling context. 
 This work is performed within the international collaboration 
project SimBio [6], funded by the European Commission, which aims 
at implementing a generic environment for bio-numerical simulation 
of human body parts. 
 
THE REGISTRATION ALGORITHM 
 A source volume image is mapped to a target by applying vector-
field transformations to the underlying coordinate system. In order to 
produce bio-mechanically plausible results, transformations are con-
strained to be consistent with the physical properties of deformable 
elastic solids. Furthermore, transformations need to preserve topology 
in order to yield an anatomically valid result.  
 An approach which implements these constraints in a rather 
flexible algorithm was recently proposed by Christensen [7] and is 
embedded in the mathematical framework of the Grenander model of 
anatomy [8-9]. A fundamental problem with a large class of image 
registrations techniques is that the estimated transformation g from a 
template image T to a target S does not equal the inverse of the 
estimated transformation h from S to T. Thus, a third constraint needs 
to be enforced that these transformations are consistent, i.e., inverse to 
one another. Now, the registration problem can be stated as: 

 
Jointly estimate the transformations h and g such that h maps T to S 
and g maps S to T subject to the constraint that h = g -1. 
 
 We assume that the 3D image volumes T and S are MRI images 
collected from similar anatomical populations. Each image is defined 
to be a function of x ∈  Ω = [0, 1]3. The transformations are vector-
valued functions that map the image domain Ω to itself, i.e., h: Ω → Ω 
and g: Ω → Ω. Throughout it is assumed that h(x) = x + u(x), h-1(x) = 
x + û(x), g(x) = x + w(x) and g-1(x) = x + ŵ(x), where h(h-1(x)) = x and 
g(g-1(x)) = x. All fields h, g, u, û, w and ŵ are (3 x 3) vector-valued 
functions of x ∈  Ω ⇒ Ω. Transformations are optimized by minimiz-
ing a symmetric cost function C(h, g), which consists of three terms 
discussed in more detail below. To ensure consistency constraints, the 
transformations h and g are jointly estimated. 
 The first term uses the image intensity as a similarity measure of 
the native and transformed images: 

This cost function does guarantee that h and g are inverse to each 
other, because the respective contributions of h and g to the cost func-
tion are independent. In order to obtain a consistent transformation, an 
additional inverse transformation constraint is enforced: 

The inverse transformation h-1 is computed from h by solving the 
minimization problem:  
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Similarly, g-1 is computed from w. A sufficient condition to ensure that 
the inverse transformation h-1 exists and is unique is that h is a diffeo-
morphism. However, minimizing C2 does not ensure that the transfor-
mations h and g are diffeomorphic transformations except when C2(h, 
g) = 0. To enforce the transformations to be diffeomorphic, a contin-
uum mechanical model is applicable such as linear elasticity. Thus, the 
third term of the cost function is defined as: 

As in [7], we choose the operator ΛΛΛΛ to describe linear elasticity: 

but in general ΛΛΛΛ can be any non-singular linear differential operator.  
 The displacement fields are represented by a 3D Fourier series: 

where the basis coefficients µijk and ηijk are (3 x 1) complex-valued 
vectors, ω ≡ [2πi/N1, 2πj/N2, 2πk/N3], and N1, N2, N3 correspond to the 
voxel dimensions of the images T and S. The coefficients µijk and ηijk 
are constrained to have complex conjugate symmetry during the esti-
mation process. 
 Initially, only the low frequency components are used, effectively 
resulting in a multi-resolution approach. The transformations ĥ and ĝ 
are estimated by using a gradient decent algorithm to determine coeffi-
cients µijk and ηijk. Periodically, the number of basis coefficients is in-
creased until a pre-defined spatial resolution of the displacement field 
is obtained. Lagrange multipliers are used to weight between the three 
cost function terms. The computation time for a midrange PC is in the 
order of 2h for volumes of 643 voxels. Parallelization on HPC plat-
forms is useful and straightforward for larger volumes, candidate 
functions are the 3D FFT and the determination of the inverse trans-
formations h-1 and g-1. 
 To analyze vector fields for their singularities, we use the ap-
proach described by Philipou and Strickland [10]. 
 
CLINICAL VALIDATION 
 The algorithms described in this papers are evaluated by studying 
two different classes of brain diseases. Patients with probable neuro-
degenerative diseases are examined within the course of a long-term 
study in conjunction with the Department of Psychiatry at the Univer-
sity Clinic, Leipzig. The study currently comprises of 150 patients, in 
which the first examination time point (TP1) was completed, and fol-
low-up examinations (TP2) started recently. 20 cases with a significant 

atrophy rate (from volumetric measurements) were selected as a sub-
set, and their data sets were subjected to this analysis procedure. 
 As a second group, 20 cases were selected from the patient pool 
of the Day-Care Clinic of Neuropsychology (University Clinic, Leip-
zig) who are suffering from focal brain lesions (after cerebral infarc-
tion, haemorrhage or severe head trauma). Patients are scanned rou-
tinely by MRI at the time of admission and discharge (approx. 3 resp. 
12 months after onset). Data sets obtained at TP1 and TP2 were evalu-
ated by inverse bio-mechanical models in order to derive the deform-
ing forces induced by restorative processes after focal brain damage. 
 Neurobiological results will be reported in a subsequent publica-
tion. 
 
SUMMARY 
We proposed an approach for setting up �inverse� bio-mechanical 
models of the brain. Our aim is to understand the mechanical conse-
quences of pathological and restorative processes which go along with 
degenerative and focal brain diseases. This first attempt includes proc-
esses only which proceed on a long-term time scale, because we ex-
pect that the assumption of linear elasticity still holds. At a later stage, 
this framework may be extended to govern non-linear behaviour (e.g., 
during surgical interventions, intra-cerebral hemorrhages, skull frac-
tures) as well. 
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