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Abstract. Spatial and temporal correlations which affect the signal
measured in functional MRI (fMRI) are usually not considered simulta-
neously (i.e., as non-independent random processes) in statistical meth-
ods dedicated to detecting cerebral activation. We propose a new method
for modeling the covariance of a stationary spatio-temporal random pro-
cess and apply this approach to fMRI data analysis. For doing so, we
introduce a multivariate regression model which takes simultaneously
the spatial and temporal correlations into account. We show that an ex-
perimental variogram of the regression error process can be fitted to a
valid nonseparable spatio-temporal covariance model. This yields a more
robust estimation of the intrinsic spatio-temporal covariance of the error
process and allows a better modeling of the properties of the random
fluctuations affecting the hemodynamic signal. The practical relevance
of our model is illustrated using real event-related fMRI experiments.

1 Introduction

When analyzing data from functional Magnetic Resonance Imaging (fMRI), ac-
curate detection of human cerebral activation raises many issues concerning not
only the spatial localization of activated regions [1,2,3,4], but in addition the
spatio-temporal properties of these regions [5]. An adequate modeling of the
spatial and temporal correlations which affect the measured signal is mandatory
[1,2,3,4,5,6] and models of spatio-temporal random processes are increasingly
accounted for in statistical analyses. The hypotheses underlying these models
must reflect as accurately as possible the properties of the measured data (e.g.,
spatio-temporal stationarity) to ensure a robust detection of the activation sig-
nal.

In this work, we focus on the analysis of fMRI time-series based on multivari-
ate regression, as an original extension of the univariate regression widely used
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in the functional brain mapping literature. This multivariate approach allows to
consider spatial and temporal correlations simultaneously. We introduce a new
method for modeling the covariance of a stationary spatio-temporal random pro-
cess. The proposed covariance model is nonseparable in time and space, which
allows a better modeling of the intrinsic properties of the hemodynamic signal.

In Sect. 2, we introduce the multivariate regression model and show that the
spatio-temporal covariance of the error process is required when making statis-
tical inference from fMRI data. Theoretical results that allow defining classes
of nonseparable spatio-temporal covariance models are given in Sect. 3. The
proposed model is then applied to real data (Sect. 4) and discussed (Sect. 5).

2 Multivariate Regression Model

2.1 Definition

Let yi be the T -vector corresponding to the fMRI time-series measured in voxel
i (usually, preprocessed data). Denote by X a (T, P ) matrix where each of
the P columns of X is called a “regressor”, which is either determined by the
experimental design (“regressors of interest”) or represents confounds (“dummy
regressors”). Let εi be the T -vector of error (or residual) terms. The multivariate
regression model can be written as follows:

y1

...
yi

...
yN

 =

X 0 . . . 0
0 X . . . 0
...

. . . 0
0 0 . . . X




β1

...
βi

...
βN

+


ε1

...
εi

...
εN

 or Y = (IN ⊗ X)β + ε , (1)

where N is the number of voxels included in the analysis, I is the identity matrix,
Y and ε are NT -vectors, (IN ⊗X) is a (NT, NP ) matrix and β is a NP -vector
of regression coefficients. ⊗ denotes the Kronecker product. We further assume
that ε is a multidimensional stationary random process with:

– E[ε] = 0, where E[.] denotes the expectation,
– var[ε] = σ2Ω, where Ω is the (NT, NT ) covariance matrix of the errors and

σ2 is the variance at the origin.

Solving (1) consists in deciding whether Y represents an activation signal, by
estimating the coefficients β (Sect. 2.2) and determining using a statistical test
whether they contribute significantly to predicting the signal Y (Sect. 2.3).

2.2 Estimating the Regression Coefficients

β is most frequently estimated using ordinary least-squares (OLS) as follows:

β̂ =
[
(IN ⊗ X)t(IN ⊗ X)

]−1 (IN ⊗ X)tY = PY , (2)
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where t denotes the transpose. However, OLS estimation relies on the assumption
that var[ε] = σ2INT , whereas we have assumed that var[ε] = σ2Ω (Sect. 2.1).
Nevertheless, β̂ is an unbiased estimate of β provided var[β̂] takes the covariance
matrix Ω into account as follows [7, p. 114]:

var[β̂] = σ2PΩP t . (3)

2.3 Statistical Tests

Statistical tests determine whether q 6 P regression coefficients contribute sig-
nificantly to predicting the signal Y . They rely on a null hypothesis of the general
form H0 : Aβ = C, where A is a known (q, NT ) matrix of rank q and C is a
known q-vector. The following test value F is usually used to test H0:

F =
1
q

(
Aβ̂ − C

)t [
A var[β̂]At

]−1 (
Aβ̂ − C

)
.

The null distribution of F is well approximated by an F -distribution with q and
ν degrees of freedom, where ν is a number of degrees of freedom reflecting the
amount of spatio-temporal correlations affecting the data. To calculate F , it is
clear from (3) that the covariance matrix Ω has to be known or estimated.

3 Estimating the Covariance Matrix of the Residuals

3.1 Modeling the Covariance of a Spatio-temporal Process

Denote by {E(s, t); s ∈ D ⊂ IRd, t ∈ IR+} a spatio-temporal stationary random
process measured on a regular lattice (s1, t1), . . . , (sN , tT ) (s: spatial coordinate;
t: temporal coordinate). In practice, E corresponds to the residual process ε of
model (1) and the spatial dimension is d = 3. It is assumed that E satisfies the
following regularity condition:

var[E(s, t)] < ∞ for all s ∈ D and t > 0 ,

and the covariance function of E is defined by:

cov[E(s, t), E(s′, t′)] = C(s − s′, t − t′) = C(h, u) ,

where C only depends on the spatial lag h = s−s′ and the temporal lag u = t−t′.

Spatio-temporal Variogram To model the covariance C, it is often convenient
to estimate the function var[E(s, t)−E(s′, t′)] from the sampled process E. This
function is called the variogram [8] and is independent from the mean of E. The
variogram is related to the covariance function C by:

var[E(s, t)− E(s′, t′)] = 2 (C(0, 0)− C(h, u)) . (4)
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Valid Models for the Theoretical Covariance Ω It is usually not possible
to estimate Ω directly from a single fMRI time-series. Nevertheless, Ω can be
estimated if a parametric covariance model C�(h, u) is available (θ: vector of
unknown parameters). Such a parametric model must be valid, i.e., the result-
ing covariance function C must be positive-definite. Existing criteria for defining
valid classes of parametric spatio-temporal models [8] are based upon Bochner’s
theorem [9], which expresses the spectral density G(ω, τ) of the spectral distri-
bution function of the covariance C(h, u) as follows:

C(h, u) =
∫∫

eih!+iuτG(ω, τ) dω dτ ,

where ω: spatial frequency and τ : temporal frequency. If the two conditions

C1 :
∫

ρ(ω, u) du < ∞ and K(ω) > 0 C2 :
∫

K(ω) dω < ∞ (5)

are satisfied, with

K(ω) ≡
∫

G(ω, τ)dτ and ρ(ω, u) ≡
∫

eiuτG(ω, τ)dτ∫ G(ω, τ)dτ
,

then Cressie and Huang [8] showed that

C(h, u) ≡
∫

eih!ρ(ω, u)K(ω) dω (6)

is a valid continuous stationary spatio-temporal covariance function.
Classes of parametric models can then be defined by designing functions

ρ and K which satisfy C1 and C2. The covariance model C� is derived using
(6) and Ω is finally estimated from C�(h, u) [8]. To estimate the parameters
θ in practice, a variogram model var� is obtained from C� using (4) and the
experimental variogram computed from the sampled process E is fitted to this
model using a generalized least-squares minimization method.

3.2 A Nonseparable Spatio-temporal Model

In previous works, we studied the residuals obtained using univariate models. We
showed that the covariance of temporal errors could be modeled by a “damped
oscillator” process C(u) ≡ exp(−a|u|) cos(αu) [10]. We also showed that the
spatial error process could be modeled by a first-order autoregressive process
[4,6]. However, all these models considered spatial and temporal correlations as
independent phenomena, whereas experimental variograms suggest that spatio-
temporal covariance processes are likely to be nonseparable. We therefore intro-
duce a nonseparable spatio-temporal model defined by:

ρ(ω, u) =
bd/2

(c|u|+ b)d/2
exp

[
− ||ω||2
4(c|u|+ b)

+
||ω||2
4b

]
exp

[−δu2
]
cos(αu) (7)
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and K(ω) = exp
[
−||ω||2

4b

]
, (8)

with δ > 0, b > 0 and c > 0. We can prove that these functions satisfy conditions
C1 and C2 given by (5). We can therefore conclude that the function C(h, u)
defined by (6), using (7) and (8), is a valid covariance model for the process E.
A parametric model for C(h, u) is then derived following [8]:

C�(h, u) = σ2 exp
[−a|u| − b||h||2 − c|u|.||h||2] cos(αu) , (9)

θ = {a, b, c, α, σ2}, a > 0: scaling parameter of time, α: temporal frequency pa-
rameter, b > 0: scaling parameter of space, c > 0: spatio-temporal interaction
parameter and σ2 = C�(0, 0). In the particular case c = 0, C�(h, u) is a separable
spatio-temporal model, the temporal component exp [−a|u|] cos(αu) corresponds
to the damped oscillator model and the spatial component exp

[−b||h||2] corre-
sponds to a Gaussian model.

To estimate θ in practice, we account for the so-called “nugget” effect (i.e.,
microscale variations of the error process that may cause a discontinuity at the
origin [11]) by considering the spatio-temporal variogram model:

var�[E(s, t)− E(s+ h, t+ u)] ={
0 if h = 0 and u = 0
2σ2

(
1− exp [−a|u| − b||h||2 − c|u|.||h||2] cos(αu)

)
+ n2 otherwise .

n2 corresponds to the variance of an additive white noise which accounts for
small variations of E at the origin.

4 Application: Event-Related Working Memory
Experiment

A real event-related experiment was selected to illustrate the usefulness of the
proposed model. Subjects performed an item-recognition task [12]. Each trial
consisted of a list of 3 to 6 uppercase target letters, presented simultaneously
for 2 s, followed by a variable (from 2 s to 7 s) blank delay period, during
which subjects had to remember the letters. After this delay a probe letter
was displayed for 1 s. Subjects were asked to respond whether the probe letter
belonged to the previously presented list. A variable inter-trial interval followed
to complete constant duration (18 s) single trials. Eight functional axial slices
were acquired parallel to the AC-PC plane (TE 30 ms, TR 1 s, thickness 5 mm,
3 mm gap) using a Bruker Medspec 30/100 3T MR system.

The experiment was described inX (see (1)) using separate regressors related
to the cue, delay and probe phase, convolved with a Gaussian function (lag 5.5 s,
dispersion 1.8 s) to model the smoothness of the hemodynamic response. Three
regression models were compared: (M1) the SPM99 univariate model, (M2) the
univariate regression model correcting for temporal correlations using a damped
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oscillator model [10] and (M3) the proposed multivariate model. Assignment of
significance was achieved by testing H0 : β = 0 on a voxel-wise basis.

Table 1 shows estimated covariance parameters obtained using M3. Note that
the model was not separable in time and space (c > 0). Figure 1 shows sample
activation maps. Comparing the activation amount, M3 ranged between M1
and M2, with much more focused activation. Note that the strip-like activation,
which was presumably motion-related, was not rendered as significant by the
nonseparable spatio-temporal model.

Table 1. Covariance function parameters for slices 5 to 7.

Slice Covariance Function Parameters
σ2 a b c α n2

5 18104 0.410 1.055 0.230 0.458 0.000
6 14015 0.313 0.962 0.145 0.388 0.007
7 12462 0.329 0.935 0.172 0.474 0.000

M2M1 M3

Fig. 1. For slice 6, activation maps (z-scale: 4-12) obtained for the probe phase
and overlaid onto T1-weighted anatomical scans.

5 Discussion

In this work, we introduced a new method for modeling the covariance of a
stationary spatio-temporal random process and applied this approach to fMRI
data analysis. To know whether a parametric covariance model is valid a priori,
conditions C1 and C2 can be used in practice and the difficulty lies in deriving the
covariance C following (6). The proposed nonseparable model was based upon
both [8] (i.e., Gaussian model in space) and our previous work [10] (i.e., damped
oscillator model in time). This approach is powerful in that it accounts for spatio-
temporal interaction, which makes the model more flexible than previous models
which considered spatial and temporal correlations separately. This is likely to
yield a better modeling of the variance of a random process.
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The proposed model was used in the framework of multivariate regression
analysis and validated on real fMRI data. For doing so, we introduced a mul-
tivariate regression model taking simultaneously the spatial and temporal cor-
relations into account. Estimating the regression coefficients β̂ requires no ex-
tra computational cost compared to univariate analysis. Indeed, (2) reduces to
[I ⊗ (XtX)−1Xt]Y = I ⊗ [(XtX)−1Xtyi], which is equivalent to OLS esti-
mation in univariate regression. Note that the null hypothesis given in Sect. 2.3
can be tested using either a global test on all estimated β̂ or a local test (e.g., on
each voxel separately) [13]. In the latter case A selects the coefficients of interest
for the voxel under study.

The activated regions obtained using the spatio-temporal model had a lesser
extent than those obtained using only univariate models, for a given statistical
threshold. The reasons for these differences will have to be investigated further,
to better characterize the sensitivity and the specificity of the proposed multi-
variate approach.
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