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Abstract

Functional magnetic resonance imaging is a non-invasive technique to study brain activity in humans. Among other
effects, the stimulus pattern influences the timecourse of activations. A non-linear regression context is proposed to
quantitatively compare stimulation parameters with activation timecourses. © 2001 Elsevier Science B.V. All rights

reserved.

Keywords: Functional magnetic resonance imaging; Hemodynamic response; Non-linear regression; Event-related experimental

paradigm

1. Introduction

Functional magnetic resonance imaging (fMRI,
Belliveau et al., 1991) has become one of the major
methods for investigating brain function in cog-
nitive science. Most fMRI studies apply the blood-
oxygen-level-dependent (BOLD) effect, where a
metabolic correlate of brain activation, the
socalled hemodynamic response (HR) of the vas-
cular system, is measured. Activations are found
as stimulus-linked and time-dependent local in-
tensity changes in two-dimensional images which
are acquired during stimulation at regular time
intervals. Data analysis is complicated by the fol-
lowing circumstances: (1) the effect is rather small,
(2) data are noisy and overlaid by artifacts, (3) the
HR due to a brief stimulus is typically delayed by
3-5 s and dispersed by 1.5-2.5 s, and (4) perhaps
also displaced with respect to the activation site.

Recently, event-related experimental designs
were introduced (ER-fMRI, Zarahn et al., 1997).

* Corresponding author.

Such designs allow the randomized presentation of
behavioural trials and the study of responses to a
specific stimulation context separately. As a con-
sequence, there is an increasing interest in de-
scribing the timecourse of the HR in relation to
experimental stimulation parameters, or: how
much can be inferred from the HR shape charac-
teristics about the underlying neuronal activation?

This paper proposes a flexible non-linear re-
gression context for modeling the HR in fMRI
data. We explain the framework, the background
model, and inferential statistics for the model in
the following section. Three examples illustrate the
use of this context.

2. A modeling context for the hemodynamic re-
sponse

Typically, fMRI data are collected as a set of
2D image slices recorded at different positions of
the brain (say, every 7 mm) and at regular time
intervals (say, every 1 s). Activated brain regions
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may be detected by any viable choice of fMRI
signal detection methods (for a review, see Lange,
1996). We define regions-of-interest (ROIs) by se-
lecting a few highly activated voxels from a brain
region and then focus on modeling the timecourse
of the signal in this ROI. We will now formally
introduce this modeling context.

2.1. Model layout

We consider a subset y of the fMRI data, col-
lected from k 4-connected voxel sites at / discrete
timesteps (i.e. n = k/ data points) of a single ex-
perimental period (a trial). Data are modeled as a
sum of a deterministic function g(-) and a sto-
chastic part e:

y=g(t,ﬁ)+€, eNNn(Oa V)7 (1)

where ¢ denotes the vector of discrete timesteps
and f the p-dimensional vector of shape parame-
ters of a HR model function. g(-) is bounded in
time within the experimental period, and unde-
fined otherwise. The elements ¢, of the stochastic
part are uncorrelated with g(-). In the following
section, we discuss how an estimate of the co-
variance matrix ¥ is determined from the data.
The ML estimate  of our model parameters is
found as the vector f from non-linear minimiza-
tion in p dimensions:

arg ming(e"V'e), where é=y—g(t.p). (2)

2.2. Covariance matrix

The spatio-temporal covariance matrix ¥ con-
tains n(n + 1)/2 unknowns and thus may not be
determined from the data without making certain
simplifications. The following assumptions are
approximately fulfilled for preprocessed fMRI
data (for a full discussion, see Kruggel and von
Cramon, 1999): (1) elements ¢; are normally dis-
tributed, (2) their correlation is described by an
AR(1) model in space and time (Bullmore et al.,
1996, Benali et al., 1997), (3) the covariance matrix
is separable in space and time: V=S T.

The determination of the spatial correlation
matrix is somewhat involved, because residuals are

only available on an irregular configuration of sites.
The AR(1) correlation function of a stationary
process on a regular spatial grid is given by:

ps(s0,51) = pipy
using h = H(so,s1), v=V(so,81), (3)

where H(-) and V() return the absolute distance
between two sites in the x and y direction, and
Py, py denote the spatial autocorrelations. To de-
termine p, and p, from the data, we first form
subsets of all pairs of sites, which are located the
same absolute distance 4, v:

She = {50, 51|50 €S, 51 €S, H(so,51) =h,
V(s0,51) = v} (4)

then compute the maximum likelihood estimate
Py, for this subset. Now, we find py,p, by LS
estimation:

arg minpx,py{ > (Pre— Pip?)z} (5)

h,ov

Using these estimates, we can compute the corre-
lation pg between any sites s;,s; in the ROI by
Eq. (3), and thus set up the spatial correlation
matrix S. Similarly, a matrix 7 is formed for the
temporal domain and composed with the spatial
matrix as indicated above.

2.3. Goodness-of-fit and confidence limits

A simple measure for conformance of the time
series with a given model (GOF) is given by:

AT/ —1~
GOF=1-°__° ;;_16, (6)
vy

which ranges in [0, 1], with 1 denoting a perfect fit.
Using a first-order linear model, we can derive
confidence limits for f from the inverse of the
Fisher information matrix F:

B~N(B.F,'), where Fyz=GsV Gy, (7)

and Gy denotes the Jacobian matrix of g(-) with
respect to f. Exact confidence limits on the esti-
mated parameters may be derived using Hartley’s
suggestion (see Seber and Wild, 1989, p. 236):
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where f=F) i
and P=V"'GF;'GyV ", (8)

which is a 100(1 — «)% confidence region for f.

3. Examples

Three different examples will now illustrate the
use of this modeling context. In the first example,
we show how HR shape parameters may be linked
to experimental stimulation parameters using a
simple model function. The second example in-
troduces a more elaborate model, by which we try
to separate ‘“‘neuronal” from ‘vascular” shape
parameters. A complex model function for multi-
ple HRs within a trial is discussed as a third ex-
ample.

3.1. Gaussian function

The most simple suitable choice for g(-) in Eq.
(1) is given by a 4-parameter Gaussian function:

¢(.8) = foexp l_U—_ﬁz)

+ B37 (9)

2p;

where we denote the components of f as f3,: gain
(the “height” of the HR), f,: dispersion (propor-
tional to the duration of the HR), f3,: lag (the time
delay from stimulation onset to the HR peak), and
p5: baseline.

To illustrate results using this function, we se-
lected a fMRI dataset from a recent study in lan-
guage comprehension (Meyer et al., 2000). Single
sentences were presented orally, and subjects were
asked to classify the sentence grammatically for
correctness. The presentation of a sentence lasted
between 2.56 and 4.46 s during a 6 s interval,
followed by a 18 s pause. Seventy-six trials were
recorded during an approximately 30 min experi-
ment. During this time, we acquired every 2 s four
slices of 128 x 64 voxels with a spatial resolution
of 1.9 x 3.8 x 5 mm?.

The standard procedures to detect functional
activation in this dataset were performed: (1) pre-
processing using motion correction, baseline cor-
rection and lowpass-filtering to  reduce
physiological and system noise (Kruggel et al.,
1999), (2) statistical analysis for activated regions
by Pearson correlation with a time-shifted box-car
waveform (4 = 6 s), and conversion of the corre-
lation coefficients into z-scores, (3) assessment of
significance to the activated regions on the basis of
their spatial extent (Friston et al., 1994). We focus
on results of two ROIs (see Fig. 1): the primary
auditory cortex on the left side PAC., and an

PAC,

STG,

Fig. 1. Activated brain regions in a fMRI experiment on language comprehension (left). A few trials from the (spatially averaged)
timecourse of the signal in two sample regions are shown on the right. Dotted lines denote the acoustic stimulation, the thick dots
denote the measurements, and the black line the estimated waveforms.
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auditory association cortex on the right superior
temporal gyrus (STGg).

Using our model, we obtained 76 estimates of
gain, lag and dispersion for each ROI. These esti-
mates were compared with the experimental pa-
rameters (sentence presentation length, correctness
manipulation) using linear regression. When eval-
uating over all ROIs, we found that per second of
increasing sentence length, the lag increased by
880 ms and the dispersion by 210 ms. So within this
temporal stimulus range, there is a proportionality
between stimulus and HR duration. Likewise, the
gain increased by 21% per second stimulus dura-
tion. A significant interaction (P < 0.05) between
the gain and the correctness manipulation was
found for the association cortex STGg, but not for
the primary auditory cortex PACy.

3.2. Convolved asymmetric Gaussian function

An approach to closer model to processes un-
derlying the HR is to define the model function
g(+) as a convolution of a neuronal stimulation
function n(¢#) with a hemodynamic modulation
function f(¢):

g(t, ) = n(t) @ /(1) + b, (10)

where ® denotes the convolution operator and b is
a baseline term. We simply assume a square-wave
function for the neuronal stimulation n(z):

_Ja iftztandt <ty +1t,
n(t) = {0 otherwise. (11)
A Gaussian function is introduced for hemody-
namic modulation function f(-), here with differ-
ent dispersions (dy, d;) for the rising and the falling
edge:

_ Jexp(—£2/(2d3)) if 1 <0,
)= {ng(fz/@df)) ;f t>0. (12)

In this model, B consists of six parameters (d:
dispersion on the rising edge, d;: dispersion on the
falling edge, a: gain, #: response onset, #;: response
duration, b: offset). Modeling of the convolution
process allows to address the meaning of a and #
as neuronal parameters, resp. f, dy, d; as vascular
parameters.

Applying this model to data from region PAC,,
we found that the response onset #, was indepen-
dent of the sentence length, and varied only within
relatively small margins (3.49 £ 0.30 s), while the
response duration ¢ was proportional to the sen-
tence length (+964 ms per second sentence length).
In addition, the onset dispersion dy was indepen-
dent of the sentence length, while ¢, increased by
320 ms per second stimulation length. d, was al-
ways shorter than d; (3.18 vs. 3.62 s), indicating a
slightly asymmetric HR. Thus, it appears feasible
to separate neuronal from vascular parameters by
this estimation context. The model applied here,
however, is a gross simplification of physiological
processes underlying the HR, and needs to be en-
hanced whenever more information about the
neurono-vascular coupling becomes available.

3.3. Modeling multiple responses

As a final example, we selected an experiment in
human working memory, where multiple HRs per
trial are expected. Subjects were shown a cue set of
3-6 letters. After a variable delay length (2.0-7.0 s)
a probe letter appeared, and the subject was asked
to respond via a button press whether the probe
letter belonged to the previously presented set. An
experimental run consisted of 48 different combi-
nations, subjects completed 4 runs.

As a model function g(-) we set up of a sum of
two Gaussian functions:

¢(t.8) = foexp [—“;Tf”]
+ pyexp —%]. (13)

Because of the HR dispersion, cue and probe
phase responses merge for short delay times.
Modeling each trial separately would lead to
biased estimates, so here, we included the whole
timeseries in the model. Unlike previous examples
with separate modeling and analysis stages,
parameters f were now directly set up as functions
of the stimulation context of a given trial.
Results for two sample regions are shown in
Fig. 2. Because we modeled the whole timeseries,
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Fig. 2. Activated brain regions in a fMRI experiment on working memory (left). A few trials from the (spatially averaged) timecourse
of the signal in two sample regions are shown on the right. Dotted lines denote the visual stimulation. Note the variable delay time
between cue and probe phase. The thick dots correspond to the measurements, and the black lines to the estimated waveforms.

GOF values were not as high (0.70-0.95) as in the
first example, however, confidence limits as de-
rived in Section 2.3 still proved to be small enough
to allow drawing several conclusions. Both regions
were active in both phases: for the cue phase in the
supplementary motor area (SMA), a marked de-
pendency of the gain on the set size was deter-
mined, while the probe phase response was
independent of the set size manipulation in both
areas. Not surprisingly, the motor cortex (MCp)
was predominantely active during the probe phase,
were a motor response was requested. The time
difference between cue and probe phase response
matched the delay time manipulation with a slope
of 1.015.

4. Conclusion

We proposed a non-linear regression context to
model the hemodynamic response in ER—-fMRI. A
Gaussian function fits well to single responses, and
parameters of this function (i.e. gain, lag and dis-
persion) may be assigned a physiological meaning,
which are readily compared with experimental
stimulation parameters. The application of this
model was illustrated in three variants using recent
fMRI experiments.

The choice of the Gaussian function is heuristic:
whenever a deeper understanding about the
physiological properties underlying the hemody-

namic response is available, any functional rela-
tion may be embedded within this context.
However, in closely timed event-related experi-
ments, usually a few timepoints per trial (6-20) are
recorded, so the number of parameters of a model
function are limited. Note that we modeled linear
relations between stimuli and HR parameters only.
First results about a non-linear response beha-
viour are available (Robson et al., 1998, Vazquez
and Noll, 1998), but for longer stimulus durations
than those used in our experiments. All of the
three variants proposed here are readily extendible
to detect and model non-linear behaviour.
Increasingly complex experimental designs re-
quire more elaborate statistical procedures to
quantitatively compare stimulus and response.
Our non-linear modeling context offers a high de-
gree of flexibility. It may serve as another tool to
face the challenge of understanding brain function.
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