Spatio-temporal Covariance Model
for Medical Images Sequences:
Application to Functional MRI Data

Habib Benali', Mélanie Pélégrini-Issac?, and Frithjof Kruggel?

1 Unité 494 INSERM, CHU Pitié-Salpétriere,
91, boulevard de I’'Hopital, F-75634 Paris Cedex 13, France
Habib.Benali@imed. jussieu.fr
2 Unité 483 INSERM, 9, quai Saint-Bernard, F-75005 Paris, France
Melanie.Pelegrini@imed. jussieu.fr
3 Max-Planck Institute of Cognitive Neuroscience, Stephanstrafe 1,
D-04103 Leipzig, Germany
kruggel@cns .mpg.de

Abstract. Spatial and temporal correlations which affect the signal
measured in functional MRI (fMRI) are usually not considered simulta-
neously (i.e., as non-independent random processes) in statistical meth-
ods dedicated to detecting cerebral activation. We propose a new method
for modeling the covariance of a stationary spatio-temporal random pro-
cess and apply this approach to fMRI data analysis. For doing so, we
introduce a multivariate regression model which takes simultaneously
the spatial and temporal correlations into account. We show that an ex-
perimental variogram of the regression error process can be fitted to a
valid nonseparable spatio-temporal covariance model. This yields a more
robust estimation of the intrinsic spatio-temporal covariance of the error
process and allows a better modeling of the properties of the random
fluctuations affecting the hemodynamic signal. The practical relevance
of our model is illustrated using real event-related fMRI experiments.

1 Introduction

When analyzing data from functional Magnetic Resonance Imaging (fMRI), ac-
curate detection of human cerebral activation raises many issues concerning not
only the spatial localization of activated regions [112/3/4], but in addition the
spatio-temporal properties of these regions [A]. An adequate modeling of the
spatial and temporal correlations which affect the measured signal is mandatory
[M2J3J415]6] and models of spatio-temporal random processes are increasingly
accounted for in statistical analyses. The hypotheses underlying these models
must reflect as accurately as possible the properties of the measured data (e.g.,
spatio-temporal stationarity) to ensure a robust detection of the activation sig-
nal.

In this work, we focus on the analysis of fMRI time-series based on multivari-
ate regression, as an original extension of the univariate regression widely used
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in the functional brain mapping literature. This multivariate approach allows to
consider spatial and temporal correlations simultaneously. We introduce a new
method for modeling the covariance of a stationary spatio-temporal random pro-
cess. The proposed covariance model is nonseparable in time and space, which
allows a better modeling of the intrinsic properties of the hemodynamic signal.
In Sect. 2 we introduce the multivariate regression model and show that the
spatio-temporal covariance of the error process is required when making statis-
tical inference from fMRI data. Theoretical results that allow defining classes
of nonseparable spatio-temporal covariance models are given in Sect. Bl The
proposed model is then applied to real data (Sect. H)) and discussed (Sect. [)).

2 Multivariate Regression Model

2.1 Definition

Let y; be the T-vector corresponding to the fMRI time-series measured in voxel
i (usually, preprocessed data). Denote by X a (T, P) matrix where each of
the P columns of X is called a “regressor”, which is either determined by the
experimental design (“regressors of interest”) or represents confounds (“dummy
regressors” ). Let €; be the T-vector of error (or residual) terms. The multivariate
regression model can be written as follows:
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where N is the number of voxels included in the analysis, I is the identity matrix,
Y and € are NT-vectors, (In ® X) is a (NT, N P) matrix and 3 is a N P-vector
of regression coefficients. ® denotes the Kronecker product. We further assume
that € is a multidimensional stationary random process with:

— E[e] = 0, where E[.] denotes the expectation,
— var[e] = 0242, where §2 is the (NT, NT') covariance matrix of the errors and
o? is the variance at the origin.

Solving () consists in deciding whether Y represents an activation signal, by
estimating the coefficients 3 (Sect. 2.2) and determining using a statistical test
whether they contribute significantly to predicting the signal Y (Sect. 23)).

2.2 Estimating the Regression Coefficients

B is most frequently estimated using ordinary least-squares (OLS) as follows:

B=[IxoX)(INn®X)]  (Iy®X)'Y =PY )



Spatio-temporal Covariance Model for fMRI Data 199

where * denotes the transpose. However, OLS estimation relies on the assumption
that var[e] = 02 yr, whereas we have assumed that var[e] = 0262 (Sect. 21)).

Nevertheless, B is an unbiased estimate of 3 provided var [B] takes the covariance
matrix {2 into account as follows [7, p. 114]:

var[8] = 02 PQP" (3)

2.3 Statistical Tests

Statistical tests determine whether ¢ < P regression coefficients contribute sig-
nificantly to predicting the signal Y. They rely on a null hypothesis of the general
form Hy : A3 = C, where A is a known (¢, NT') matrix of rank ¢ and C is a
known g-vector. The following test value F' is usually used to test Hy:

1, ~ ¢ I I
F:E(Aﬁ—C) {Avar[ﬁ]A} (Aﬁ—C).

The null distribution of F' is well approximated by an F-distribution with ¢ and
v degrees of freedom, where v is a number of degrees of freedom reflecting the
amount of spatio-temporal correlations affecting the data. To calculate F', it is
clear from (@]) that the covariance matrix £2 has to be known or estimated.

3 Estimating the Covariance Matrix of the Residuals

3.1 Modeling the Covariance of a Spatio-temporal Process

Denote by {E(s,t); s € D C R, t € R} a spatio-temporal stationary random
process measured on a regular lattice (s1,t1),..., (SN, tr) (s: spatial coordinate;
t: temporal coordinate). In practice, E corresponds to the residual process € of
model (@) and the spatial dimension is d = 3. It is assumed that E satisfies the
following regularity condition:

var[E(s,t)] < oo forall se D and t >0,
and the covariance function of F is defined by:
cov[E(s,t), E(s',t")]| =C(s—§',t —t') =C(h,u) ,

where C only depends on the spatial lag h = s—s’ and the temporal lag u = t—t’.

Spatio-temporal Variogram To model the covariance C, it is often convenient
to estimate the function var[E(s,t)— E(s’,t')] from the sampled process E. This
function is called the variogram [8] and is independent from the mean of E. The
variogram is related to the covariance function C by:

var[E(s, t) — E(s',#)] = 2(C(0,0) — C(h,u)) . (4)
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Valid Models for the Theoretical Covariance {2 It is usually not possible
to estimate {2 directly from a single fMRI time-series. Nevertheless, §2 can be
estimated if a parametric covariance model Cg(h,u) is available (0: vector of
unknown parameters). Such a parametric model must be wvalid, i.e., the result-
ing covariance function C must be positive-definite. Existing criteria for defining
valid classes of parametric spatio-temporal models [8] are based upon Bochner’s
theorem [9], which expresses the spectral density G(w, 7) of the spectral distri-
bution function of the covariance C(h,u) as follows:

C(h,u) = // et TGy 1Y dwdr |

where w: spatial frequency and 7: temporal frequency. If the two conditions
Clz/p(w,u)du<ooand Kw) >0 Cg:/lC(w)dw<oo (5)

are satisfied, with

IC(w)E/g(w,T)dT and p(w,u)%’

then Cressie and Huang [8] showed that

C(h,u) = /eih“’p(w,u)lC(w) dw (6)

is a valid continuous stationary spatio-temporal covariance function.

Classes of parametric models can then be defined by designing functions
p and K which satisfy C; and Cs. The covariance model Cg is derived using
() and 2 is finally estimated from Cg(h,u) [8]. To estimate the parameters
6 in practice, a variogram model varg is obtained from Cg using (@) and the
experimental variogram computed from the sampled process FE is fitted to this
model using a generalized least-squares minimization method.

3.2 A Nonseparable Spatio-temporal Model

In previous works, we studied the residuals obtained using univariate models. We
showed that the covariance of temporal errors could be modeled by a “damped
oscillator” process C(u) = exp(—alu|) cos(au) [10]. We also showed that the
spatial error process could be modeled by a first-order autoregressive process
[4l6]. However, all these models considered spatial and temporal correlations as
independent phenomena, whereas experimental variograms suggest that spatio-
temporal covariance processes are likely to be nonseparable. We therefore intro-
duce a nonseparable spatio-temporal model defined by:

P TG N G
PR = a2 P | T d(clu] + b) T 4b

exp [—0u®] cos(au)  (7)
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and  K(w) = exp [—M} , 8)

4b
with § > 0,5 > 0 and ¢ > 0. We can prove that these functions satisfy conditions
C; and Cy given by (@). We can therefore conclude that the function C(h,u)
defined by (@), using () and (§), is a valid covariance model for the process E.
A parametric model for C(h,u) is then derived following [8]:

Co(h,u) = o® exp [~alu| — bl[h||* — clul-||h]|*] cos(au) , 9)

0 = {a,b,c,a,0%}, a > 0: scaling parameter of time, a: temporal frequency pa-
rameter, b > 0: scaling parameter of space, ¢ > 0: spatio-temporal interaction
parameter and 02 = Cg(0, 0). In the particular case ¢ = 0, Co(h, u) is a separable
spatio-temporal model, the temporal component exp [—a|u|] cos(au) corresponds
to the damped oscillator model and the spatial component exp [—b||h[|?] corre-
sponds to a Gaussian model.

To estimate 6 in practice, we account for the so-called “nugget” effect (i.e.,
microscale variations of the error process that may cause a discontinuity at the
origin [IT]) by considering the spatio-temporal variogram model:

varg[E(s,t) — E(s+ h,t+ u)] =

0 ifh=0and u=0
202 (1 — exp [—alu| — b]|h|[* — c|ul.||h|[*] cos(au)) +n?  otherwise .

n? corresponds to the variance of an additive white noise which accounts for

small variations of E at the origin.

4 Application: Event-Related Working Memory
Experiment

A real event-related experiment was selected to illustrate the usefulness of the
proposed model. Subjects performed an item-recognition task [12]. Each trial
consisted of a list of 3 to 6 uppercase target letters, presented simultaneously
for 2 s, followed by a variable (from 2 s to 7 s) blank delay period, during
which subjects had to remember the letters. After this delay a probe letter
was displayed for 1 s. Subjects were asked to respond whether the probe letter
belonged to the previously presented list. A variable inter-trial interval followed
to complete constant duration (18 s) single trials. Eight functional axial slices
were acquired parallel to the AC-PC plane (TE 30 ms, TR 1 s, thickness 5 mm,
3 mm gap) using a Bruker Medspec 30/100 3T MR system.

The experiment was described in X (see () using separate regressors related
to the cue, delay and probe phase, convolved with a Gaussian function (lag 5.5 s,
dispersion 1.8 s) to model the smoothness of the hemodynamic response. Three
regression models were compared: (M1) the SPM99 univariate model, (M2) the
univariate regression model correcting for temporal correlations using a damped
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oscillator model [10] and (M3) the proposed multivariate model. Assignment of
significance was achieved by testing Hy : 8 = 0 on a voxel-wise basis.

Table[dl shows estimated covariance parameters obtained using M3. Note that
the model was not separable in time and space (¢ > 0). Figure[l shows sample
activation maps. Comparing the activation amount, M3 ranged between M1
and M2, with much more focused activation. Note that the strip-like activation,
which was presumably motion-related, was not rendered as significant by the
nonseparable spatio-temporal model.

Table 1. Covariance function parameters for slices 5 to 7.

Slice Covariance Function Parameters

o? a b c « n?

5 18104 0.410 1.055 0.230 0.458 0.000
14015 0.313 0.962 0.145 0.388 0.007
7 12462 0.329 0.935 0.172 0.474 0.000

(@]

Fig. 1. For slice 6, activation maps (z-scale: 4-12) obtained for the probe phase
and overlaid onto T3-weighted anatomical scans.

5 Discussion

In this work, we introduced a new method for modeling the covariance of a
stationary spatio-temporal random process and applied this approach to fMRI
data analysis. To know whether a parametric covariance model is valid a priori,
conditions C; and Csy can be used in practice and the difficulty lies in deriving the
covariance C following (@). The proposed nonseparable model was based upon
both [§] (i.e., Gaussian model in space) and our previous work [T0] (i.e., damped
oscillator model in time). This approach is powerful in that it accounts for spatio-
temporal interaction, which makes the model more flexible than previous models
which considered spatial and temporal correlations separately. This is likely to
yield a better modeling of the variance of a random process.
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The proposed model was used in the framework of multivariate regression
analysis and validated on real fMRI data. For doing so, we introduced a mul-
tiwariate regression model taking simultaneously the spatial and temporal cor-
relations into account. Estimating the regression coefficients 3 requires no ex-
tra computational cost compared to univariate analysis. Indeed, (@) reduces to
[I® (X'X)'1XYY = I®[(X'X) ' X"'y,], which is equivalent to OLS esti-
mation in univariate regression. Note that the null hypothesis given in Sect. 2.3]
can be tested using either a global test on all estimated 3 or a local test (e.g., on
each voxel separately) [13]. In the latter case A selects the coefficients of interest
for the voxel under study.

The activated regions obtained using the spatio-temporal model had a lesser
extent than those obtained using only univariate models, for a given statistical
threshold. The reasons for these differences will have to be investigated further,
to better characterize the sensitivity and the specificity of the proposed multi-
variate approach.
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