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1 Introduction

The inverseproblemin EEG and MEG amountsto
finding a realistic sourcedistribution in the human
brainfor a given setof field obserationson the sur
faceof the head. This requiresthe repeatedsolution
of theforwardproblem|.e.,thesimulationof thefield
propagationfor a given dipolar sourcein the brain
using a volume-conductiomrmodel of the head. For
themostrealisticmodelling thedifferenttissueshave
to be sgmentedand assignedndividual conductv-
ity tensormaterialparametersLayerslike the skull
or fibroustissuedlike brain white matterare knovn
to be anisotropicup to a ratio of 1:10. One of the
mostsensitve parameterss the anisotropicconduc-
tivity of the skull. The identification of the cere-
brospinalfluid (CSF)-skullboundarybasedon T1-
weightedMRI (T1-MRI) is problematicand Proton-
Density-Weighting(PD-MRI) is mostsuitablefor this
task. In this paperwe will outline how individual-
ized high resolutionfinite element(FE) models,ex-
ploiting multimodal MR-imaging protocols,are au-
tomatically constructed. We presentan improved
sgmentationof the skull througha combinationof
T1- and PD-MRI. The structuralinformation about
the white matterfibre directionsare won throughan
MR-diffusion tensorimaging protocol[1]. The use
of fasttechniquedo solwe the large sparsesystems
of linear equationsarising from the 3D FE method
is necessaryin order to have more acceptableso-
lution times with high resolutionanisotropicmod-
els and inverse sourcelocalization. Preconditioned
Krylov-subspace-methe@reamongthemostattrac-
tive iteratve methods. We will compareincomplete
threshold-actorizaion- with multigrid- precondition-
ers,thelatteris known to be an optimalmethodwith
respectto the operationcountand memory Since
thegeometricconstructiorof agrid-hierarchyis diffi-
cult (we only have tensormeasurementer thefinest
level), we usea purealgebraicmultigrid (AMG) pre-
conditioner

2 Methods

2.1 Segmentation and mesh generation

The following description summarizes the
segmentation/rgistraton+esults obtained in [2].
A voxel-similarity basedaffine registration without
pre-sgmentation using a cost function basedon
mutualinformationwasusedto registerthe PD-MRI
onto the correspondingl'1-MRI. The maximization
of the mutual information was carried out using a
multilevel-donvnhill-simplex  approach exploiting
Freudenthal-triangui@an, which turnedout to bethe
mostaccurateandthe fastestmethodcomparedo a
geneticoptimization approachor Pawells direction
setmethod. Initial skull surfacesegmentationsvere
calculatedusinga fuzzy-C-meanslassificatioralgo-
rithm which correctdor intensityinhomogeneitien
the MR-images. Within this procedurethe sgmen-
tationof theinnerskull surfacewasobtainedrom the
PD-imagewhereasfor the outer skull surface both
imagemodalitieswereexploited. Theinitial surfaces
weretriangulatedandtreatedasa deformablemodel
to obtain the final skull-sggmentationresult. The
segmentationof CSE white and grey matter was
carriedoutfollowing [3].

Motivatedby the resultsof [4], a voxel-basedmesh-
generator[5] with and without surface-smoothing
(node-shift) was developed to generate surface-
smoothedhexahedraFE-mesheswvhich better take
into account the result of the accurate skull-
segmentation.

2.2 Fast solver methodsfor FE-equations

A descriptionof the multigrid-methodasa precondi-
tionerwithin aKrylov-subspacenethodcanbefound
in [7]. [8] and[9] focuson incompletefactorization
preconditionersindtheir parallelization.

The condition number of the symmetric positive-
definitegeometry-matrid4 of thelinearequatiorsys-
tem A® = J, with the given sourceJ andthe un-



Algorithm 1 Setup process for AMG: Setugf,!)
if |w)| > COARSEGRID then
Splitw; into disjoint setsve andwy

Table 1:Condition numbers of the different models.

Setw;+1 = we eigenvalue condition
Define the interpolation operatét, R = PT Model Iargest‘ smallest number

A1 = RAP Rea-ns-cubd 14.282 | 0.506 + 10~° | 2.822 x 107

Setupl;1,+1) Rea-cube | 13.570 | 0.494 x 100 | 2.742 % 107
else o 4Sp-nscu-isd 8.114 | 0.132 100 | 6.147 % 10°

Perform anL.L'-factorization of4, 4Sp-nscu-an| 8.114 | 0.126 # 105 | 6.439 = 10°
COARSELEVEL = | 4Sp-cu-iso | 7.74 | 0.13%10° | 5.85 * 10°

end if 4Sp-cu-ani | 7.74 | 0.12%10~° | 6.09  10°
4Sp-tet-iso | 97.28 | 0.62%107° | 1.57 % 107

known potential®, is of orderx(4) = O(h™2?), 4Sp-tet-ani | 42.83 | 0.56 x 10> | 7.71 % 10°

whereh is the mesh-size of the FE mesh. A large con-
dition number limits the accuracy and performance
of Krylov-methods so that the goal of a precondi-
tioner, M, is the reduction of(M ! A) for the pre-
conditioned equation systeM 1 A® = M~1J. A
second requirement is that it is cheap to solve lin-
ear systems\lz; = r; (z;: residual for the pre-
conditioned systeny;;: residual), needed in thg”
step of the iterative Krylov method. Up to now,
we used “matrix-pattern” factorization precondition-
ers for the conjugate gradient (CG) method. The
diagonal scaling or Jakobi-preconditioning chooses
M = D with D the diagonal entries ofi. The
IC(0)-factorization preconditioner exploits an incom-
plete Cholesky-decompositia/ = LL! of A with
zero fill-in, i.e., L has the same non-zero-pattern as
A. Such factorizations are “blind” to numerical val-

ues because elements that are dropped depend only

on the structure ofd. In this paper, we tested a
threshold-technique where elements are dropped ac
cording to their magnitude, the incomplei® L fac.
with threshold value (ILDLT(¢€). The performance

Algorithm 2 V(vg,vp)-cycle: AMG(A4;, uy, f1,1)
ifl = COARSELEV EL then
w; = (LLY) "1 f; (forward-back sweep)
else
Relaxvy times onAu; = f;
Calculate the defeat; = f; — Ay,
Restrict the defeaf; 1 = Rd
Set’U,l_H_ =0
Apply AMG(Ai41,u141,d141,1+1)
Prolongate the correctionn = Puj41
Update the solutiom; = u; + s;
Relaxvg times on4;u; = fj
end if

of the ILDLT(¢)-CG method will be compared with
an ILDLT (¢) preconditioned symmetric variant of the
Quasi-Minimal Residual (QMR) algorithm derived
in [9]. For factorization preconditioners, the system
Mz; = r; can be solved by a forward-back sweep.
The multigrid method require® (N logn~!) arith-
metical operations to reduce the initial error by the
factor n (N: problem size)[6]. The Multigrid-
preconditioner leads to a condition number®f1)

[7]. The number of iterations is also independent of
h. For the algebraic multigrid, these result have not
yet been proved but they are accepted as ‘empirical
results’. In the following we are concerned with the
construction of an AMG preconditionerd;, = A

can be interpreted as an FE-grid, i.e., the diagonal en-
ies of the matrixA;, are related to grid points iy,

and off-diagonal entries are related to edges in an FE-
mesh. First we investigate the coarsening process.
Motivated from an FE mesh, the grid pointg (or
equivalently the matri¥;) can be split into two dis-
joint subsetsy;, = we U wp such that there are (al-
most) no direct connections between any two coarse
grid nodes and the resulting number of coarse grid
nodes is as large as possible (for more detailed infor-
mation sed10]). Next the prolongation operatd?
from a coarser to a finer grid has to be defined. The
most simple prolongation and the one which turned
out to be most efficient in our simulations is the ‘equal
distribution’ which is given by

1 1=7 €Ewc
(P)Z]: @ iEwF,jEwé
0 otherwise

with wé = N'Nwc andN* = {Jl |aij| > 0 - |ai|}-



Figure 1. Skull surfacesggmentationresultthrough
multimodal MR-imaging presentedon underlying
MR-images. a) T1-weightedb) registeed PD-
weighted

Therestrictionoperatoiis definedoy R := P With
thesedefinitions,the coarsegrid operatord g is real-
ized by the classicalGalerkinmethodAy = RA,P
andarecursve applicationof the above stepsimme-
diately leadsto a multilevel setup(Alg. 1). Finally
anappropriatesmootheiis definedby a Gaul3-Seidel
methodandthereafterusualmultigrid cycleis given
in Alg. 2. For the m-V(vp,vg) cycle AMG precon-
ditioned CG method,the preconditioningoperation
Mz; = r;isequvalenttom callsof AMG(A4,z;,7;,1)
wherethe currentz; is awaysused.

3 Reaults

3.1 Segmentation and mesh generation

The resultsobtainedby the proceduredescribedin
Section2.1areshavn in theFig. 1 and2a.

3.2 Solver-comparison

The isotropic conductity valuesof the 5-tissuere-
alistic headmodelwere chosenasfollows (in S/m):
skin0.33, skull0.0042, CSF1.0, grey matter).33 and
white matter0.14. Isotropic (Rea-cube)nd node-
shifted(Rea-ns-cube2mmcubemeshesveregener
ated. A 4-layerspheremodel (cond. 0.33, 0.0042,
1.0 and 0.33) was constructedand meshedwith
2mm isotropic (4Sp-cu-iso)and 2mm node-shifted
(4Sp-nscu-isoxube elements. A radial:tangential
anisotroy of 1:10wasassignedor the "skull" layer
(4Sp-nscu-ani4Sp-cu-ani).A geometry-basethesh
generatorwas usedto generatea tetrahedralmesh

Figure2: a) Axial layer of the node-shifted~E-mesh
of a realistic 5-tissuemodel. b) Isopotential-lines
from—2uV to+2uV ona coronallayer of thenode-
shiftedFE-mesh.

for the isotropic (4Sp-tet-iso)and anisotropic(4Sp-
tet-ani) 4-layerspheremodel. After settingup the
geometrymatrices,the condition numbers,defined
as the quotientof largestover smallesteigewvalue,
were calculatedto obtain an impressionabout the
ill-posednesausing the algorithmsdescribedin [9].
The solverperformanceestswere carriedout on a
1-processemachine(CPU: MIPS R10000,180MHz,
FPU: MIPS R10010,2MB sec.cache32KB instruc-
tion and 32KB datacache). The startingvector for
all solverswas0. Sincethe solverperformancedi-
agramswerequite comparabldor all testedequation
systemspnly two representate figuresarepresented
(Fig. 3 and4). Theselectedraluesof § in the AMG-
ande in the threshold-casare indicatedbehindthe
preconditionerthe numberof iterationscanbe found
behindthe Krylov-method. We usedthe 1-V(1,1)-
cycle-AMG-preconditioner The setup-timedor the
preconditionersverengglectedsinceit hasto be per
formed only oncefor the inverseproblem. To give
an example,the AMG in Fig. 3 used6 levels with
sizes32375257929,8613,2146,1126and687. The
setup-timewas80.2 seconds.The setup-timefor the
ILDLT(1e-3)-preconditionavas37.8seconds.

4 Discussion

Thesubjectin Fig. 1 shavs anabove-averageamount
of CSE A segmentationof the inner skull surface
basedon only the T1-weightedMRI would be es-
pecially flawedin suchcasesandcouldleadto large
mislocalizationg11].
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