
Improved tissue modelling and fast solver methods for high resolution
FE-modelling in EEG/MEG-source localization

C.Wolters
��� �

, S.Reitzinger
�
, A.Basermann

�
, S.Burkhardt

��� �
,U.Hartmann

�
, F.Kruggel

�
and

A.Anwander
�

�
Max-Planck-Instituteof CognitiveNeuroscience, Leipzig, Germany,

�
Max-Planck-Institutefor Mathematicsin

theSciences,Leipzig, Germany,
�
SFBF013,“Numerical andSymbolicScientificComputing”,J.Kepler

University, Linz,Austria,
�
C&C Research Laboratories,NECEuropeLtd.,St.Augustin,Germany,

1 Introduction

The inverseproblemin EEG and MEG amountsto
finding a realistic sourcedistribution in the human
brain for a givensetof field observationson thesur-
faceof thehead.This requiresthe repeatedsolution
of theforwardproblem,i.e.,thesimulationof thefield
propagationfor a given dipolar sourcein the brain
usinga volume-conductionmodelof the head. For
themostrealisticmodelling,thedifferenttissueshave
to be segmentedandassignedindividual conductiv-
ity tensormaterialparameters.Layerslike the skull
or fibrous tissueslike brain white matterareknown
to be anisotropicup to a ratio of 1:10. One of the
mostsensitive parametersis the anisotropicconduc-
tivity of the skull. The identification of the cere-
brospinalfluid (CSF)-skullboundarybasedon T1-
weightedMRI (T1-MRI) is problematicandProton-
Density-Weighting(PD-MRI) is mostsuitablefor this
task. In this paperwe will outline how individual-
ized high resolutionfinite element(FE) models,ex-
ploiting multimodal MR-imagingprotocols,are au-
tomatically constructed. We presentan improved
segmentationof the skull througha combinationof
T1- and PD-MRI. The structuralinformation about
the white matterfibre directionsarewon throughan
MR-diffusion tensorimagingprotocol [1]. The use
of fast techniquesto solve the large sparsesystems
of linear equationsarising from the 3D FE method
is necessaryin order to have more acceptableso-
lution times with high resolutionanisotropicmod-
els and inversesourcelocalization. Preconditioned
Krylov-subspace-methods areamongthemostattrac-
tive iterative methods.We will compareincomplete
threshold-factorization- with multigrid- precondition-
ers,thelatter is known to beanoptimalmethodwith
respectto the operationcount and memory. Since
thegeometricconstructionof agrid-hierarchyis diffi-
cult (weonly have tensormeasurementsfor thefinest
level), we usea purealgebraicmultigrid (AMG) pre-
conditioner.

2 Methods

2.1 Segmentation and mesh generation

The following description summarizes the
segmentation/registration-results obtained in [2].
A voxel-similarity basedaffine registrationwithout
pre-segmentation using a cost function basedon
mutualinformationwasusedto registerthePD-MRI
onto the correspondingT1-MRI. The maximization
of the mutual information was carried out using a
multilevel-downhill-simplex approach exploiting
Freudenthal-triangulation, which turnedout to bethe
mostaccurateandthe fastestmethodcomparedto a
geneticoptimizationapproachor Powells direction
setmethod. Initial skull surfacesegmentationswere
calculatedusinga fuzzy-C-meansclassificationalgo-
rithm which correctsfor intensityinhomogeneitiesin
the MR-images.Within this procedure,thesegmen-
tationof theinnerskull surfacewasobtainedfrom the
PD-imagewhereasfor the outer skull surface both
imagemodalitieswereexploited.Theinitial surfaces
weretriangulatedandtreatedasa deformablemodel
to obtain the final skull-segmentationresult. The
segmentationof CSF, white and grey matter was
carriedout following [3].
Motivatedby the resultsof [4], a voxel-basedmesh-
generator[5] with and without surface-smoothing
(node-shift) was developed to generate surface-
smoothedhexahedraFE-mesheswhich better take
into account the result of the accurate skull-
segmentation.

2.2 Fast solver methods for FE-equations

A descriptionof themultigrid-methodasa precondi-
tionerwithin aKrylov-subspacemethodcanbefound
in [7]. [8] and[9] focuson incompletefactorization
preconditionersandtheir parallelization.
The condition number of the symmetric positive-
definitegeometry-matrix
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known potential
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, is of order 021 ��3&	 4 16587 � 3 ,
where5 is the mesh-size of the FE mesh. A large con-
dition number limits the accuracy and performance
of Krylov-methods so that the goal of a precondi-
tioner, 9 , is the reduction of021:9 7 � �(3 for the pre-
conditioned equation system9;7 � �(�<	 9;7 � � . A
second requirement is that it is cheap to solve lin-
ear systems9>=@? 	 A ? ( =@? : residual for the pre-
conditioned system,

A ? : residual), needed in theBC.ED
step of the iterative Krylov method. Up to now,
we used “matrix-pattern” factorization precondition-
ers for the conjugate gradient (CG) method. The
diagonal scaling or Jakobi-preconditioning chooses9 	 �

with
�

the diagonal entries of
�

. The
IC(0)-factorization preconditioner exploits an incom-
plete Cholesky-decomposition9 	 ,F, . of

�
with

zero fill-in, i.e., , has the same non-zero-pattern as�
. Such factorizations are “blind” to numerical val-

ues because elements that are dropped depend only
on the structure of

�
. In this paper, we tested a

threshold-technique where elements are dropped ac-
cording to their magnitude, the incomplete, � , . fac.
with threshold valueG (ILDLT( G ). The performance
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Table 1:Condition numbers of the different models.

eigenvalue condition
Model largest smallest number

Rea-ns-cube \^]T_a`CbC` W _ac WedOf \ W 7hg `i_abC`C` f \ Wej
Rea-cube \lki_acem W W _n]�op] f \ W 7hg `i_$mq]�` f \ W j

4Sp-nscu-iso 8.114 W _E\lkC` f \ W 7hr d _E\^]Zm f \ W g
4Sp-nscu-ani bi_E\C\^] W _E\l` dOf \ W 7hr d _n]�kCo f \ W g
4Sp-cu-iso mZ_$mq] W _E\lk f \ W 7hr ci_abCc f \ W g
4Sp-cu-ani mZ_$mq] W _E\l` f \ W 7hr d _ W o f \ W g
4Sp-tet-iso oemZ_a`Cb W _ d ` f \ W 7hr \I_acem f \ W j
4Sp-tet-ani ]�`i_abCk W _ac d(f \ W 7hr mZ_$mi\ f \ W g

of the ILDLT( G )-CG method will be compared with
an ILDLT( G ) preconditioned symmetric variant of the
Quasi-Minimal Residual (QMR) algorithm derived
in [9]. For factorization preconditioners, the system9>=@? 	sA ? can be solved by a forward-back sweep.
The multigrid method requires

4 1:t>uwvCx-yh7 � 3 arith-
metical operations to reduce the initial error by the
factor y ( t : problem size)[6]. The Multigrid-
preconditioner leads to a condition number of

4 1z\ 3
[7]. The number of iterations is also independent of5 . For the algebraic multigrid, these result have not
yet been proved but they are accepted as ‘empirical
results’. In the following we are concerned with the
construction of an AMG preconditioner.

� D 	{�
can be interpreted as an FE-grid, i.e., the diagonal en-
tries of the matrix

� D are related to grid points in� D
and off-diagonal entries are related to edges in an FE-
mesh. First we investigate the coarsening process.
Motivated from an FE mesh, the grid points� D (or
equivalently the matrix

� D ) can be split into two dis-
joint subsets� D 	 �| ~}~�"! such that there are (al-
most) no direct connections between any two coarse
grid nodes and the resulting number of coarse grid
nodes is as large as possible (for more detailed infor-
mation see[10]). Next the prolongation operator%
from a coarser to a finer grid has to be defined. The
most simple prolongation and the one which turned
out to be most efficient in our simulations is the ‘equal
distribution’ which is given by

1:% 3�� ? 	
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with � � 	 t ��� �  and t � 	�� B���� � � ? �������T� � ��� �a� .



a) b)

Figure1: Skull surfacesegmentationresult through
multimodal MR-imaging presentedon underlying
MR-images. a) T1-weighted b) registered PD-
weighted

Therestrictionoperatoris definedby
�¡ $	 % ' . With

thesedefinitions,thecoarsegrid operator
�(¢

is real-
izedby theclassicalGalerkinmethod

�(¢�	;��� D %
anda recursive applicationof theabove stepsimme-
diately leadsto a multilevel setup(Alg. 1). Finally
anappropriatesmootheris definedby a Gauß-Seidel
methodandthereafterausualmultigrid cycle is given
in Alg. 2. For the £ -V( HI! , HCJ ) cycle AMG precon-
ditioned CG method,the preconditioningoperation9>=@? 	)A ? isequivalentto £ callsof AMG(

�
, =@? ,A ? ,1)

wherethecurrent=@? is alwaysused.

3 Results

3.1 Segmentation and mesh generation

The resultsobtainedby the proceduredescribedin
Section2.1areshown in theFig. 1 and2a.

3.2 Solver-comparison

The isotropicconductivity valuesof the 5-tissuere-
alistic headmodelwerechosenasfollows (in S/m):
skin W _akCk , skull W _ WCW ]�` , CSF \I_ W , grey matterW _akCk and
white matter W _E\^] . Isotropic (Rea-cube)and node-
shifted(Rea-ns-cube)2mmcubemeshesweregener-
ated. A 4-layerspheremodel (cond. W _akCk , W _ WCW ]�` ,\I_ W and W _akCk ) was constructedand meshedwith
2mm isotropic (4Sp-cu-iso)and 2mm node-shifted
(4Sp-nscu-iso)cube elements. A radial:tangential
anisotropy of 1:10wasassignedfor the"skull" layer
(4Sp-nscu-ani,4Sp-cu-ani).A geometry-basedmesh
generatorwas usedto generatea tetrahedralmesh

a) b)

Y

Z X

Figure2: a) Axial layer of thenode-shiftedFE-mesh
of a realistic 5-tissuemodel. b) Isopotential-lines
from

S `p¤ N to
Y `p¤ N ona coronal layerof thenode-

shiftedFE-mesh.

for the isotropic (4Sp-tet-iso)and anisotropic(4Sp-
tet-ani) 4-layer-spheremodel. After settingup the
geometrymatrices,the condition numbers,defined
as the quotientof largest over smallesteigenvalue,
were calculatedto obtain an impressionabout the
ill-posednessusing the algorithmsdescribedin [9].
The solver-performancetestswere carriedout on a
1-processor-machine(CPU:MIPS R10000,180MHz,
FPU:MIPS R10010,2MB sec.cache,32KB instruc-
tion and 32KB datacache). The startingvector for
all solvers was 0. Sincethe solver-performancedi-
agramswerequitecomparablefor all testedequation
systems,only two representative figuresarepresented
(Fig. 3 and4). Theselectedvaluesof � in theAMG-
and G in the threshold-caseare indicatedbehindthe
preconditioner, thenumberof iterationscanbefound
behindthe Krylov-method. We usedthe 1-V(1,1)-
cycle-AMG-preconditioner. The setup-timesfor the
preconditionerswereneglectedsinceit hasto beper-
formedonly oncefor the inverseproblem. To give
an example,the AMG in Fig. 3 used6 levels with
sizes323752,57929,8613,2146,1126and687.The
setup-timewas80.2seconds.Thesetup-timefor the
ILDLT(1e-3)-preconditionerwas37.8seconds.

4 Discussion

Thesubjectin Fig. 1 showsanabove-averageamount
of CSF. A segmentationof the inner skull surface
basedon only the T1-weightedMRI would be es-
peciallyflawedin suchcasesandcould leadto large
mislocalizations[11].
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Figure 3:Solver comparison (, � -relative residual).

The results in Table 1 show a minor influence of the
modelled anisotropy and the node-shift on the con-
dition number. The performance tests with ILDLT-
and AMG-preconditioning, both taking anisotropy
into account, showed no remarkable difference in the
solver times. The calculation times of the Jakobi-
preconditioned Krylov-solvers were up to a factor
1.25 longer for the anisotropic models, probably be-
cause of less-clustered eigenvalue spectra. Up to a rel-
ative , � -residual of\ W 7 � , the differences between the
ILDLT- and the AMG-preconditioned Krylov meth-
ods are minimal. From\ W 7hr up to \ W 7 �¨§ , the AMG-
preconditioned CG method is the fastest in all tested
cases and a factor 2 to 3 times faster than the best-
tuned ILDLT-preconditioned Krylov method. Be-
cause of the loss of about 3 digits for the poten-
tial from the source to the electrodes, the interesting
residuals begin at about\ W 7hr . For very small resid-
uals, the ILDLT-CG shows peaks where the ILDLT-
QMR has a plateau. This is surely due to the dif-
ferent minimization criteria of both Krylov-methods
(the CG-method tries to minimize the A-energy-norm
whereas the QMR method minimizes the, � -norm
which has been visualized in the figures). In future
examinations, we will include skull-anisotropy and
the white-matter tensor measurements, described in
[1]. Because these tensors change from element to el-
ement, it can be assumed that the eigenvalue spectra
are more strongly ‘blurred’ than in the tested mod-
els. We conclude that with regard to the inverse prob-
lem, acceptable calculation times can only be reached
through a parallelization of the presented solvers.
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Figure 4:Solver comparison (, � -relative residual).
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